
An Algorithm for Mining Frequent Itemsets from 
Library Big Data 

 
Xingjian Li 

lixingjianny@163.com 
Library, Nanyang Institute of Technology, Nanyang, Henan 473000, China 

 
 

Abstract—Frequent itemset mining plays an important part 
in college library data analysis. Because there are a lot of 
redundant data in library database, the mining process may 
generate intra-property frequent itemsets, and this hinders 
its efficiency significantly. To address this issue, we propose 
an improved FP-Growth algorithm we call RFP-Growth to 
avoid generating intra-property frequent itemsets, and to 
further boost its efficiency, implement its MapReduce 
version with additional prune strategy. The proposed 
algorithm was tested using both synthetic and real world 
library data, and the experimental results showed that the 
proposed algorithm outperformed existing algorithms.  
 
Index Terms—big data; frequent itemset; data mining; 
library 
 

I.  INTRODUCTION 

Frequent Itemsets (Frequent Patterns) Mining is an 
important technique in data mining, and it has been used 
in many fields, such as study of other data mining 
techniques, bank, library, etc. Since the first algorithm of 
mining frequent itemsets named Apriori was proposed by 
Rakesh Agrawal [1], new algorithms have been proposed 
constantly for various sub-domains of frequent itemsets 
mining, and these algorithms have been applied to many 
domains [2-5]. The algorithms Apriori and FP-Growth [1, 
6] are representative of level-wise algorithms and pattern-
growth algorithms, respectively; and many algorithms are 
variants of these two algorithms.  

While many algorithms [7-13] have significantly 
increased their performance, they are still not fast enough 
for dealing with large datasets. This situation gave rise to 
the development of parallel algorithms. Along with the 
rapid growth of the application of MapReduce parallel 
computing framework, more and more data mining 
algorithms have been ported to run on this framework; 
parallel algorithms of mining frequent itemsets on 
MapReduce are based on either Apriori or FP-Growth. 
The algorithms in the papers [14-18] are based on Apriori, 
and they needed multiple MapReduce processes; if the 
length of the longest frequent pattern is K, K rounds of 
MapReduce must be applied. The algorithm PFP [19] is 
based on FP-Growth, and it needs only two rounds of 
MapReduce, but the data distributed to each node are 
heavily redundant, and the size of data chunks cannot be 
well-proportioned, so its time-performance is still not 
very satisfying. 

Because there are a lot of redundant data in some 
datasets, such as library database, the mining process may 
generate intra-property frequent itemsets, and this hinders 
its efficiency significantly. 

To address the above issue, we propose a parallel 
algorithm of mining frequent itemsets that needs at most 
only two rounds of MapReduce (in our experiments, only 
1 round is needed in most cases), and this algorithm 
distributes data evenly among data nodes. Meanwhile, it 
can avoid generating intra-property frequent itemsets, and 
to further boost its efficiency. Experimental results 
confirmed that our algorithm outperformed existing 
algorithms significantly in term of time efficiency.  

The rest of this paper is organized as follows: Section 
2 gives the problem definitions; Section 3 proposes the 
new algorithm; Section 4 is the experiment results; and 
Section 5 is the conclusion. 

II.  PROBLEM DEFINITIONS 

Let a dataset DB ={t1,t2, …, tn} contains n transaction 
itemsets and m distinct items I = {i1, i2, … , im}. Each 
transaction T = (TID, P) in DB consists of an itemset P 
and a unique identifier TID and P ⊆ I. |DB| represents the 
size of dataset DB. An itemset 

1 2 1 2{ , , , }(1 )
kj j j kX i i i j j j m= ≤ < < < ≤  

containing k distinct items is called a k-itemset and k is 
the length of the itemset X. 

Definition 1.  The minimum support threshold 
min_Sup is the user specified percentile of number of 
transactions in the given dataset DB; then minimum 
support number, min_SupNum, in DB is defined by 
min_SupNum = min_Sup * |DB|. 

Definition 2.  The support number (sn) of an itemset X 
is the number of transaction itemsets containing X. 

Definition 3.  An itemset X is a frequent itemset if its 
support number is not less than the minimum support 
number. 

Definition 4.  Let dataset DB be divided into s little 
datasets 1 2= ... sDB DB DB DB∪ ∪ ∪ . 

| |imin_Sup DB∗  is called the local minimum support 

number of DBi (1 i s≤ ≤ ). In dataset DBi, an itemset X 
is a local frequent itemset if its support number is not less 
than the local minimum support number. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2361

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2361-2365



Property 1. Any subset X ( X null≠ ) of a frequent 
itemset is a frequent itemset; any superset of a non-
frequent itemset is not a frequent itemset. 

III. THE PROPOSED ALGORITHM 

This section mainly includes three parts: (1) preprocess 
the college library data; (2) give a new algorithm based 
on FP-Growth Algorithm; (3) implement the improved 
parallel FP-Growth Algorithm on MapReduce framework. 

A.  Preprocessing Library Data 
This paper presents a data preprocessing method to 

process the combined data of books’ bibliographic data, 
reader’s information and readers’ borrowing information 
by the following: (1) replacing all the property items of 
the book information with “A” prefix of consecutive 
numbers; (2) replacing all the property items of reader 
information with “B” prefix of consecutive numbers. 

Definition 5. A frequent itemset is called intra-
property frequent itemset if each item of the frequent 
itemset has the same prefix or property.  

In most cases, the user doesn’t care about the intra-
property frequent itemsets, or association rules derived 
from intra-property frequent itemsets, but need to find out 
the frequent itemsets between different properties, such 
as discovering frequent itemsets or association rules 
between the book information and the reader information. 

B. The Proposed Algorithm RFP-Growth 
In many cases, the algorithm FP-Growth outperforms 

Apriori in terms of the mining efficiency. Therefore, this 
paper will improve the FP-Growth algorithm for mining 
data with a lot of redundant. The improved algorithm can 
avoid generating intra-property frequent itemsets, in order 
to improve the efficiency of mining. The improved 
algorithm is called RFP-Growth. Steps of RFP-Growth 
Algorithm are as follows: 
Step1: Scan the dataset, count the support number of 

each item (the number of item appears in the 
dataset), then save the items and corresponding 
support number to a header table H. Each header 
table contains three fields: item name, support 
number and link field, and the field link records 
all nodes of an item on a tree.  

Step2: Remove items whose support number is less than 
the minimum support number from header table. 
If the remaining items in this header table belong 
to one property or this header table is empty, then 
quit the mining algorithm. Otherwise, sort the 
remaining items by support number in descending 
order. 

Step3: Scan the dataset for a second time to process the 
transaction item sets, the processing steps are as 
following steps: 

Step3.1: Remove the non-frequent items from transaction 
itemsets. 

Step3.2: Sort the remaining items of transaction itemsets 
by the order of items in header table, then adding 
the ordered itemsets to a tree T. 

Step3.3: After ordered itemsets are added to a tree T, all 
the support number of the itemsets' corresponding 
nodes plus 1, then keep all the new nodes in the 
field link of corresponding header table. 

Step4: Process each item of the header table from the last 
one. The processing steps are as following steps 
(assuming the current processing for item Q): 

Step4.1: Add item Q into a base itemsets BI; 

Step4.2: In header table H, Q.link contains all the nodes 
in the tree T whose item name is Q, denoted k 
nodes: N1, N2, ..., Nk. 

Step4.3: read all the items from node Ni(i = 1, 2, ..., k) to 
the root of tree T, then save this items and its 
support number(the support numbers of each item 
are the same, which is the support number of node 
Ni) to a sub-header table subH( sub-header table 
subH has the same structure with the header table 
H). 

Step4.4: Remove items from subH whose support 
number is less than minimum support number; if 
items of base itemsets BI and items of sub-header 
table subH are the same property or subH is 
empty, then step 5. Otherwise, sort the sub-header 
table subH by support number in descending 
order. 

Step4.5: Read all the items from node Ni (i = 1, 2, ..., k) 
to the root of tree T in turn, remove local non-
frequent items from the read items; 

Step4.6: Sort the remaining itemsets by sub-header table 
order, then add the ordered itemsets to a new 
subtree subT. 

Step4.7: When ordered itemsets are added to the subtree 
subT, all the support number of the itemsets' 
corresponding nodes plus s (s is the support 
number of node Ni), then keep all the new nodes 
in the link of corresponding subhead table. 

 

2362 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER



 
Figure 1. The flow chat of algorithm RFP-MR 

 
Step4.8: Process sub-header table subH from step 4 

recursively; 
Step5: Remove the current processing item of the current 

processing header table from base itemsets BI, 
then continue process next item in the current 
processing header table. 

The improved FP-Growth algorithm is called RFP-
Growth, the main differences between the RFP-Growth 
algorithm and original FP-Growth algorithm are Step2 
and Step4.4, and these two steps can effectively avoid 
generating intra-property frequent itemsets. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2363

© 2014 ACADEMY PUBLISHER



C.  The Method of Mining Frequent Itemsets from a 
Library Big Data 

Theorem 1: Itemset X is a frequent itemset if the sum 
of support number of part of the data blocks of the 
itemset X is not less than the minimum support number. 

Proof: Obviously, if the sum of support number of part 
of the data blocks of an itemset X is not less than the 
minimum support number, then the sum of support 
number of all data blocks must have not less than the 
minimum support number. Therefore, the itemset X must 
be a frequent itemset. 

Theorem 2: Divide dataset DB into m little datasets 
DB = { DB1, DB2, …, DBm }, and let the frequent itemset 
contained in dataset DB be denoted by FI, and the local 
frequent itemset contained in each little dataset be called 
FI1, FI2, …, FIm. Then the frequent itemset of dataset DB 
is a subset of what on all the little datasets, that is FI ⊆  
FI1∪FI2 …∪ ∪FIm. 

Proof: Proof by contradiction. 
Set the support number of a itemset X on the i-th data 

block as SNi，then the support number of itemset X on 

dataset DB is 
1

m
ii

SN
=∑ . If itemset X is not a frequent 

itemset on any data block, then the support number of X 
on any data block is less than the local minimum support 
number, that is Xi＜min_Sup*|DBi| (1≤i≤s). Therefore, 

i i1 1 1
* *m m m

ii i i
X min_Sup DB min_Sup DB

= = =
< =∑ ∑ ∑

* | |min_Sup DB= . In conclusion, the itemset X is not a 
frequent itemset if it is not a local frequent itemset. 

According to the principle of Theorem 2, mining 
frequent itemsets from a large dataset can be divided into 
two steps: 
(1) Taking advantage of the algorithm RFP-Growth to 

mine local frequent itemsets from each data block, 
which generate candidate itemsets of global 
frequent itemsets. 

(2) Re-scaning dataset to discover real frequent 
itemsets, where each step executes MapReduce 
once. 

A parallel RFP-Growth algorithm based on 
MapReduce is called RFP-MR. Figure 1 is a flow chart of 
the algorithm RFP-MR. The transaction datasets execute 
MapReduce twice to mine frequent itemsets. Before 
performing the second round, cut down the size of 
candidate itemsets: remove some of the non-frequent 
itemsets from candidate itemsets by taking advantage of 
Property 1; discover some of the frequent itemsets by 
taking advantage of Theorem1. Thus, the time efficiency 
of the second MapReduce can be efficiently improved by 
decreasing of the size of candidate itemsets. 

IV. EXPERIMENTAL RESULTS 

In order to verify the effectiveness of our proposed 
algorithm, we compare our algorithm with Apriori-based 
k rounds MapReduce (referred to as Apriori_KMR) 
algorithm [18] and the algorithm PFP [19] respectively. 
All experiments in this paper are based on the algorithm 
implemented in Python. Experimental platform is a 

cluster of 26 nodes, containing a master node, a 
scheduling node, a backup node and 23 data nodes. Each 
node in the hardware is configured with the 2.5GHz dual-
core CPU and 8GB of memory, and the software is 
configured with ubuntu 12.04 and Hadoop 0.23.0. 

In this paper, we take two datasets, one is historical 
borrowing data of our university (denoted as DATA1), it 
contains a total of 2000K transactions, and the length of 
each transaction itemset is 26 (that is each transaction 
contains 26 properties). The other one is synthetic dataset 
T20I10D10000K, and it was generated by IBM data 
generator, this dataset contains 10000K transactions，the 
average length of the transactions is 20. In order to fully 
taking advantage of 23 data nodes, the tested data file in 
this paper has been divided evenly into 20 small data files. 

Figure 2 shows the runtime of three algorithms in 
different minimum support threshold, and it can be seen 
from Figure 2 that the proposed algorithm in this paper 
outperformed the algorithm Apriori_KMR in term of time 
efficiency, because with the decrease of minimum 
support threshold, the number of frequent itemsets 
increases. Thus, the algorithm Apriori-KMR produces 
excessive candidate itemsets, and it repeatedly invokes 
MapReduce. The proposed algorithm in this paper 
executes MapReduce for the first time to produce local 
frequent itemsets, and then cut down the size of candidate 
itemsets by filtering the candidate itemsets. In many cases, 
there is no need for a second round of MapReduce to 
count the support number of candidate itemsets. 
Therefore, the time efficiency of the proposed algorithm 
is higher than the algorithm Apriori_KMR. When testing 
data in DATA1, since the dataset has intra-property 
frequent itemsets, the algorithm Apriori_KMR can avoid 
generating intra-property frequent itemsets effectively. 
Therefore, the algorithm RFP-MR outperforms Apriori-
KMR in term of time efficiency. 

1.2 1.4 1.6 1.8 2.0

0

500

1000

1500

2000

2500

ru
nt

im
e 

(s
)

minimum support threshold (%)

 RFP-MR
 Apriori-KMR
 PFP

(a) The dataset DATA1 
 

2364 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER



0.7 0.9 1.1 1.3 1.5

0

1000

2000

3000

4000

5000

6000

7000

ru
nt

im
e 

(s
)

minimum support threshold (%)

 RFP-MR
 Apriori-KMR
 PFP

(b) The dataset T20I10D10000K 
Figure 2. The runtime of three algorithms under varied minimum 

support threshold 

In the algorithm PFP, the data distributed to each node 
are heavily redundant, and the size of data chunks cannot 
be well-proportioned, so its time efficient is still not very 

satisfying. As shown in Figure 2, the proposed algorithm 
RFP-MR outperforms PFP in term of time performance. 

V. CONCLUSION 

With the development of information technology, 
library data is also growing, in order to effectively mine 
the frequent itemsets, this paper have done three works, 
one is giving a mining algorithm RFP-Growth, which can 
effectively avoid generating intra-property frequent 
itemsets. Secondly, applying the improved algorithm 
RFP-Growth to the MapReduce framework, and realize 
parallelism, which can effectively mine frequent itemsets 
from big data. Finally, we use the library borrowing data 
and a synthetic dataset to validate the proposed algorithm 
RFP-MR, and the experimental results confirmed that our 
algorithm RFP-MR outperformed existing algorithms 
Apriori-KMR and PFP significantly in term of time 
efficiency. 

REFERENCES 

[1] R. Agrawal and R. Srikant. Fast algorithms for mining 
association rules in large databases. International 
Conference on Very Large Data Bases (VLDB 1994). 1994. 
Santiago, Chile. 

[2] B. Li. Non-personalized Book Recommendation Based on 
Search Behavior. Library Journal, 2013. 8(32): pp. 36-41. 

[3] Q. Ruan, H. Lin and H. Tan. Research on the approach to 
optimize book exhibition based on mining association rules. 
International Journal of Advancements in Computing 
Technology, 2012. 4(16): pp. 500-507. 

[4] H. He. Analysis ofAssociation Rules in Book Circulation. 
Library Journal, 2011. 7(30): pp. 63-68. 

[5] M. Antonie, O.R. Zaiane and A. Coman. Application of 
Data Mining Techniques for Medical Image Classification. 
MDM/KDD, 2001. 2001: pp. 94-101. 

[6] J. Han, J. Pei and Y. Yin. Mining frequent patterns without 
candidate generation. ACM SIGMOD International 
Conference on Management of Data. 2000. Dallas, TX, 
United states. 

[7] L. Wang, L. Feng and M. Wu. AT-Mine: An Efficient 
Algorithm of Frequent Itemset Mining on Uncertain 
Dataset. Journal of Computers, 2013. 8(6): pp. 1417-1426. 

[8] L. Feng, L. Wang and B. Jin. UT-Tree: Efficient mining of 
high utility itemsets from data streams. Intelligent Data 
Analysis, 2013. 17(4): pp. 585-602. 

[9] B. Chandra and S. Bhaskar. A novel approach for finding 
frequent itemsets in data stream. International Journal of 
Intelligent Systems, 2013. 28(3): pp. 217-241. 

[10] J.J. Cameron, A. Cuzzocrea and C.K. Leung. Stream 
mining of frequent sets with limited memory. 28th Annual 
ACM Symposium on Applied Computing (SAC 2013). 
2013. Coimbra, Portugal. 

[11] B. Vo, T. Hong and B. Le. DBV-Miner: A Dynamic Bit-
Vector approach for fast mining frequent closed itemsets. 
Expert Systems with Applications, 2012. 39(8): pp. 7196-
7206. 

[12] W. Shui and W. Le. An implementation of FP-growth 
algorithm based on high level data structures of weka-
JUNG framework. Journal of Convergence Information 
Technology, 2010. 5(9): pp. 287-294. 

[13] M. El-hajj and O.R. Zaïane. COFI-tree mining: a new 
approach to pattern growth with reduced candidacy 
generation. IEEE International Conference on Frequent 
Itemset Mining Implementations. 2003. 

[14] T. Xiao, C. Yuan and Y. Huang. PSON: A parallelized 
SON algorithm with MapReduce for mining frequent sets. 
4th International Symposium on Parallel Architectures, 
Algorithms and Programming (PAAP 2011). 2011. Tianjin, 
China. 

[15] M. Riondato, et al. PARMA: A parallel randomized 
algorithm for approximate association rules mining in 
MapReduce. 21st ACM International Conference on 
Information and Knowledge Management (CIKM 2012). 
2012. Maui, HI, United states. 

[16] X.Y. Yang, Z. Liu and Y. Fu. MapReduce as a 
programming model for association rules algorithm on 
Hadoop. 3rd International Conference on Information 
Sciences and Interaction Sciences (ICIS 2010). 2010. 
Chengdu, China. 

[17] J. Cryans, S. Ratte and R. Champagne. Adaptation of 
apriori to MapReduce to build a warehouse of relations 
between named entities across the web. 2nd International 
Conference on Advances in Databases, Knowledge, and 
Data Applications (DBKDA 2010). 2010. Menuires, 
France. 

[18] M. Lin, P. Lee and S. Hsueh. Apriori-based frequent 
itemset mining algorithms on MapReduce. 6th 
International Conference on Ubiquitous Information 
Management and Communication. 2012. 

[19] H. Li, et al. PFP: Parallel FP-growth for query 
recommendation. 2nd ACM International Conference on 
Recommender Systems (RecSys 2008). 2008. Lausanne, 
Switzerland. 

 
 

 

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2365

© 2014 ACADEMY PUBLISHER


