doi: 10.4304/jsw.7.6.1307-1314
Confidence Estimation for Graph-based Semi-supervised Learning
2College of Computer Science, Sichuan Normal University, Chengdu, China
Abstract—To select unlabeled example effectively and reduce classification error, confidence estimation for graphbased semi-supervised learning (CEGSL) is proposed. This algorithm combines graph-based semi-supervised learning with collaboration-training. It makes use of structure information of sample to calculate the classification probability of unlabeled example explicitly. With multi-classifiers, the algorithm computes the confidence of unlabeled example implicitly. With dualconfidence estimation, the unlabeled example is selected to update classifiers. The comparative experiments on UCI datasets indicate that CEGSL can effectively exploit unlabeled data to enhance the learning performance.
Index Terms—graph, collaboration-training, confidence, classification, semi-supervised leaning
Cite: Tao Guo and Guiyang Li, "Confidence Estimation for Graph-based Semi-supervised Learning," Journal of Software vol. 7, no. 6, pp. 1307-1314, 2012.
General Information
ISSN: 1796-217X (Online)
Abbreviated Title: J. Softw.
Frequency: Quarterly
APC: 500USD
DOI: 10.17706/JSW
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Cecilia Xie
Abstracting/ Indexing: DBLP, EBSCO,
CNKI, Google Scholar, ProQuest,
INSPEC(IET), ULRICH's Periodicals
Directory, WorldCat, etcE-mail: jsweditorialoffice@gmail.com
-
Oct 22, 2024 News!
Vol 19, No 3 has been published with online version [Click]
-
Jan 04, 2024 News!
JSW will adopt Article-by-Article Work Flow
-
Apr 01, 2024 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Apr 01, 2024 News!
Papers published in JSW Vol 18, No 1- Vol 18, No 6 have been indexed by DBLP [Click]
-
Jun 12, 2024 News!
Vol 19, No 2 has been published with online version [Click]