JSW 2012 Vol.7(6): 1296-1306 ISSN: 1796-217X
doi: 10.4304/jsw.7.6.1296-1306
doi: 10.4304/jsw.7.6.1296-1306
A Detailed Study of NHPP Software Reliability Models
Richard Lai and Mohit Garg
Department of Computer Science and Computer Engineering,
La Trobe University, Victoria, Australia
Abstract—Software reliability deals with the probability that software will not cause the failure of a system for a specified time under a specified condition. The probability is a function of the inputs to and use of the system as well as a function of the existing faults in the software. The inputs to the system determine whether existing faults, if any, are encountered. Software Reliability Models (SRMs) provide a yardstick to predict future failure behavior from known or assumed characteristics of the software, such as past failure data. Different types of SRMs are used for different phases of the software development life-cycle. With the increasing demand to deliver quality software, software development organizations need to manage quality achievement and assessment. While testing a piece of software, it is often assumed that the correction of errors does not introduce any new errors and the reliability of the software increases as bugs are uncovered and then fixed. The models used during the testing phase are called Software Reliability Growth Models (SRGM). Unfortunately, in industrial practice, it is difficult to decide the time for software release. An important step towards remediation of this problem lies in the ability to manage the testing resources efficiently and affordably. This paper presents a detailed study of existing SRMs based on Non-Homogeneous Poisson Process (NHPP), which claim to improve software quality through effective detection of software faults.
Index Terms—Software Reliability Growth Models, Non- Homogeneous Poisson Process, Flexible Models
Abstract—Software reliability deals with the probability that software will not cause the failure of a system for a specified time under a specified condition. The probability is a function of the inputs to and use of the system as well as a function of the existing faults in the software. The inputs to the system determine whether existing faults, if any, are encountered. Software Reliability Models (SRMs) provide a yardstick to predict future failure behavior from known or assumed characteristics of the software, such as past failure data. Different types of SRMs are used for different phases of the software development life-cycle. With the increasing demand to deliver quality software, software development organizations need to manage quality achievement and assessment. While testing a piece of software, it is often assumed that the correction of errors does not introduce any new errors and the reliability of the software increases as bugs are uncovered and then fixed. The models used during the testing phase are called Software Reliability Growth Models (SRGM). Unfortunately, in industrial practice, it is difficult to decide the time for software release. An important step towards remediation of this problem lies in the ability to manage the testing resources efficiently and affordably. This paper presents a detailed study of existing SRMs based on Non-Homogeneous Poisson Process (NHPP), which claim to improve software quality through effective detection of software faults.
Index Terms—Software Reliability Growth Models, Non- Homogeneous Poisson Process, Flexible Models
Cite: Richard Lai and Mohit Garg, "A Detailed Study of NHPP Software Reliability Models," Journal of Software vol. 7, no. 6, pp. 1296-1306, 2012.
General Information
ISSN: 1796-217X (Online)
Frequency: Quarterly
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, CNKI, Google Scholar, ProQuest, INSPEC(IET), ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsw@iap.org
-
Apr 26, 2021 News!
Vol 14, No 4- Vol 14, No 12 has been indexed by IET-(Inspec) [Click]
-
Nov 18, 2021 News!
Papers published in JSW Vol 16, No 1- Vol 16, No 6 have been indexed by DBLP [Click]
-
Dec 24, 2021 News!
Vol 15, No 1- Vol 15, No 6 has been indexed by IET-(Inspec) [Click]
-
Nov 18, 2021 News!
[CFP] 2022 the annual meeting of JSW Editorial Board, ICCSM 2022, will be held in Rome, Italy, July 21-23, 2022 [Click]
-
Aug 01, 2023 News!