Volume 9 Number 9 (Sep. 2014)
Home > Archive > 2014 > Volume 9 Number 9 (Sep. 2014) >
JSW 2014 Vol.9(9): 2361-2365 ISSN: 1796-217X
doi: 10.4304/jsw.9.9.2361-2365

An Algorithm for Mining Frequent Itemsets from Library Big Data

Xingjian Li
Library, Nanyang Institute of Technology, Nanyang, Henan 473000, China

Abstract—Frequent itemset mining plays an important part in college library data analysis. Because there are a lot of redundant data in library database, the mining process may generate intra-property frequent itemsets, and this hinders its efficiency significantly. To address this issue, we propose an improved FP-Growth algorithm we call RFP-Growth to avoid generating intra-property frequent itemsets, and to further boost its efficiency, implement its MapReduce version with additional prune strategy. The proposed algorithm was tested using both synthetic and real world library data, and the experimental results showed that the proposed algorithm outperformed existing algorithms.

Index Terms—big data; frequent itemset; data mining; library

[PDF]

Cite: Xingjian Li, "An Algorithm for Mining Frequent Itemsets from Library Big Data," Journal of Software vol. 9, no. 9, pp. 2361-2365, 2014.

General Information

ISSN: 1796-217X (Online)
Frequency: Monthly
Editor-in-Chief: Prof. Antanas Verikas
Executive Editor: Ms. Yoyo Y. Zhou
Abstracting/ Indexing: DBLP, EBSCO, ProQuest, INSPEC, ULRICH's Periodicals Directory, WorldCat, etc
E-mail: jsw@iap.org
  • Dec 06, 2019 News!

    Vol 14, No 1- Vol 14, No 4 has been indexed by EI (Inspec)   [Click]

  • Nov 18, 2019 News!

    Papers published in JSW Vol 14, No 1- Vol 14 No 10 have been indexed by DBLP     [Click]

  • Dec 06, 2019 News!

     Vol 13, No 10- Vol 13, No 12 has been indexed by EI (Inspec)   [Click]

  • Aug 01, 2018 News!

    [CFP] 2020 the annual meeting of JSW Editorial Board, ICCSM 2020, will be held in Rome, Italy, July 17-19, 2020   [Click]

  • Jun 25, 2019 News!

    Vol.13, No.9 has been indexed by EI (Inspec).   [Click]