Volume 7 Number 6 (Jun. 2012)
Home > Archive > 2012 > Volume 7 Number 6 (Jun. 2012) >
JSW 2012 Vol.7(6): 1307-1314 ISSN: 1796-217X
doi: 10.4304/jsw.7.6.1307-1314

Confidence Estimation for Graph-based Semi-supervised Learning

Tao Guo1 and Guiyang Li2

1Visual Computing and Visual Reality Key Laboratory of Sichuan Province, Chengdu, China
2College of Computer Science, Sichuan Normal University, Chengdu, China

Abstract—To select unlabeled example effectively and reduce classification error, confidence estimation for graphbased semi-supervised learning (CEGSL) is proposed. This algorithm combines graph-based semi-supervised learning with collaboration-training. It makes use of structure information of sample to calculate the classification probability of unlabeled example explicitly. With multi-classifiers, the algorithm computes the confidence of unlabeled example implicitly. With dualconfidence estimation, the unlabeled example is selected to update classifiers. The comparative experiments on UCI datasets indicate that CEGSL can effectively exploit unlabeled data to enhance the learning performance.

Index Terms—graph, collaboration-training, confidence, classification, semi-supervised leaning


Cite: Tao Guo and Guiyang Li, "Confidence Estimation for Graph-based Semi-supervised Learning," Journal of Software vol. 7, no. 6, pp. 1307-1314, 2012.

General Information

ISSN: 1796-217X (Online)
Frequency:  Quarterly
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, CNKIGoogle Scholar, ProQuest, INSPEC(IET), ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsweditorialoffice@gmail.com
  • Mar 01, 2024 News!

    Vol 19, No 1 has been published with online version    [Click]

  • Apr 26, 2021 News!

    Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec)     [Click]

  • Nov 18, 2021 News!

    Papers published in JSW Vol 16, No 1- Vol 16, No 6 have been indexed by DBLP   [Click]

  • Jan 04, 2024 News!

    JSW will adopt Article-by-Article Work Flow

  • Nov 02, 2023 News!

    Vol 18, No 4 has been published with online version   [Click]