
Algorithms for Minimal Dependency Set and
Membership Based on XML Functional

Dependency and
Multi-valued Dependency

Zhongping Zhang1,2, Chunzhen Fang1
1The School of Information Science and Engineering, Yanshan University,

Qinhuangdao, Hebei, 066004, China
2The Key Laboratory for Computer Virtual Technology and System Integration of Hebei Province,

Qinhuangdao, Hebei, 066004, China
Email: zpzhang@ysu.edu.cn, fcz_chunzhen@163.com

Abstract—As the XML functional dependency and
multi-valued dependency impact on the normalization
design of semi-structured data, definitions of XML
functional dependency, XML multi-valued dependency,
path dependency base and the minimal dependency set are
given in this paper. Algorithms for minimal dependency set
and membership with path expression based on the
coexistence of XFD and XMVD are then proposed. Finally,
the correctness and termination of these algorithms are
proved, and their time complexities are analyzed as well.

Index Terms—XML functional dependency, XML
multi-valued dependency, path dependency base,
membership, minimal dependence set

I. INTRODUCTION

XML (eXtensible Markup Language) inherits the
powerful function of SGML(Standard Generalized
Markup Language)[1] and makes up the deficiencies of
HTML. It is a standard which is used for data expression
and data exchange on the Internet, providing an effective
means for data description and data exchange on the
Internet applications. It is widely used in many fields
[2-5]. XML schema is an important concept in the field of
XML and it is the first step to build database applications.
Currently, DTD develops well, and it is widely used in
the practical applications of the XML document.
However, because of some unusual data dependencies in
XML database, it may result in data redundancies and
abnormal operations due to design flaws for DTD [6].

In recent years, scholars have done a lot of exploration
and research on the normalization of XML database: the
normalization based on functional dependency [7-12] and
multi-valued dependency [13-15]. These research
literatures analyze the effect on XML data and free

 Manuscript received December, 1, 2013; revised March 24, 2014;

accepted April 21,2014.

redundancy from a single point of view such as XML
functional dependency or XML multi-valued dependency.
However, they do not consider the effect on XML data
and XML database normalization on the condition of
coexistence of XML functional dependency and
multi-valued dependency. Therefore, according to the
inference rules based on the coexistence of XML
functional dependency and XML multi-valued
dependency [16], we propose algorithms for minimal
dependency set (DEP-MINIMIZE algorithm) and
membership (DEP-MEMBERSHIP algorithm) with path
expression based on coexistence of XML functional
dependency and multi-valued dependency. It simplifies
the dependency set and ensures the simplification on
analysis and calculation.

II. PRELIMINARY DEFINITIONS AND NOTATIONS

In this section, we present some preliminary
definitions and notations that we need.

Definition 1: (XML Tree) An XML tree is defined as
T=(V,lab,ele,att,val,root), it is said to conform to a
DTD[9] D=(E1,E2,A,P,R, r), denoted by T⊨D[17], where

(i) T is the XML tree’s name;
(ii) V is a finite set of nodes in T;
(iii) lab is a function from V to E1 ∪E2 ∪A ,which

assigns a identifier to each node in V. A node v in V is
called a complex element node if lab(v)∈E1; a simple
element node if lab(v)∈E2, and an attribute node if
lab(v)∈A;

(iv) ele is a function from V to a sequence of V
nodes ,so that for any v∈V, if lab(v)∈E1, ele(v) is a set of
some children of v. The node in ele(v) is element node,
and if ele(v)={v1,...,vm}, then
{lab(v1) ,...,lab(vm)}∈P(lab(v));

(v) att is a function from V to A. If att(v, l)=v1 ,then
lab(v)∈E1 and lab(v1)=l; if att(v)={v1,...,vn},
then{lab(v1) ,...,lab(vn)}∈R(lab(v)), where v∈V, l ∈A;

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2837

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.11.2837-2843

(vi) val is a function that assigns a value to each node.
If a node v is a leaf node or a simple element node of T,
val(v) is a string value which is either the content of a text
element or the content of an attribute; otherwise val(v) is
the node’s identifier of v.

(vii) root is the unique root node labeled with complex
element name r.

Example 1: Describe a college’s relationship among
three entities Course, Student and Teacher and store data
information in Relational database. Relational schema R
of database is designed as following:

Course(Cno, Cname) Student(Sno, Sname)
Teacher(Tno, Tname)
Courses(Cno,Sno, Tno,Cname, Sname, Tname)
If the relational database need to be stored as an XML

document, this document’s DTD D is expressed as:
<!ELEMENT Courses (Course*)>
<!ELEMENT Course (Cname,Student*)>
 <!ATTLIST Course
Cno CDATA #REQUIRED>
<!ELEMENT Cname (#PCDATA)>
<!ELEMENT Student (Sname,Teacher)>
 <!ATTLIST Student
Sno CDATA #REQUIRED>
<!ELEMENT Sname (#PCDATA)>
<!ELEMENT Teacher (Tname)>
 <!ATTLIST Teacher
Tno CDATA #REQUIRED>
<!ELEMENT Tname (#PCDATA)>
There are some data instances in TABLE I:

TABLE I.
A PART OF STUDENTS' COURSE RECORDS OF ONELEGE COL

Cno Cname Sno Sname Tno Tname

C01 XML S001 Amily T001 Mary

C01 XML S002 Stephen T001 Mary

C01 XML S001 Amily T002 Anne

C01 XML S002 Stephen T002 Anne
According to this course records, we can obtain an

XML tree T which based on the DTD D. It is shown in
Figure 1.

Definition2: (Path Instance on XML Tree) Let T be an
XML tree that satisfied the given DTD D. A path instance
[7] over an XML tree T is a sequence, v1 = vr and for
every vi, 2≤i≤n, vi ∈V and vi is a child of vi-1. A path
v1.v2. ….vn-1.vn is defined as one path instance based on
the path p1 .p2 . … .pn−1 . pn if for all vi, 1≤i≤n, lab(vi)=pi .
All path instances based on a path p over a tree T form a
set which denoted by Paths(p). All Path sets on D are
defined as the Paths (D).

Example 2: As Figure 1 shows that, v1.v2.v4 is a path
instance of path Courses.Course.Cno,
Paths(Courses.Course.Cno)={v1.v2.v4, v1.v3.v6}.

Definition 3:(XFD) Let T be an XML tree that satisfied
the given DTD D. An XFD is a statement of the form
p1, … , pk→ q1 , … ,qm , k≥1,m≥1. P={p1 ,. . .,pk } and
Q={q1, … , qm } are subsets in Paths(D).There are
arbitrary two distinct path instances
V={ 1

1v . 1
2v . … . 1

1−lv . 1
lv , … , mv1 . mv2 . … . m

nv 1− . m
nv }

Figure 1. An XML tree formed from a part of students' course records

E1

E2 A

E1

Courses
v1

Course

Cname

v2

v4

Student

v12

“XML”

“Amily”
Tname

Sname

v5

“Mary”

A

E2

E1

Cno
“C01”

Teacher E1 “S001”

E2

Sno

Student

v15

“Stephen”

Tname

Sname

“Anne”

A

E2

E1

TeacherE1
“S002”

E2

Sno

E1 Coursev3

E2A
“XML”

v6 Cno
“C01”

Cname

Student

v18

Sname

Tno

“Anne”

A

“T002”

E2

E1

E1

A

“S001”

E2

Sno
v21 A

Teacher

Tname

E1 Student

“S002”

E2 Sname
“Stephen”

E1 Teacher

A Tno
“T002”

A

v7

v8 v9

v10 v11

v13
v14

v16
v17

v19

v20

v22

v30

v24
Tname

“Mary”
E2

v26

v27
v28

v29 v31

“Amily”

Sno

A
“T001”

v23 ATno Tno
“T001”

v25

2838 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

and W={ 1
1w . 1

2w . … . 1
1−lw . 1

lw , … ,
mw1 . mw2 . … . m

nw 1− . m
nw } in Paths(Q), n≥1, l≥2, T

satisfies the XFD: p1 ,. . .,pk→q1, . . ., qm ,where
(i) Q⊂P; or
(ii)For any two distinct path instances

iv1 . iv2 . … . i
tv 1− . i

tv and iw1 . iw2 . … . i
tw 1− . i

tw in
Paths(qi), if Last(pj)[16] ∈E1 and xij =yij , or Last(pj)
∉ E1 and val(Nodes(xij , pj)[16])∩val(Nodes(yij, pj)) ≠∅
then val(i

tv)=val(i
tw); where xij={v|v∈{ iv1 , …,

i
tv }∧v∈N(pj∩qi)},yij={v|v∈{ iw1 , …,
i
tw }∧v∈N(pj∩qi},1≤j≤k,1≤i≤m,t≥1.
We note that the path pj ∩qi is a prefix of qi. There

exists only one node in the set {v1 , … ,vt } also in N(pj
∩qi) , therefore xij contains only one node. yij .is similar
to xij and it also contains only one node.

Definition 4: (XMVD) Let T be an XML tree that
conforms to a DTD D. An XMVD is a statement of the
form p1 , … ,pk →→q1 , … ,qm |r1 , … ,rs , 1≤k,1≤m,1≤s.
P={p1 ,· · · ,pk },Q={q1 ,· · · ,qm } and R={r1 , …, rs } are
subsets in Paths(D), {{p1, ..., pk}∪{q1, ..., qm}∪{r1, ...,
rs}}⊂Paths(D). The tree T satisfies the XMVD if there
exists a qi, 1≤i≤m, and two distinct path instances

iv1 . iv2 . … . i
tv 1− . i

tv and iw1 . iw2 . … . i
tw 1− . i

tw in
Paths(qi),1≤t, where

(i) val(i
tv) ≠val(i

tw);
(ii)There exists a rj∈R,1≤j≤s, and two nodes z1,

z2 ,where z1 ∈Nodes(xij ,rj) and z2 ∈Nodes(yij ,rj), such
that val(z1) ≠val(z2);

(iii)For all ph ,1≤h≤k, there exists two nodes z3 and
z4 ,where z3 ∈Nodes(xijh ,ph)and z4 ∈Nodes(yijh ,ph), such
that val(z3)=val(z4);

(iv)There exists a path instance iv 1' . iv 2' . … . i
tv 1' − . i

tv'

in Paths(qi), we have val(i
tv')=val(i

tv), and there is a

node z'1 in Nodes(ijx' , rj) , such that val(z'1)=val(z2).
There exists a node z'3 in Nodes(x'ijh, ph)such that
val(z'3)=val(z3);

(v)There is a path instance iw 1' . iw 2' . … . i
tw 1' − . i

tw'

in Paths(qi) making val(i
tw')=val(i

tw), and there exists
a node z'2 in Nodes(y'ij, rj), we have val(z'2)=val(z1) and
there exists a node z'4 in Nodes(y'ijh, ph)such that
val(z'4)=val(z4).

Where, xij ={v|v∈{ iv1 , ... , i
tv } and v∈N(rj∩qi)},

yij={v|v∈{ iw1 , ... , i
tw } and v∈N(rj∩qi)}, xijh

={v|v∈{ iv1 , ... , i
tv } and v∈N(ph∩rj∩qi)},

yijh={v|v∈{ iw1 , ... , i
tw } and v∈N(ph∩rj∩qi)}; x'ij

={v|v∈{ iv 1' , ... , i
tv' } and v∈N(rj∩qi)}, y'ij

={v|v∈{ iw 1' , ... , i
tw' } and v∈N(rj∩qi)}, x'ijh

={v|v∈{ iv 1' , ... , i
tv' } and v∈N(ph∩rj∩qi)}, y'ijh

={v|v∈{ iw 1' , ... , i
tw' } and v∈N(ph∩rj∩qi)}.

We note that the path rj ∩qi is a prefix of qi, there exists
only one node in set { iv1 , ... , i

tv } also in N(rj∩qi),
therefore xij contains only one node. yij, xijh, yijh, x'ij, y'ij,
x'ijh, y'ijh are similar to xij. The XMVD is symmetrical, i.e.
the XMVD: p1, ... , pk→→q1, …, qm|r1, …, rs holds iff the
XMVD: p1 , … ,pk →→r1 , … ,rs |q1 , … ,qm.

 Definition 5: (Minimal Base) Let T be an XML tree
that satisfied the given DTD D, Path set is P={P1,...,Pk}.
We assume that Paths(D)= P1∪...∪Pk. The minimal base
of P is denoted by MB(P) and it is a partition of Paths(D),
S1,...,Sq ,where

(i) Each Pi is a set of Sj by union operation;
(ii) There exists no partition that satisfies the condition

(i) and the number of partition is less than q, where
1≤i≤k, 1≤j≤q.

Definition 6: (Dependency Base) Let ∑ be the set of
XFD and XMVD over the complete instance document
XML tree T which satisfied DTD D, P⊆Paths (D), the
minimal base MB(P+) of P+ [16] is a path dependency
base relative to ∑, denoted by DEP(P).

Definition7: (Logical Implication) Let Paths(D) be the
path set of DTD D, and ∑ is the data dependency set of D.
If each XML tree T of D satisfies ∑ and P→→Q|R or
P→Q, we call P→→Q|R or P→Q implicated logically by
∑, and denotes ∑⊨P→→Q|R or ∑⊨P→Q.

III. MEMBERSHIP ALGORITHM ON THE CONDITION OF
COEXISTENCE OF XML FUNCTIONAL DEPENDENCY AND

XML MULTI-VALUED DEPENDENCY

A.1. Path Dependency Base Algorithm
Dependency base is a partition of attribute set of

relational data schema in the relational data theory. The
path dependency base can gain the logical implication of
multi-valued dependency directly; in other words, when
the dependency base based on given multi-valued
dependency is confirmed, we can get all multi-valued
dependencies implicated logically by some attribute set.

Lemma 1: Let T be an XML tree that satisfied the
given DTD D. ph, rj, qi∈D,1≤h≤k,1≤i≤m,1≤j≤s. If XML
tree T satisfies XFD: p1, … , pk→q1, …, qm , T will
satisfy XMVD: p1, …, pk→→q1, …, qm|r1, …, rs, where
R={r1, ..., rs}∈D.

B.1. Algorithm Description
We note that if there is one dependency: XMVD

P→→Q(XFD P→Q), and dependency set ∑ implicates
logically this dependency, so Q is the union set of some
paths among DEP(P) according to the definition 6 and 7.
The algorithm for path dependency base is given before
solving the membership on the condition of coexistence
of XML functional dependency and XML multi-valued
dependency:

First, extend all the XFDs among dependency set ∑ to
XMVD, then we can get a transformation from ∑ to ∑′
which only includes XMVD; the initial value of BASIS

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2839

© 2014 ACADEMY PUBLISHER

consists of all the single paths from path set P and
Paths(D)-P. The initial value of change-flag is set as T,
then execute “while” loop: initialize the value of
change-flag as F, and then do the following operations for
each MVD in ∑′: let P′ be the non-empty set, all of its
elements from the intersection of BASIS and P, Q′=Q-P′.
At the first time, W is empty. For the gi in BASIS, add gi
into W if gi⊂Q′. If Q′≠∅and Q′≠W, set change-flag as T,
then add Q′ into BASIS by the definition 5. Executing the
“while” loop repeatedly before Q′=∅ or Q′ has been the
union set of some elements from BASIS.

Algorithm 1: DEP-BASE(Path Dependency Base).
INPUT: mixed set ∑ consisting of XFD and XMVD,

Paths(D), P={p1, … , pk};
OUTPUT: DEP(P).
DEP-BASE(∑,Paths(D),P)
Begin
(1) To transform ∑ into ∑′including XMVD only.
(2) BASIS:={{ pi}| pi∈P}∪{Paths(D)-P};
(3)change-flag:= ‘T’;
(4)while change-flag do
(5) {change-flag:=‘F’;
(6) for every MVD P→→Q∈∑′ do
(7) {P′:=∪{R|R∈BASIS and R∩P≠∅};
(8) Q′:=Q-P′;
(9) W:=∅;
(10) for gi∈BASIS do
(11) {if gi⊂Q′ then
(12) {W:=W∪gi;}
(13) if Q′≠∅ and Q′≠W then do
(14) {change-flag:= ‘T’;
(15) BASIS:= MB{BASIS∪Q′};}}}
(16)return(BASIS)
End

C.1. Analysis of Algorithm

C.1.1. Termination of the Algorithm
After the initialization of step (2), step (3) and the step

(4)’s loop operation, BASIS becomes a partition of
Paths(D), because every subset after partitioning is
non-empty, and the number of sets attained by
partitioning the Paths(D) is at most the number of all the
paths in Paths(D). After every time (except the last time)
for executing step (4), the size of BASIS will always
increase. We note that the size of BASIS is at most the
number of all the Paths in Paths(D). Because the XMVD
in ∑′ is finite, so that the “for” loop in step (6) is
terminable. In conclusion, algorithm 1 is terminable.

C.1.2. Correctness of the Algorithm
Correctness of the algorithm is to prove that BASIS is

equal to DEP(P) when the algorithm terminates. The
proof process includes two parts. The first part is to prove
BASIS⊂DEP(P), and the second part is to prove DEP(P)
⊂BASIS.

First, to prove BASIS⊂DEP(P). When the algorithm
terminates, BASIS={{P1},...,{Pm},{p1},...,{pk}},where
{P1},...,{Pm} is a partition of Paths(D)-P, and single paths
of P form a set only including one path. According to the

reflexivity inference rules, we note that ∑ implicates
logically XMVD P→→pi. The induction method is used
to prove P→→Pj∈∑+, for each {Pj}∈BASIS, where
1≤j≤m as following.

According to the reflexivity inference rules, we have
P→→ Q ∈∑+, so that P→→VPaths(D)-P-Q∈∑+ holds.
After executing the step(2), all elements in BASIS
depend on P by multi-value, that is to say P→→ Pj∈∑+
hold , for each {Pj}∈BASIS, where 1≤j≤m.

After t(t≥0) times loop, we assume P→→ Pj∈∑+ hold,
for each {Pj}∈BASIS, where 1≤j≤m. For the (t+1)th loop:
if P→→Q∈∑ is an XMVD during the (t+1)th loop,
BASIS value will change(if BASIS values don’t change,
it will be the final value). Let P′ be the non-empty set
whose elements are from the intersection of BASIS and P.
P′→→Q holds in accordance with the augmentation
inference rules, because BASIS is a partition of Paths(D) ,
P ⊂ P′. P→→ Pj∈∑+ holds, for each {Pj}∈BASIS, where
1≤j≤m before the (t+1)th loop, then P→→ P′ holds under
the union rules. At the same time, we note that
P→→Q-P′∈∑+ holds according to transitivity rules.
Q′=Q-P′ is set. If Q′ is empty or Q′ is a union set of some
elements among BASIS, Q′ is added into BASIS. Then
solve the minimal base of BASIS. BASIS value doesn’t
change according to definition 6. We need to make a
corresponding modification for BASIS when Q′ is not
empty and Q′ isn’t a union set of some elements among
BASIS. Now, according to the difference rules, P→→Pj

holds after modifying, for each {Pj}∈BASIS. In
conclusion, P→→Pj∈∑+holds, for every {Pj}∈BASIS,
1≤j≤m during the (t+1)th loop, so that BASIS⊂DEP(P)
holds in accordance with the definition 6.

Second, to prove DEP(P)⊂BASIS. Constructing a
XML tree T that conforms to DTD D, where

(i) Each XMVD on T from ∑ is legitimate;
(ii) The necessary and sufficient condition of one

XMVD P→→Q on T holds is that Q′ is a union set of
some elements among BASIS.

Constructing an XML document tree T: there are 2m

tree tuples, and every tuple in TupleT(D)[16] has a group
of corresponding sequence {a1,...,am}, where ai∈[0,1].
{P1},...,{Pm} is a partition of Paths(D)-P. The
corresponding values of all paths in P+ for every tuple in
TupleT(D) are 1 ,and the value of every path in Pi is ai .

Properties of the XML document tree T:
Property 1: Each XMVD is valid when on the right of

T is Pi.
Property 2: Some XMVD holds on T when on the right

of Pi is a non-empty subset iff the left of XMVD has
intersection with Pi.

Each multi-valued dependency on the T will be proved
correct as following:

P→→Q∈Σ holds, and P′ is the set whose elements
attained from the intersection of BASIS and P. We note
that Q-P′ is an empty set or the union set of some
elements among BASIS in accordance with termination
of the algorithm, so that P→→Q-P′ holds on T.
According to Property 2, P→→Q∩P′ holds on T, then
W→→R holds on T based on union rules among

2840 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

deriving.
We will prove P→→Q hold on T iff Q is the union set

of some elements in BASIS.
We note from definition 5: if Q is the union set of some

elements in BASIS, P→→Q holds on T, that is to say the
sufficiency condition holds.

If P→→Q holds on T, P→→Q∩Pi holds on T, for each
i, 1≤i≤m. Because the intersection of P and Pi is empty,
Q∩Pi is empty or is Pi based on Property 1 and Property 2.
Therefore, Q is the union set of some elements among
BASIS.

In conclusion, BASIS=DEP(P), algorithm 1 is correct.

C.1.3. Time Complexity of the Algorithm
“m” expresses the total number of paths from Paths(D),

and “n” expresses the number of dependencies from ∑.
Because XFD is a special case of XMVD, so we note

that every XFD can be extended to the corresponding
XMVD.

Partition the path set into g subsets, using matrix g×m
for expressing. Each row with m digits expresses a set.
Each column of the matrix has only one 1, other positions
are 0. The (ij)th position of matrix is 1 iff path pj belongs
to the ith set. Obviously, pj and pi are in the same path set
iff the ith column and the jth column of the matrix are the
same; in other words, when the set is on the hth row, the
values of hi and hj both are 1, then other positions of the ith
column and the jth column of the matrix are 0. Therefore,
to find the minimal path dependency base, we partition
the same columns into one set whose row values are 1 in
the same columns. Arbitrary two of all the columns are
compared for g times. We note that the time cost of which
solving the minimal path dependency base is O(g×m).

This algorithm initializes the path dependency base at
first. Every single paths from path P set form a set
respectively and all sets constitute one set, then path set
Paths(D)-P forms one set. Since constituting two rows of
the matrix after initialization, we get the time cost of the
operation is O(m).

The loop in step (4) executes at most m times. In every
loop, for the given XMVD P→→Q, our goal is to find
the union set of all the elements attained from the
intersection of BASIS and Q. Since the size of BASIS is
at most m, the time cost of the operation is O(m2). The
time complexity of the “for” loop is O(m2) of step (10).
In step (4), it is possible to examine whether n
dependencies change the BASIS value or not. Therefore,
the loop continuous until the BASIS value change, and it
need to execute O(n×m2) times. The time cost of
solving minimal path dependency base is O(m2) and the
time cost of executing step(4) once is O(n×m2). After
executing step (4) completely, the total time cost is
O(n×m3).

In conclusion, the total time complexity of this
algorithm is O(n×m3).

A.2. Membership Algorithm
The membership is to solve whether some dependency

implicated logically by dependency set or not. On the
basis of DEP-BASE algorithm, we provide the

membership algorithm in the following.

B.2. Algorithm Description
First, we get the path dependency base, and the initial

value of Q′ is set as empty. If the dependency is a
multi-valued dependency, the following operations is
executed: if the element in DEP(P) belongs to the right
path set of this multi-valued dependency, then add this
element into Q′. Whether Q′=Q hold or not examined. If
holds, this dependency is implicated logically by Σ. If the
dependency is functional dependency, and need to
examine whether the right path set Q∈P+ of this
dependency hold or not; if holds, this dependency is
implicated logically by Σ.

Algorithm 2: DEP-MEMBERSHIP(XFD and XMVD
Membership).

INPUT: dependency set Σ, path set Paths(D), a
dependency g:P→→Q(P→Q).

OUTPUT: if this dependency is implicated logically by
Σ, the output is True; otherwise, the output is False.

DEP-MEMBERSHIP(∑, g)
Begin
(1)DEP(P):=DEP-BASE(Σ,Paths(D), P);
(2)Q′=∅;
(3)if P→→Q
(4) for every Pi in DEP(P)do
(5) if Pi⊆Q then
(6) Q′:= Q′∪ Pi;
(7)if (P→→Q and Q′=Q) or (P→Q and Q∈P+) then
(8) return(True);
(9)else
(10) return(False);
End

C.2. Analysis of Algorithm

C.2.1. Termination Of the Algorithm
The step (1) of algorithm 2 calls the algorithm 1 to get

the DEP(P), so the step(1) is terminable by algorithm 1.
Because the number of elements from DEP(P) is finite
and at most the number of paths in Paths(D), the “for”
loop is terminable in step (4) of algorithm 2. Therefore,
the algorithm 2 is terminable.

C.2.2. Correctness of the Algorithm
If the dependency needed to be examined is XMVD, it

can be transformed from judging whether ∑ implicates
logically the XMVD P→→Q to judging whether the Q is
the union set of some elements from DEP(P) by
definition 6. The step (1) of algorithm 2 calls the
algorithm 1 to attain the DEP(P), and we note that the
step (1) is correct. The “for” loop in step(4) is to examine
one by one whether every set belongs to Q, then Q′ is
used for expressing the sets whose elements in DEP(P)
also in Q. Finally, compare Q′ with Q. If they are same, Q
is the union set of some elements from DEP(P), now
return True, otherwise , return False. If the dependency
needed to be examined is XFD, we note that algorithm 2
is correct by the definition of closure.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2841

© 2014 ACADEMY PUBLISHER

C.2.3. Time Complexity of the Algorithm
The number of paths from Paths(D) is expressed as m,

and n expresses the number of dependencies from ∑. The
time complexity of the step (1) in this algorithm is
O(n×m3). The “for” loop in step (4) mainly make a
comparing among sets, and the number of elements from
DEP(P) is at most m, so its time complexity is O(m2).
Therefore, the total time cost of algorithm 2 is O(n×m3).

IV. MINIMAL DEPENDENCY SET ALGORITHM

Definition 8: Let ∑ be the set of XFD and XMVD, if
∑min is a minimal dependency set of ∑, the ∑min should
meet the following conditions:

(i) There is no redundancy path in ∑min, that is to say
there is no P→→Q(or P→Q) that makes
∑min=∑min-{P→→Q}(or ∑min =∑min-{ P→Q }).
(ii) There is no redundancy on the left of every

dependency, namely for every XMVD P→→Q(or XFD
P→Q)∈∑min , there not exist XMVD P′→→Q (or XFD
P′→Q)∈∑+ that makes P′⊂P hold.

(iii) There is no redundancy on the right of every
dependency, and the right of every dependency is single
path, namely for every XMVD P→→Q(or XFD
P→Q)∈∑min , there not exist XMVD P→→Q′(or XFD
P→Q′)∈∑+ that makes ∅⊂Q′⊂Q hold.

A. Algorithm Description
Data dependency plays an important role in the

normalization design of database [18]. Designing an
XML database that can avoid data redundancy and
abnormal operation is an important research subject in the
XML field [19].

Some data dependency can be implicated logically by
other data dependencies. Removing the redundancy
dependency and redundancy path is to simplify the given
dependency set and make sure it is simple during the
analysis and computation, on the condition that the data
dependency set closure doesn’t change. This problem is
about minimal dependency set.

First, we set change-flag as T, then execute “while”
loop, let change-flag be F, and initialize the value of ∑ as
∑′. To perform the following operations for every d in ∑:
judging whether the dependency is redundancy using
DEP-MEMBERSHIP (algorithm 2) at first. If it is
redundant, then remove it from ∑. If it is not redundant
then to examine whether the left and right of this
dependency exist the redundancy paths respectively, and
if there is a redundancy path , it will be removed. After
executing the operations, we need to examine whether
∑≠∑′ hold or not, if it holds, ∑ is not the minimal
dependency set. Then set the change-flag as T and
re-execute the “while” loop. If ∑=∑′, ∑ is a minimal
dependency set.

Algorithm3: DEP-MINIMIZE(Minimize Dependency).
INPUT: A set ∑ including XFD and XMVD.
OUTPUT: the minimal dependency set ∑min of ∑.
DEP-MINIMIZE(∑)
Begin

(1)change-flag:=‘T’;
(2)while change-flag do
(3)change-flag:= ‘F’;
(4)∑′:= ∑;
(5)for (every dependency d in ∑) do
(6) if DEP_MEMBERSHIP(∑-d, d) then
(7) ∑:=∑-d;
(8) if (exist redundancy path on the left of d)
(9) for every path p∈P do
(10) if d is a XFD, then P→Q do
(11) if DEP_MEMBERSHIP(∑,{P-p}→Q)

then
(12) ∑:=(∑-{ P→Q }∪{P-p}→Q));
(13) if d is a XMVD, then P→→Q do
(14) if DEP_MEMBERSHIP(∑,{P-p}→→Q)

then
(15) ∑:=(∑-{ P→→Q }∪{P}-{p}→→Q));
(16) if (exist redundancy attribute on the right of d)
(17) for every path q∈Q do
(18) if d is a XFD, then P→Q do
(19) ∑:=(∑-{ P→Q })∪{P→ q1, ..., P→ qm};
(20) if d is a XMVD, then P→→Q do
(21) if DEP_MEMBERSHIP(∑,P→→{Q}-{q})

then
(22) ∑:=(∑-{ P→→Q })∪{ P→→Q′, P→→{Q}-{q}}
(23)if ∑≠∑′
(24) change-flag:= ‘T’;
(25)return(∑).
End

B. Analysis of Algorithm

B.1. Termination of the Algorithm
The number of elements from preliminary ∑ and from

∑+ is finite. In addition, the size of ∑ is at most the size of
∑+ after executing the step (5). The size of ∑+ is finite
which results in the “for” loop in step (5) is terminable.
The left and right paths of every dependency are finite.
We note that the “for” loop is terminable in step (9) and
step (17) of algorithm 3. In conclusion, the algorithm 3 is
terminable.

B.2. Correctness of the Algorithm
Examine whether every dependency conforms to the

definition of minimal dependency set or not in “for” loop
of step (5) after executing the step (1)~step (4) of this
algorithm. step (6) and step(7) of algorithm calls
DEP_MEMBERSHIP algorithm to remove the
redundancy dependency; step(8)~step(15) calls
DEP_MEMBERSHIP algorithm to remove the left
redundancy path; step(18) and step (19) transforms the
right path of XFD to single path; step (8)~step(15) calls
DEP_MEMBERSHIP algorithm to remove the right
redundancy path for XMVD. We note that algorithm 3 is
correct in that the dependency meets the definition of
minimal dependency set.

B.3. Time Complexity of the Algorithm
“m” expresses the total number of paths from Paths(D),

and “n” expresses the number of dependencies from ∑.

2842 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

The time cost of step (6) is O(n×m3) based on calling the
DEP_MEMBERSHIP algorithm; the time cost of step
(8)~step(15) is equal to the time cost of the “for” loop,
and it is O(n×m4). The time complexity of
step(16)~step(22) also depends on the “for” loop whose
time complexity is O(n×m4). In addition, the number of
dependencies ∑ is n. Therefore, the time complexity of
executing the step(5) once is O(n2×m4). In conclusion, the
time complexity of algorithm 3 is O(n2×m4).

V. CONCLUSION

The design of database schema is the first step of the
database application. If the database schema is well
designed, abnormal data dependencies, data redundancies
and abnormal operations can be avoided. This paper
studies the membership problem from the view of the
condition of coexistence of XML functional dependency
and XML multi-valued dependency. At the same time, we
propose DEP-BASE algorithm, DEP-MEMBERSHIP
algorithm and DEP-MINIMIZE algorithm on the
membership problem, not only proving the termination
and correctness of these algorithms, but also analyzing
their time complexities. They laid a foundation for
designing a normal form which level of normalization is
higher than others.

ACKNOWLEDGMENT

This work was financially supported by Hebei
Provincial Natural Science Foundation of China
(F2012203087), National Natural Science Foundation of
China (61272124) and National Natural Science
Foundation of China (61073060).

REFERENCES

[1] Erik Naggam, “Standard Generalized Markup
Language”[EB/OL].(1996-03-01)[2013-11-26]
http://www.w3.org/MarkUp/SGML.

[2] Arash Termehchy, Marianne Winslett, “Using Structural
Information in XML Keyword Search Effectively”. ACM
Transactions on Database Systems, 2011, vol.36, no.1,
pp.4.

[3] Haiping Xu, Abhinay Reddyreddy, Daniel F. Fitch,
“Defending Against XML-Based Attacks Using
State-Based XML Firewall”. Journal of Computers, 2011,
vol. 6, no. 11, pp.2395-2407.

[4] Ren Li, Jianhua Luo, Dan Yang, Haibo Hu, Ling Chen,
“A Scalable XSLT Processing Framework based on
MapReduce”. Journal of Computers, 2013, vol. 8, no. 9,
pp.2175-2181.

[5] Shihan Yang, Jinzhao Wu, Anping He, Yunbo Rao,
“Derivation of OWL Ontology from XML Documents by
Formal Semantic Modeling”. Journal of Computers, 2013,
vol. 8, no. 2, pp. 372-379.

[6] Haiyan Huang, Ronghua Shi, Gaoshi Li, “The
normalization of the algorithm on XML multi- valued
dependency”. Journal of hunan institute of science and
technology, 2008, vol.29, no.12, pp. 126-129.

[7] Millist W.Vincent, JIXUE LIU, CHENGFEI LIU, “Strong
Functional Dependencies and Their Application to Normal
Forms in XML”. ACM Transactions on Database Systems,
2004, vol.29, no.23, pp. 445-462.

[8] E. F. Codd, “Recent investigations in relational data base
systems”[C]//Proceedings of IFIP Congress 74, Stockholm,
Sweden, 1974, pp.1017-1021.

[9] Kamsuriah Ahmad, Ali Mamat, Hamidah lbrahim, Shahrul
Azman Mohd Noah, “Defining Functional Dependency for
XML”. Journal of Information Systems, Research &
Practices, 2008, vol.1, no.1, pp. 26-34.

[10] Xiangguo Zhao, Junchang Xin, Ende Zhang, “XML
Functional Dependency and Schema
Normalization”[C]//Proceedings of the 9th International
Conference on Hybrid Intelligent Systems, Shenyang,
China, 2009, pp.307-312.

[11] Marcelo Arenas, “Normalization Theory for XML”.
SIGMOD Record, 2006, vol.35, no.4, pp. 57-64.

[12] Tadeusz Pankowski, Tomasz Pilka, “Transformation of
XML Data into XML Normal Form”. Informatica
(Slovenia). 2009, vol.33, no.4, pp.417-430.

[13] CATRIEL BEERI, “ON the Membership Problem for
Functional and Multivalued Dependencies in Relational
Database”. ACM Transactions on Database Systems. 1980,
vol.5, no.3, pp.241-259.

[14] Zhongping Zhang, “The logical implication algorithm
research of XML multi-valued dependency”. Computer
Science, 2006, vol.33, no. 11(Supplement), pp.353-354.

[15] Wei Qiu, Lichen Zhang, “Study of Normalization Existing
MVD in XML DTD”. Computer Science, 2007, vol.34,
no.2, pp. 149-185.

[16] Zhixiao Liu, “XML normalization research based on
functional dependency and multi-valued dependency”,
yanshan university, qinhuangdao, MA, 2012.

[17] Millist W.Vincent, Jixue Liu, Chengfei Liu, Mukesh
Mohania, “Mutivalued Dependencies and a 4NF for XML”.
CAiSE 2003, pp. 14-29.

[18] Jixue Liu, Jiuyong Li, Chengfei Liu, Yongfeng Chen.,
“Discover Dependencies from Data—A Review”. IEEE
Transactions on Knowledge and Data Engineering, 2012,
vol. 24, no.2, pp.251-264.

[19] M. W. Vincent, J. Liu, M. Mohania, “The implication
problem for ‘closest node’ functional dependencies in
complete XML documents”. Journal of Computer and
System Sciences, 2012, vol.78, no. 4, pp. 1045-1098.

Zhongping Zhang, Male, Born in 1972,
professor, Ph.D., post-doctoral, CCF
Senior Member (E20-0006458S).His
main research interests are the grid
computing, data mining and
semi-structured data etc. He has
undertaken 1 project of provincial level
and has participated 2 projects funded
by national natural science foundation of

China. He rewarded the provincial scientific and technological
progress second-class Award. On the domestic and international
academic conferences and journals, He published more than 80
papers, 15 of them were cited by EI.

Chunzhen Fang, Female, Born in 1987, Postgraduate student,
the main research interest is the outlier detection in data mining.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2843

© 2014 ACADEMY PUBLISHER

