
Research on Automated Software Test Case
Generation

Daisen Wei

College of computer science and technology, Shandong University, Jinan, China
Inspur Genersoft Co., Ltd. Jinan, China

E_mail: weids@inspur.com

Longye Tang
Inspur Genersoft Co., Ltd. Jinan, China

E_mail:tangly@inspur.com

Xueqing Li
College of computer science and technology, Shandong University, Jinan, China

E_mail: xqli@sdu.edu.cn

Ling Shang
Lifl, University of Science and Technology of Lille, Lille, France

E_mail: ling.shang@lifl.fr

Abstract—To improve the efficiency of software testing, a
model-driven method is proposed to automatically generate
test cases from UML design model. In it, PITCs
(platform-independent test cases) are generated first from a
UML design model. And then, according to the predefined
rules, a process is implemented to transform PITCs into the
corresponding PSTCs (platform-specific test cases). The
experiment and comparison had showed that the method
proposed in this paper was easier to be understood and
implemented by users to generate test cases than the ones
existed.

Index Terms—software testing, test case, PITC, PSTC,
transformation rule

I. INTRODUCTION

Testing is one of key steps in software development
and even runs through the whole software lifecycle. And
now, it is regarded as one of the most important and
effective ways to improve the quality of software by
trying to find the potential faults that may exist in source
codes. The first step of implementing it is to design and
generate test cases, a set of data generally including input
and the expected output that satisfy the design or testing
requirements of SUT (system under test).

In recent decades, UML has been one of the most
popular design tools widely used in some key
subprocesses of software lifecycle, especially design and
testing. So, UML based testing has already been paid

more attention by researchers from both academia and
industry. UML models, however, are generally in the
form of diagrams, so it is very hard to directly generate
test cases from them. One approach adopted to deal with
it was to create the corresponding test models from UML
design ones, from which test cases were generated. A
specification, UML2.0 test profile, had also been released
by OMG in 2004[1] to support this model-based testing.
And on the basis of it and the methodology of MDD
(model driven development), model-riven testing were
also widely researched [2]. One of the advantages of this
method is to provide a good way to automatically
generate test cases through model transformation.

Model-riven testing, however, is also a challenge for
testers due to some reasons, one of which is that how the
input space of SUT is to be defined and then from which
the appropriate testing data are selected to form test cases.
This is one of the important factors to influence that
whether test cases can automatically be generated or not.
And this problem can also cause that a test case would
usually be defined as a form, in most methods existed,
being different from that of the executable one with the
real input/expected output data used in practical testing.
Obviously, all these can make the process of test case
generation low efficiency and time consuming. So,
research on automated test case generation from UML
models is necessary and very worthy of doing. More
attention had also been paid to it in academia and
industry and some achievements had been obtained in
recent years [3].

In this paper, one model-driven method was proposed
to generate software test cases, the executable ones, from
a UML design model. And state diagram was selected in
a case given in section V below. The idea of this method

Manuscript received January 20, 2014; revised May 22, 2014;

accepted May 23, 2014.

2868 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.11.2868-2876

originated from MDD, in which object source codes were
automatically generated by model transformation from
UML design models. The basic process to implement it
was that PITCs were generated from a UML design
model, PIM (platform independent model), and then data
mapping rules from PITC to PSTC were defined to guide
the PSTCs generation from the corresponding PITCs.

The remainder of this paper is organized as follows. In
section II, some concepts such as PITC, PSTC and
transformation from PITC to PSTC etc. are defined. In
section III, the processes including PITC generation,
PITC-to-PSTC transformation and PSTC generation are
described respectively. In section IV, a case is given to
show the whole PITC-to-PSTC process. In section V, the
method is analyzed and compared to some related ones
from two perspectives. And the conclusions are given in
section VI.

II. SOME CONCEPTS

A test case in software engineering is a set of
conditions or variables under which a tester will
determine whether an application, software system or one
of its features is working as it was originally established
for it to do. In this paper, a software test case is defined as
follows:

Definition 1: Test Case (TC). A test case is a 3-tuples:
(Id, InitState, Data), where: (1) the “Id” is an unique and
numbered string assigned to each test case, and (2) the
“InitState” is the current state of SUT, followed by the
execution of the test case selected, and (3) the “Data” is a
set in the form of {<ini, eouti>} in which the “ini”
represents the input and the “eouti” the expected output.

Note that: the data pair <ini, eouti> implements an
atomic testing step. The “atomic” means that the <ini,
eouti> is the minimum input-output data pair, that is,
there are no other input or output data between the “ini”
and the “eouti”.

Definition 2: Platform-Independent Test Case (PITC).
A PITC is a test case generated from system design
model, in which all data including parameters’ types,
values and syntax are not bound to any programming
language such as JAVA or a platform specification such
as .NET and JSP. For example, the following data string
is a PITC being designed to verify the validity of user’s
identity before he or she tries to login and enter a web
system.

(tc1, login page, < [name, password], main page of the
system>)

In the PITC tc1, the “login page” means the page
loaded for users to login and also represents the current
system state before the users’ account are entered. The
“[name, password]” represents the user’s account as input.
The “main page of the system” means the loaded page as
output, that is, the new system state after the user’s name
and password are entered and then submitted. As we can
see, all data involved in tc1 are platform-independent. In
this paper, this type of data is called as platform-
independent data (PID), the form of data without definite
values in a PIM.

Definition 3: Platform-Specific Test Case (PSTC). A

PSTC is the refined version of a PITC, in which all data
involved are platform-specific and the syntax of them
conforms to a specific programming language or platform
specification. The following PSTC tc11 corresponding to
the above PITC tc1 is given as follows:

(tc11, UserLogin.jsp, <
[“administrator”,”12@abMN67”], default.jsp >)

Note that: the syntax of tc11 complies with the object
specification JSP. In it, the NO. of test case, tc11, can be
changed as required. The “UserLogin.jsp” is a JSP page
that means the concrete login page of SUT. The pair
“[‘administrator’,’12@abMN67’]” represents the login
account including the user’s name and password. And the
“default.jsp” represents the main page of SUT as
expected output after a user’s account is verified to be
true.

From the definition 4 and 5 above, it can be seen that a
PSTC can be executed manually but a PITC cannot. In
this example, the syntax of all data in tc11 conforms to
the platform specification JSP. The tc11 is also a test case
that can be executed manually. And if required, it can
further be transformed automatically into a script that can
directly be executed by test tools. In this paper, this type
of data is called as platform-specific data (PSD), the form
of ones with definite values in a PSM (platform specific
model). In MDD, a PSM is always transformed from a
specific PIM.

The figure 1 below shows the test case generation
process marked with the directed real lines. And it
consists of two subprocesses, one of which is the PITCs
generation from PIM and the other is the PSTCs
generation through the data transformation from the
corresponding PITCs.

Note that: in figure 1, the process “MT” means the

model transformation from PIM to PSM, which is
implemented according to the predefined rules. And this
transformation process involves two subprocesses of
refinements, logic structure or syntax and data object,
from PIM to PSM. The process “DT” represents the
refinement of data objects from PIM to PSM. So, DT is
only one part of MT.

The data object is defined as follows:
Definition 4: Data Object (DO). A DO is an object with

attributes that appears in test cases for SUT.
In object-oriented methodology, an object usually

consists of attributes and methods or functions. If an
object appears in a test case, only the values assigned to
the corresponding attributes of it are involved generally.

MT-Model Transformation
DT-Data Transformation

PSM

PSTC

PIM

PITC DT

MT

Figure 1 Model-driven test case generation

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2869

© 2014 ACADEMY PUBLISHER

So, the DO is defined here just from the perspective of
test cases, that is, only the attributes and their values of an
object are focused and used.

And in this paper, a DO has two forms, one of which is
PIDO (platform independent data object) and the other
PSDO (platform specific data object). The only difference
between them is that PIDO is defined or used in PIM and
the corresponding PSDO in PSM. Correspondingly, the
attributes of a PIDO are named as PIA (platform
independent attributes) and the ones of a PSDO as PSA
(platform specific attributes). The states of a PIDO are
called as PIS (platform independent states) and the ones
of a PSDO as PSS (platform specific states). And all
these terms are used in the following figure 2 and
definition 5.

For instance, in the PITC tc1 given above, two
attribute parameters, name and password, together define
a DO user account. The same DO user account is
described in the form of [name, password] in tc1 and
correspondingly, that in the form of
[“administerator”,”12@abMN67”] in the PSTC tc11.
Obviously, it shows that a PITC and all data objects in it
are platform independent and a corresponding PSTC and
all the same data objects in it platform specific.

Definition 5: ⓣ. The ⓣ is defined as the operation

of transforming a PITC into the corresponding PSTC (s).
Because each attribute variable can be assigned to

different values that may represent different states of a
data object, the ⓣ implements a one-to-many function.
That is, one PITC can be transformed into many PSTCs.

One example is that each variable should be assigned at
least to two constant values, the valid one accepted by
SUT and the invalid one failed in SUT.

The detailed process of transforming a PITC into the
PSTC (s) was given in section III(C) below.

In essence, the operation ⓣ implements the process
of data refinement between PIM and PSM, in which only
constant values from the data space of PSM are assigned
to the corresponding attributes of PIDO in PIM. Because
the ⓣ does not change the semantic of these attributes,
it should keep the property preservation in this transform-
ation from a PITC to the corresponding PSTCs.

For example, the transformation from the PITC tc1 to
the PSTC tc11 given above can be correspondingly
described as the following table I.

III. PITCS AND PSTCS GENERATION

A. Generating the Executable Paths
A test case always corresponds to an executable path in

SUT. In this paper, the approach to generating test cases
is on the basis of UML design models such as activity
and state diagram. So, in order to be retrieved easily, the
UML diagram used must be described as a
correspondingly directed graph. After that, all executable
paths can be generated by retrieving this graph. And such
a graph is named as UML Graph (UG).

In the case given in section IV below, an UG was
created from UML state diagram. In this UG, a node
represents a system state and a directed edge a transfer
between two adjoining states.

Definition 5 Executable Path (EP). An EP is a path
with one unique start node and one tail node in UG.

In some cases, UG may involve loop. Generally, a loop
appears in an executable path only zero and 1 time in the
path coverage of software testing. So, before the
graph-retrieved algorithm is implemented, this should be
configured as a constraint condition.

Note that: the graph-retrieved algorithm adopted in this
paper is general and common to that we study in the
course of data structure.

In this paper, a set named as PATH, {p1, p2, p3, p4…},
is defined to store all executable paths generated and each
pi in it corresponds to an executable path. A detailed case
will be given in section V below.

B. PITCs Generation
After the set PATH including all executable paths of

SUT is generated, PITCs can be generated from it. In

TABLE I

AN EXAMPLE: TRANSFORMATION FROM PIDO TO PSDO

DO PIDO in the PITC tc1
PSDO in the PSTC

tc11

page login page UserLogin.jsp

user account name, password
“administrator”,

”12@abMN67”

page main page of the system default.jsp

Transformation/r
efinement

PIDO

Named Object

PIA PIS

1…1

1…* 0…*

1…1

1…* 1…*

{value domain}

PSDO

Named Object

PSS

1…1

1…* 0…*

1…1

1…* 1…*

Instances

1…*
1…*

value domain
PSA

…
1…*

Figure 2 Transformation from PIDO to PSDO

2870 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

order to complete this process, the contents of each node
and edge of a path pi in PATH should be determined and
given. And the following table II is defined to do it for
providing the information needed.

In such table, the state with input and output
corresponding to each node is given clear. The table
should be created in advance and the description of each
item in it should be given accurately. The table is named
as SET (state and event table).

In table II above, the column State NO. corresponds to

the NO. of each node in UG. The column Current state
means the system state followed by the test case
execution. The column Input represents the data that may
be entered in the current state and Expected output the
ones appeared in next system state. And the Input and
Expected output together determine a corresponding data
object. Exactly, each pair of the input and output required
in a state of SUT is given manually by analyzing and
determining the input boundary of each attribute of one
data object. All input and excepted output are in the form
of platform- independent data.

The following process is given to implement PITCs
generation from the PATH according to the table SET
created in advance. And each executable path included in
PATH is processed one by one.
Step1: take the ith path pi from PATH, and then

determine the initial state of the first node of pi.
The initial state is the content of the column
Current state in the table SET.

Step2: determine the <inj, eoutj>, the input and expected
output of the jth state node in the current path pi.
Here, the inj is the content of the column input
corresponding to the jth state in SET, and it may
be null; the eoutj is the content of the column
Expected output corresponding to the jth state in
SET.

Step3: continue to take the next adjoining node in the
current path pi and then go to the Step2 until all
nodes in pi have been processed eventually. Note
that, the last node in each path pi is the end node
of UG and that is marked with “END”.

Step4: according to the processed order of each
executable path in PATH, each PITC generated is
numbered with a string, for example tc1, tc2….

The above process from step1 to step4 will be repeated
until all executable paths in PATH have completely been
transformed at last.

A PITC generated according to the above process is
not an executed test case because in it all attribute
parameters involved are not assigned to concrete values
that conform to a high programming language or platform
specification. So, it must be transformed into the
corresponding PSTC, one type of executable test case
defined in this paper.

C. PSTCs Generation
In this section, the work is just to identify all data

objects and their input variables involved in each PITC
and then choose appropriate values from the input space
for all variables.

The value space of an attribute variable generally
consists of a valid subspace, in which values are expected
to be accepted by SUT, and a failure one, in which values
are invalid and expected to cause the SUT to produce
some kind of failure response.

To implement this process, the table PISDMT
(platform independent-specific data mapping table) is
defined in the form of the table III below which conforms
to the figure 2 and Definition 5 given in section II.
Exactly, the PISDMT is used to describe the information
about PIDO and PSDO and the mapping relation between
them, which is very essential for the generating process
from PITCs to PSTCs.

In Table III below, the column DO is used to identify
each unique data object. The BSF (basic state feature) is
to describe the state features, valid or invalid, of the value
space of the current DO. The PSA refers to the platform
specific counterpart of the current DO. The PSS (platform
specification) is to describe the valid or invalid values
assigned to the current DO under the final application
platform.

According to the contents of PISDMT, the detailed

transformation process is defined as follows:
PITC ⓣ PSTC ≡ PIDO: (PIA, PIS) ⓣ PSDO:(PSA,

PSS）
In it, the “≡” represents “being defined”. It means that

the transformation process from a PITC to the
corresponding PSTC(s) is equal to that from the PIAs and
PISs of each PIDO in a PITC to the PSAs and PSSs of
the corresponding PSDO in table PISDMT. In fact, it
completes the process in which all variables in PITC are
assigned to the concrete values that comply with the
syntax of the final application platform determined.

The main contents of a test case usually include the
initial state and a set of data pair including input and
expected output. For each part of it, one corresponding
transformation rule is described as follows:

(1) Transforming the initial state in a PITC into the one
in a PSTC

Rule1: the initial state transformation
IF (∀PITC (∃do∈PITC.InitState Λ do==PISDMT.DO

Λ ∃pss∈ PISDMT.PSS)) THEN
 PITC.InitState.do← pss
Here, the “←” represents “being replaced” and the “∈”

“being included”. It means that if a data object do exists
in the InitState of a PITC, the do is to be replaced by the
corresponding data pss included in the current row of the

TABLE III

PLATFORM INDEPENDENT-SPECIFIC DATA MAPPING TABLE

(PISDMT)

DO BSF PSA Value Space PSS

TABLE II

THE STATE AND EVENT TABLE (SET)

State NO. Current state Input Expected output

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2871

© 2014 ACADEMY PUBLISHER

table PISDMT.
(2) Transforming the input and output in a PITC into

the ones in a PSTC.
Rule2: the input and output data transformation
IF (∀PITC (∃do ∈ PITC.Data Λ do==PISDMT.DO Λ

∃pss∈ PISDMT.PSS)) THEN
 PITC.Data.do←pss
It means that if a data object do exists in the <ini, outi>

of a PITC, the do is to be replaced by the corresponding
data pss included in current row of the table PISDMT.

Note that: two points are very important for the
PITC-to-PSTC transformation process and should be
further elaborated as follows.

(1) Correctness of TRs (transformation rules). TRs in
the form of the above table-transformation process should
keep consistent with the mapping relation showed in
figure 2. And they implement the PIA-to-PSA
transformation process for each data object. Because this
process only assigns platform-specific values to the
attributes of a data object but not changes the semantic of
them, it holds the property preservation. That is, the
semantic of an object in PIM/PITC cannot be changed
and continues to be preserved in the corresponding
PSM/PSTC.

(2) Traceability of transformation process. According
to figure 2 and table III above, between the platform
-independent data and the corresponding platform
-specific ones is one-to-many relation. And that is also
the relation between a PITC and the corresponding PSTC
(s). Therefore, the PITC can be traced uniquely from a
PSTC.

According to the transformation rules defined above,
each PITC can be processed to be transformed into some
PSTCs as follows:
Step1: According to Rule1, take a PITC tci from the set

PITCs, then replace the DO in PITC.InitState with
the corresponding pss in PISDMT.PSS.

Step2: Take the first data pair <in1,eout1> of tci, then
replace the DO in <in1,eout1> with the
corresponding pss in PISDMT.PSS. If the DO has
many values in PISDMT.PSS, respectively
generate a correspondingly new test case by using
each pss to replace the DO until the PISDMT.PSS
becomes empty.

Step3: Go on to process next <inj, eoutj> of tci by
replacing all DOs in it. And repeat Step2 until all
input-output data pair has completely been
processed at last.

Step4: Go to Step1 to take and process next PITC tci+1 of
the set PITCs, and repeat from Step1 to Step3
until the set PITCs becomes empty.

In the above process, the main work is to replace each
DO in each PITC with all valid and invalid data, the
corresponding value pss in PISDMT.PSS. After this
process, the set PSTCs can be generated and test cases in
it can be executed manually.

IV. A CASE STUDY: STATE DIAGRAM-BASED UNIT TEST
CASE GENERATION

The following case is about a subsystem “power plan

for approval” which can be used to online submit the
power quantity for next month to the administration and
apply for approval.
Step1: Create the directed graph for retrieval from the

state diagram of the subsystem “power plan for
approval”, seen in figure 3 (b) below. Note that:
each event in figure 3(a) is to be viewed as one
part of the input of one source state node
corresponding to it. In this abbreviated graph, the
st0 corresponds to the start node in state diagram
and the stf the unique end node.

Step2: Retrieve the graph in figure 3(b) to generate all

executable paths, a set PATH, of the subsystem.
The set PATH is {p1, p2, p3, p4}, where:

(b) The corresponding graph for retrieval

st0

st1

st2

st3

st4

stf

e3: submit

e1: click “plan for
approval”

e2: click
“approval

state0: page to
show new plan

state2: page to enter
“quantity required”

e4: submit

state3: page to show
“invalid value”

e5: return

state4: page
without new

plan

e11: click “plan for
approval”

e12: return

e3: submit

(a) State diagram of the subsystem “power plan for
approval”

Figure 3 A case: state diagram and the corresponding directed

graph from it

2872 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

p1= (st0, st1, st2, st1, st2, st4, stf) // Check and
approve two plans continually, that is, including
the loop path one time between st1 and st2.
p2= (st0, st1, st2, st4, stf) // no loop between st1 and
st2.
p3= (st0, st1, st2, st3, st2, st4, stf) // loop one time
between st2 and st3.
p4= (st0, st4, stf) // no new plan for approval.

Step3: define the state and event table (SET) as table IV
below, and then, according to it and the PATH
generated in step2 above, implement the process
given in section III(B) to generate the
corresponding set PITCs.

The PITCs generated for this case is the set {tc1, tc2,
tc3, tc4}, where

(tc1, Initial system page, {< Click “check and
approve”, page to show new plans >, < Click
“approval”, page to enter “quantity required”>, <enter
Valid quantity and click “submit”, page to show new
plans >, < Click “approval”, page to enter “quantity
required”>, <enter Valid quantity and click “submit”,
page without new plans >, < Click “Return”, Initial
system page >});

(tc2, Initial system page, {< Click “check and
approve”, page to show new plans >, < Click
“approval”, page to enter “quantity required”>, <enter
Valid quantity and click “submit”, page without new
plans >, < Click “Return”, Initial system page >});

(tc3, Initial system page, {< Click “check and
approve”, page to show new plans >, < Click
“approval”, page to enter “quantity required”>, <enter
Invalid quantity and click “submit”, Page to show
“Invalid value”>, < Click “approval”, page to enter
“quantity required”>, <enter Valid quantity and click
“submit”, page without new plans >, < Click “Return”,
Initial system page >}); // given that the maximum is
1000, so 1001 is an invalid number.

 (tc4, Initial system page, {< Click “check and

approve”, page without new plans >, < Click “Return”,
Initial system page >}).
Step4: define the table PISDMT. According to definition

4 given in section II, a data object is one with
attributes that determine the input space of SUT.
The table PISDMT for the subsystem “power plan
for approval” can refer to Table V defined below.

Step5: on the basis of PISDMT, generate the set PSTCs

from the set PITCs according to the process given
in the subsection C of the former section III.

Note that: in this paper, the concrete values assigned to
one corresponding attribute variable of a data object can
be manually defined in advance after the table PISDMT
is created. Of course, they can also be generated
temporarily according to the value space but this can

TABLE V

PISDMT FOR THE SUBSYSTEM “POWER PLAN FOR APPROVAL”

DO BS PSA
Values

space
PSS

quantity valid
Valid

quantity
[0,1000] 50/150/1000

quantity invalid
Invalid

quantity

(1000,+∞)/(

-∞,0)
1001/-1/sgh123

TABLE IV

THE STATE AND EVENT TABLE (SET)

State

NO.
Current state Input Expected output

st0
Initial system

page

Click “check

and approve”

page to show new

plans

st0
Initial system

page

Click “check

and approve”

page without new

plan

st1
page to show

new plans

Click

“approval”

page to enter

“quantity required”

st2

page to enter

“quantity

required”

Valid quantity,

click”submit”

page to show new

plans

st2

page to enter

“quantity

required”

Valid quantity,

click”submit”

page without new

plans

st2

page to enter

“quantity

required”

Invalid

quantity,

click”submit”

Page to show

“Invalid value”

st3
Page to show

“Invalid value”

Click

“Return”

page to enter

“quantity required”

st4
page without new

plan

Click

“Return”
Initial system page

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2873

© 2014 ACADEMY PUBLISHER

cause some performance problems such as time
consuming. Generally, all valid values for data objects
can be included a test case named as a success one. And
each invalid value outside of the input space should
individually correspond to a test case called as a failure
one. So, the following set PSTCs generated in this case
includes 6 executed test cases, and that is a set {tc1, tc2,
tc3, tc4, tc5, tc6 }, where

(tc1, Initial system page, {< Click “check and
approve”, page to show new plans >, < Click
“approval”, page to enter “quantity required”>, <enter
“50” and click “submit”, page to show new plans >, <
Click “approval”, page to enter “quantity required”>,
<enter “150” and click “submit”, page without new
plans >, < Click “Return”, Initial system page >});
//continue to check and approve two plans

(tc2, Initial system page, {< Click “check and
approve”, page to show new plans >, < Click
“approval”, page to enter “quantity required”>, <enter
“50” and click “submit”, page without new plans >, <
Click “Return”, Initial system page >}); //only check and
approve two plans

(tc3, Initial system page, {< Click “check and
approve”, page to show new plans >, < Click
“approval”, page to enter “quantity required”>, <enter
“1001” and click “submit”, Page to show “Invalid
value”>, < Click “approval”, page to enter “quantity
required”>, <enter “150” and click “submit”, page
without new plans >, < Click “Return”, Initial system
page >}); // given that the maximum is 1000, so 1001 is
an invalid number.

(tc4, Initial system page, {< Click “check and
approve”, page to show new plans >, < Click
“approval”, page to enter “quantity required”>, <enter
“-1” and click “submit”, Page to show “Invalid value”>,
< Click “approval”, page to enter “quantity required”>,
<enter “1000” and click “submit”, page without new
plans >, < Click “Return”, Initial system page >}); //
given that the maximum is 0, so -1 is an invalid number.

(tc5, Initial system page, {< Click “check and
approve”, page to show new plans >, < Click
“approval”, page to enter “quantity required”>, <enter
“sgh123” and click “submit”, Page to show “Invalid
value”>, < Click “approval”, page to enter “quantity
required”>, <enter “50” and click “submit”, page
without new plans >, < Click “Return”, Initial system
page >}); // given that the value is only a number
between 0 and 1000, so a string including letter is invalid.

(tc6, Initial system page, {< Click “check and
approve”, page without new plans >, < Click “Return”,
Initial system page >}). // have no plan for approval

V. EXPERIMENTS AND ANALYSIS

A.Z. Javed etc. [4] proposed an approach to model-
driven component testing. According to it, the
meta-models corresponding to PIM and PSM and the
transformation rules from PIM to PSM ware defined

respectively, and then the process to generate test cases
was implemented on the basis of them. But in [4], only an
idea was given and the detailed implementing method

was absent. Moreover, it “generates” test cases through
PIM and PSM and the transformation rules between them.
This was also different from the method proposed in this
paper, in which test cases were generated by the means of
transformation from PITC to PSTC.

Another approach to implementing model-driven
testing was to create test models corresponding to PIM
and PSM respectively and then to define the
transformation rules between elements of them. This way
is also adopted by most researchers [2] [5]-[11]. UML 2.0 test
profile had also been released as a specification by OMG
in 2004. Being different from these methods proposed,
the one in this paper was to generate test cases through
creating meta-models of platform-independent data and
platform-specific one and the mapping relationship
between them. The mapping and transformation rules in it
were defined in the form of relation table, which made
the process of test case generation easy to be understood
and implemented by users. For instance, all data involved
it can easily be handled by database or other forms.

Tcases [12] is an open-source tool for black-box test
case generation. With Tcases, users can define the input
space for the SUT and the level of coverage that they
want. Then Tcases can generate a minimal set of test
cases that meets testing requirements. Tcases was guided
by the coverage of the input space of SUT. In Tcases, the
input space and the functions of SUT were defined and
described in two individual XML files respectively. It
used input values to generate two types of test cases —
"success" cases, which use only valid values for all
variables, and "failure" cases, which use a failure value
for exactly one variable.

PItoPSTcases is a simple tool to generate test cases,
which implements the method proposed in this paper. It
was developed by our team using Eclipse (SDK 3.7). In it,
all related tables were described in the form of databases
of SQL Server. The architecture of PItoPSTcases is
illustrated in the figure 4 below.

The main differences between two tools are listed in
the table VI below. According to the content of it, the
input space and functions of SUT must be created in the
form of XML file respectively before Tcases runs. And
the functions here are used to describe the logic of SUT.

But, for PItoPSTcases, only data object and the
mapping relation between PIDO and PSDO are to be
described as tables, and the logic of SUT can directly be
obtained from the selected UML design model and the
graph form it. So, on the basis of the table SET and
PISDMT created in advance, it can generate the executed
test cases, PSTCs. The values of an attribute variable
were selected and configured manually in the form of
table. To some extent, this improves the accurateness of
test cases generated. Additionally, the section of input
data is also easier to be implemented than that in Tcases.
However, the accurateness of test cases generated by
using Tcases are heavily dependent on that of XML files,
in which all variables and the conditions or constraints
related to them must be recorded accurately.

2874 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

TABLE VI

DIFFERENCES BETWEEN TCASES AND PITOPSTCASES

Comparison

item
Tcases PItoPSTcases

model type XML file UML/graph from UML

Input

(1)Xml for input

space of SUT

(2)Xml for functions

of SUT

(1)Table for describing

data objects

(2)Table for the mapping

from PITC to PSTC

Output Xml for test cases
Table(Text string) for test

cases

Other tools given in some researches were to generate
test cases just by selecting data from the input and output
space in a random way. This can also make users face the
problem that the selected data cannot satisfy the testing
requirements well.

Both Tcases and PItoPSTcases were implemented at
the same environments as follows: (1) OS: windows 7
core 64; (2) hardware: 10 computers with CPU (Intel(R)
Core (TM) i5-3320M, 2.60GHz) and RAM 8GB.

Two fragments of screen shot of their output are
respectively given in the following figure 5 and figure 6.

The following figure 7 showed that two tools, Tcases

and PItoPSTcases, were respectively compared, from two
perspectives, the average time (run 10 times) spent to
create the input and the one spent to generate test cases
for the same subsystem “power plan for approval”.

From the figure 7 below, it can be concluded that the
average time spent in preparing the input by
PItoPSTcases was lower about 37.5% than that spent by
Tcases. And the average time spent by PItoPSTcases to
generate test cases is lower about 43% than that spent by
Tcases.

VI. CONLUSIONS

To design and generate test cases is one of the most
important steps to implement software testing. And Based
on the idea of MDD, one method was proposed in this
paper to generate executed test cases. All input data are
described in the form of table which can be created and
used easily. And a simple experiment given in section V
showed that the method had a larger advantage of
efficiency in time spent.

Of course, the type of test case defined in this paper is
only executed by hand now. The next work for us is to
improve the tool to generate test cases in the form of
script which can directly be executed by some test tools
such as xUNIT.

REFERENCES

[1] OMG. Ptc/04-04-02: UML 2.0 Testing Profile, Finalized
Specification.

[2] R. Zhen. Model-Driven Testing with UML 2.0 [C]. In:
Proceeding of Second European Workshop on Model

Figure 4 The architecture of PItoPSTcases

Figure 7 The average time comparison: that of

creating input and that of generating test cases

Figure 6 Output format for PItoPSTcases

Figure 5 Output format for Tcases

The table
SET

Table for
PITCs

Table for
PSTCs

The table
PISDMT

Graph
from
UML
model

Table for
test paths

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2875

© 2014 ACADEMY PUBLISHER

Driven Architecture (MDA), Canterbury, Kent, University
of Kent (2004), pp. 179-187.

[3] S. Anand, E. Burke and T. Chen et al. An orchestrated
survey of methodologies for automated software test case
generation. Journal of Systems and Software. 2013, Vol. 86,
issue 8, pp. 1978-2001.

[4] A. Javed, P. Strooper and G. Watson. Automated Gener-
ation of Test Cases Using Model-Driven Architecture[C].
In: Proceeding of Second International Workshop on
Automation of Software Test, 2007. AST '07. pp. 1-7.

[5] Q. Yuan, J. Wu, C. Liu and L. Zhang, A model driven
approach toward business process test case generation[C].
In Proc. of the 10th International Symposium on Web Site
Evolution (WSE), 2008, pp. 41-44.

[6] M. Mussa, S. Ouchani, W. Sammane and A. Hamou-Lhadj.
A Survey of Model-Driven Testing Techniques [C]. In:
Proceeding of 9th International Conference on Quality
Software, 2009, QSIC '09. pp. 167-172.

[7] N. Li, Q. Ma and J. Wu et al. A Framework of Model-
Driven Web Application Testing[C]. In: Proceeding of
30th Annual International Computer Software and
Applications Conference, 2006. COMPSAC '06. Vol. 2, pp.
157-162.

[8] J. Gutierrez, M. Escalona and M. Mejias et al. An
approach for Model-Driven test generation[C]. In:
Proceeding of Third International Conference on Research
Challenges in Information Science, 2009. RCIS 2009. pp.
303-312.

[9] D. Mathaikutty, S. Ahuja, A. Dingankar and S. Shukla.
Model-driven test generation for system level validation[C].
In: Proceeding of IEEE International High Level Design

Validation and Test Workshop, 2007. HLVDT 2007.pp.
83-90.

[10] F. Wang, S. Wang, and Y. Ji. An Automatic Generation
Method of Executable Test Case Using Model-Driven
Architecture[C]. In: Proceeding of 2009 Fourth
International Conference on Innovative Computing,
Information and Control (ICICIC), 2009, pp. 389-393.

[11] M. Felderer, P. Zech and F. Fiedler et al. Model–driven
System Testing of Service Oriented Systems [C]. In:
Proceeding of the 9th International Conference on Quality
Software (QSIC’2009), 2009. pp. 1-8.

[12] tcases - A model-driven test case generator. http://code.
google.com/p/tcases/ (May, 2013)

D. Wei Now he is a PHD candidate of college of computer
science & technology in Shandong University. His interests are
software development and testing.

L. Tang He is a PHD of Inspur Genersoft Co., Ltd. His interests
are ERP software development &testing.

X. Li He is a Professor of college of computer science &
technology of Shandong University and also the corresponding
author of this paper. His interests are software development &
testing.

L. Shang He is a PhD of University of Science and Technology
of Lille, Lille, France. His interests are distributed computing
and software quality.

2876 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

