
P4P Network Communication Components Based
on Half-Sync/Half-Async and Pipe/Filter Patterns

1,2 Cheng Wang

1College of Computer Science and Technology, HuaQiao University, Xiamen 361021, China
2 Xi’an Jiaotong University, Xi’an 710049, China

wangcheng@hqu.edu.cn

Zhicong Liang
boxlzc@gmail.com

Abstract—This paper describes P4P(Proactive network
Provider Participation for peer-to-peer) network server
based on the Half-Sync/Half-Async and Pipe/Filter design
patterns, which implements the requirements of the P4P
system. The P4P network server applies the Half-Async
layer to listen to the specified network port and establishes
network connections asynchronously; makes use of message
queue layer to buffer established network connections;
applies the Pipe/Filter pattern into the Half-Sync layer and
takes the Half-Sync layer to receive data and send data
concurrently. Thanks to these patterns and the design, it
gains various levels of concurrency and flexibility.

I. INTRODUCTION

With the rapid development of P2P(peer-to-peer)
networks, some new modules and protocols are used to
construct P2P systems, some people propose new
architectures based on P2P called P4P to provide more
effective cooperative traffic control between applications
and network providers. As peer-to-peer (P2P) emerges as
a major paradigm for scalable network application design,
it also exposes significant new challenges to achieve
efficient and fair utilization of Internet network
resources[1]. To improve the feasibility, concurrency and
effectiveness of distributed systems, more and more new
architectures and modules will be proposed. P4P systems
developed from and based on P2P systems. Consequently,
P4P systems are becoming an important application of
distributed software systems, and the researches on it are
being of great significance. On account of the
development of information technology, computers,
mobile phones and various media terminals will continue
to emerge, how to make these different terminals interact
with each other is difficult and filled with challenges.
How to resolve this difficulty depends on the
development of the network communication components
in these systems. As the diversity of operating systems
and communication platforms, communications software
developers often have to face so many problems as the
performance of communication, the management of code,
platform coverage, and so on. P2P applications may face
various of requirements and challenges, there are many
related researches, such as [2], [3], [4], [5], [6] and [7] try to

conquer these challenges, in which some effective
methods and systems are proposed to conquer these
challenges. There are many design patterns used for
different application fields, including classic design
patterns[8] and distributed applications related design
patterns[9][10][11][12][13], which help us conquer the design
challenges. Some are used to create a specific types of
software, such as the pattern languages for networked and
concurrent computing[10] and enterprise application
architectures[14]. The Half-Sync and Half-Async is one of
these key patterns[8] in the domain of communication
software. There are many common concurrency models
for network server as follows:

A. Thread-Per-Connection Model.

Figure 1. thread-per-connection model.

As is shown in figure 1, in this model, a new thread
will be created and associated with the new connection
request when a new connection request arrives. The new
created thread is responsible for establishing connections,
receiving network data, handling network data, sending
result to clients, error handlings and shutdown the
connection. This model takes the following disadvantages:
(a.) does not separate the business logic and network

logic.
(b.) a huge number of threads will be created when a lot

of networks connections arrive simultaneously,
which costs much system resources and memory, the
system may crash in the worst case.

2830 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.11.2830-2836

(c.) developers are front with challenges from code
maintain and business changes.

(d.) if all the threads were created in one process, the
whole process will crash when any one of these
threads crashes.

B. Process-Per-Connection Model.

Figure 2. process-per-connection model.

As is shown in figure 2, this model is similar with the
thread-per-connection model, but processes instead of
threads are created when network connection requests
arrived. This model takes the following disadvantages:
(a.) does not separate the business logic and network

logic either.
(b.) a huge number of processes will be created when a

lot of networks connections arrive simultaneously,
which costs a lot of CPU time, system resource and
memory, the system may crash when system load
becomes bigger and bigger.

(c.) developers are front with challenges from code
maintain and business changes.

(d.) frequent IPC(Inter-Process Communication) will
happen, which costs much system resource and leads
to bad performance.

C. Thread-pool Model.

Figure 3. thread-pool model.

As is shown in figure 3, in this model, network server
creates a fixed number of threads before connection
requests arrive. The server selects an idle thread from
thread-pool to provide services to clients when a new
connection request arrives. In this model, the number of

threads is fixed, one thread may provide services to
different network connections during different time. This
model costs fixed system resources, will not bring huge
load to the system, but it is not able to handle all the
network connections when the number of concurrent
network connections is more than the number of threads
in the thread pool, which makes some network
connection requests blocked for a long time.

D. Leader/Follower Model[10].
The Leader/Followers architectural pattern provides an

efficient concurrency model where multiple threads take
turns to share a set of event sources in order to detect,
demultiplex, dispatch, & process service requests that
occur on the event sources[10]. There is no message queue
in this model, it is not able to handle a lot of current
network connections simultaneously.

E. Half-Sync/Half-async Model[10].
The Half-Sync/Half-Async architectural pattern

decouples asynchronous and synchronous service
processing in concurrent systems, to simplify
programming without unduly reducing performance. The
pattern introduces two intercommunicating layers, one for
asynchronous and one for synchronous service
processing[10]. This model includes three level layers,
Half-Sync layer, message queue layer and Half-Async
layer, which is shown in figure 4 as follows:

...

Single thread for Half-Async layer

Socket queue for queue layer

Thread pool for Half-Sync layer

sockets

sockets

Figure 4. Half-Sync/Half-Async architectural pattern[10].

Each layer`s responsibilities are as follows:
(a.) Half-Async Layer. This layer is responsible for

handling asynchronous network connection requests
from clients and establishing connections.
Establishing a connection is a quick operation, which
will not block other tasks or reduce the performance
of the system. The concurrency strategy in this layer
is various, including single thread strategy, thread
pool strategy and so on. We choose single thread
strategy here.

(b.) Queue Layer. This layer is responsible for buffering
requests and provides communication mechanism
between Half-Async Layer and Half-Sync Layer.
This layer separates and decouples Half-Async Layer
and Half-Sync Layer, which makes the strategies of
these three layers independent and flexible.

(c.) Half-Sync Layer. This layer is responsible for
handling requests in the queue layer. Generally
speaking, there is a thread pool in this layer to handle

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2831

© 2014 ACADEMY PUBLISHER

requests concurrently.
This model takes the following benefits:
(a.) higher-level tasks are simplified[10].
(b.) business logic and network logic is separated, which

makes the design more flexible.
(c.) synchronization policies in each layer are

decoupled[10].
(d.) inter-layer communication is localized at a single

point[10].
(e.) performance is improved on multi-processors[10].
(f.) code maintain and business changes are easy to

handle.
Each model owns its advantages and disadvantages,

after comparing all the above models, we choose Half-
Sync/Half-Async to build the P4P systems. With these
advantages of Half-Sync/Half-Async pattern, it is easy to
build a flexible network communication server with high
performance and various levels of concurrency.

II. REQUIREMENTS IN THE P4P SYSTEM

The requirements of network communication
components in the P4P system are as follows:
(1.) sending and receiving data.
(2.) good expansibility, concurrency and flexibility.
(3.) the server owns the capabilities to handle thousands

of network connections concurrently.
(4.) implementing dynamic and exchangeable data

handling flow to provide sufficient flexible protocol
parsing strategies to fit for various requirements and
businesses in the P4P system.

We should design the p4p systems flexible enough with
high performance and various level of concurrency to fit
all the requirements above, so it is very important to
choose appropriate patterns to design the architecture.

III. ARCHITECTURE AND DESIGN

When designing the network communication
components of the P4P system, concurrency is a very
important factor. How to maximize the number of
concurrent connections is a problem front with
developers.

As we stated above, Half-Sync/Half-Async model
takes several advantages to bring good concurrency and
performance. But this pattern is not flexible enough in
front of the requirements of the P4P systems, especially
for the Half-Sync layer. Because the data handling
business in the P4P system is very complex and various,
there are many different protocols need to parse. How do
you implement a sequence of transformation modules so
that you can combine and reuse them independently[15]?
Fortunately, Pipe/Filter[16] pattern is designed to resolve
this problem, which is shown in figure 5. This pattern
requires the following[15]:
(1.) The output of the data source must be compatible

with the input of filter 1.
(2.) The output of filter 1 must be compatible with the

input of filter 2.
(3.) The output of filter 2 must be compatible with the

input of the sink data.

Figure 5. Pipe/Filter Pattern.

We use the Half-Sync/Half-Async and Pipe/Filter
patterns to design and implement these network
communication components in the P4P system.

Figure 6. Architecture of network communication components.

As shown in figure 6, the network communication
components in the P4P system includes two parts: one is
Functional Server, the other is Functional Client.
Functional Server provides functions such as monitoring
the specified port, maintenance of passive connections,
receiving, buffering, handling and sending data, while
Functional Client provides functions such as initiating
active connections, maintenance of active connections,
receiving and sending data. Functional Server use a single
thread to listen to the specified network socket and put
the sockets into socket queue; creates several thread pools
and corresponding message queues to buffer data. The
Pipes and Filters architectural pattern divides the task of a
system into several sequential processing steps[16]. In the
P4P system, each sequential processing step is a data
handling module which contains a thread pool and a
message queue. Functional Client creates a thread pool to
handle messages and creates a message queue to buffer
data.

Data handling work flow
This section describes how to design the data handling

work flow framework of the Functional server. This
framework implements the Pipes and Filters pattern[16].

In the front of the requirements from current P4P
applications, there are more and more data handling
requirements appears, the general static data handling
work flow is not flexible and robust enough. For example,
a static and complex network data handling flow is shown
in figure 7, if we wanted to add or delete some data

2832 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

handling module, we have to stop the system firstly,
rewrite the whole data handling work flow or do much
changes and rebuild the source code statically and then
re-launch the system, which will cost us much time and
make system unstable.

Figure 7. A complex network data handling flow.

So with the help of the Pipes and Filters pattern, we
build a more flexible and dynamic data handling work
flow model. In this model, we use a list to link all the data
handling modules sequentially, when a new module is
needed to add into the work flow, just inserts the new one
into the list. Each module owns its private threads pool to
handle data, owns its message queue to buffer data, which
makes the whole system more flexible and gains good
performance. The new data handling work flow is shown
in figure 8.

Figure 8. data handling work flow.

The whole procedure of data handling work flow is as
follows:
(1.) The single thread listens to the specified network

port, and establishes connections when connection
request arrive.

(2.) The single thread which listens to the port puts
network connections into the queue of module A.

(3.) Module A gets an item from its own queue.
(4.) Thread pool of Module A handles the item and gets

the result.

(5.) According to the module list, module A finds out its
next module which is module B and puts the result
into the queue of module B.

(6.) (7.)(8.)(9.) Module B and the following modules will
do the similar procedure with module A until the
handled result arrives to the tail module.

(10.)(11.)(12.) The tail module of the module list handles
the result passed from its previous module, produces
the final result and sends it to the client.

Thanks to the design, each module owns its private thread
pool, the data handlings are concurrent and independent
in both each thread pool and each module. Each data
handling module is a list node, when some new module is
needed to add into the data handle flow during the system
is running, it is just needed to insert this new module into
the list, which is shown in figure 9 as follows. A lock is
hold to protect the list during the inserting. Deleting a
module is in the backward procedure. Because adding or
deleting a module is not a frequent operation and is
always done during wee hours, the cost of holding lock is
acceptable.

Figure 9. add a new module into data handling flow.

At the same time, to make this system more flexible,
each module owns a state to indicate its current state.
Each module is in one state of four states: idle, active,
running and inactive. The translation among these states
is shown in figure 10.

Figure 10. State translations of data handling modules.

Application Level Binary Exponent Backoff Strategy
As we known, network crowd may happen during the

network is busy, which will cost much resources and time.
Binary exponent back-off algorithm[17][18] is applied into
Ethernet (802.3)[19] to reduce network crowd. Similarly,
in network communication system, clients always send
connection requests to the server simultaneously, but the
handling abilities of server is limited, so it is needed to
apply some strategy to coordinate the clients. The

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2833

© 2014 ACADEMY PUBLISHER

Figure 12. The run-time procedure.

application level binary exponent back-off strategy is
applied into the functional clients to decrease network
crowd in the P4P system. The pseudo code of application
level binary exponent back-off pseudo algorithm is
shown in figure 11:

int backoff_reconnect(int NumberOfReconnect, int initialDelayTime,
string serverAddress) {
 int i, sock;
 ClientConnector connector;
 ClientBuffer buffer;
 int sock=socket(AF_INET, SOCK_STREAM,0);
 ClientTim timeout(initialDelayTime);
for(i = 0; i < NumberOfReconnect; i++) {

if(i != 0) sleep(timeout);
if (connector.connect (sock, serverAddress, &timeout) == -1)

 timeout *= 2; /* exponential backoff */
else{
connector.send(sock, buffer);
break;
 }

}
return (i == NumberOfReconnect)? -1 : 0;

}

Figure 11. Exponent backoff algorithm in clients.

The description of the application level exponential
back-off algorithm is as follows:
(1.) Define the basic timeout time, in this communication

system the basic timeout is defined by parameter
initialDelayTime.

(2.) Define a parameter named NumberOfReconnect,
which stands for the times of network reconnections.

(3.) New time out is equals to two multiplied by old
timeout, the initial value of time out equals to
initialDelayTime.

(4.) If connection still failed after NumberOfReconnect
times, reports the error to high level applications of
this communication system.

(5.) If connection was established, send messages to
network.

(6.) After applying Half/Sync-Half/Async and Pipe/Filter
patterns into the system, it fit for all the requirements,
which not only gains high performance but also
obtains enough flexible.

IV. THE RUN-TIME PROCEDURE OF NETWORK
COMMUNICATION COMPONENTS

Figure 12 shows the run-time process of network
communication component in P4P system. Functional

server runs a single thread to listen to the network socket,
while each data handling module owns a private thread
pool to handle data. The number of threads in each thread
pool is specified by parameters to satisfy different
performance of different machines. In order to
communicate among threads, there is a message queue in
each module. The run-time procedure of network
communication component in P4P systems are as follows:
(1.) Clients initiate connection requests to the server and

then send messages to the server. Both UDP[20]
connections and TCP[21] connections are supported in
the P4P systems to provide different services to
various of businesses and requirements.

(2.) The single thread which listens to the network port
detects the connection requests, establishes the
connections and put the sockets into the input queue.

(3.) Thread pool for Half-Async gets these sockets items
from the input queue, and calls select function to
wait for network messages` coming. This function
allows the process to instruct the kernel to wait for
any one of multiple events to occur and to wake up
the process only when one or more of these events
occurs or when a specified amount of time has
passed[22]. When messages are coming, the thread
pool receives messages, handles these messages, and
produces the results.

(4.) Thread pool for Half-Async puts the results into the
message queue of the first data handling module of
the module list, which is Module A in figure 12.

(5.) The thread pool of Module A gets messages from its
message queue.

(6.)(7.) The thread pool of Module A handles messages
and put the results into the message queue of
Module A`s next Module, which is Module B in
figure 12.

(8.)(9.)(10.)(11.)(12.) Module B and the following
modules will handle the messages from their
previous modules similar with Module A does until
meets the final module.

(13.) The final module handles the messages, produces
and puts the final results into the output queue of the
thread pool for Half-Async.

(14.)(15.)(16.) The thread pool for Half-Async gets the
final results from its output queue and sends them to
clients by corresponding sockets.

From the run-time view of the P4P system, we got a
clear understanding about how the system works and how
these components coordinate with each other.

V. PERFORMANCE TESTING

We did the testing with the following hardware devices
and configurations: Intel i7-4700HQ/4G platform with
Ubuntu Server 12.04 and network with the speed of
1000Mps.

Testing in figure 13 shows high performance and
advantages of network server based on Pipe/Filter and
Half-Sync/Half-Async patterns compared with network
server based on thread-per-connection and network server
based on thread pool. With the number of network
connections increasing, the performance of this system

2834 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

keeps at high level relatively.

Figure 13. Network performance comparison.

Figure 14. CPU Usage comparison.

As is shown in figure 14, with the increasing of the
number of concurrent connections, the average cpu usage
of network server based on half-sync/half-async and
pipe/filter shows a smooth curve upward relatively,
which means costing lower system resource and gains
higher performance compared to others.

According to these above testing results, our system
gains various levels of concurrency, which better meets
the requirements and needs of the P4P system.

FUTURE WORK

Our future work will focus on the following aspects:
(1) The optimization of p4p protocols analysis. Because

there are all kinds of application level protocols to
support in this system, we need to optimize the
protocol analysis components.

(2) The optimization of data handling components and
flows. As we known, the data handling will cost
much time and system resource, so it is necessary to
improve the performance of data handling flow and
components.

(3) Try to apply other network communication related
design patterns into this system, which could
improve the flexibility, extension further and make
this system more maintainable.

(4) Do more stability related testing. Because the system
is complex and will cover both Windows and Linux
operating systems, it is necessary and important to do
stability related testing.

VI. CONCLUSIONS

In this paper, we compared several network server
models and stated the disadvantages and advantages of
these models firstly. And then, we proposed the
architecture of the P4P network communication
components based on Half-Sync/Half-Async and
Pipe/Filter Patterns. Finally, we give the testing results
and related analysis about these models. The network
communication components in this system take the Half-
Sync/Half-Async pattern framework as its core
framework, applies the Pipe/Filter pattern framework as
its auxiliary framework and organizes all the data
handling modules into a list to add and delete modules
dynamically. Thanks to these frameworks and designs, it
gains various levels of concurrency and flexibility which
fits for the requirements of the P4P system.

ACKNOWLEDGEMENTS

This work was financially supported by National
Natural Science Foundation of China (Grant No.
51305142) and introduction of talents Huaqiao University
Scientific Research Projects (Project No. 12BS217).

REFERENCES
[1] Haiyong Xie,Y. Richard Yang, Arvind

Krishnamurthy,Yanbin Liu,Avi Silberschatz. P4P:
Provider Portal for Applications.SIGCOMM’08, August
17–22, 2008, Seattle, Washington, USA.

[2] Adeela Bashiry, Sajjad A. Madaniy, Jawad Haider Kazmiy,
Kalim Qureshi. Task Partitioning and Load Balancing
Strategy for Matrix Applications on Distributed System,
JOURNAL OF COMPUTERS, VOL. 8, NO. 3, MARCH
2013.

[3] Jinghua Wu,Yun Xu. A Decision Support System for
Borrower’s Loan in P2P Lending, JOURNAL OF
COMPUTERS, VOL. 6, NO. 6, JUNE 2011.

[4] Zhengzhen Zhou, Yonglong Luo, Liangmin Guo, Meijing
Ji. A Trust Evaluation Model based on Fuzzy Theory in
P2P Networks, JOURNAL OF COMPUTERS, VOL. 6,
NO. 8, AUGUST 2011.

[5] Choffnes, D. and F. Bustamante, "Taming the Torrent: A
practical approach to reducing cross-ISP traffic in P2P
systems", Proceedings of ACM SIGCOMM, August 2008.

[6] R. Bindal, P. Cao, W. Chan, J. Medval, G. Suwala, T.
Bates and A. Zhang, "Improving Traffic Locality in
BitTorrent via Biased Neighbor Selection". In IEEE
International Conference on Distributed Computing
System (ICDCS 2006).

[7] K. Shanahan and M. Freedman, "Locality Prediction for
Oblivious Clients". International workshop on Peer-To-
Peer Systems (IPTPS 2005).

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Reading, MA: Addison-Wesley, 1995.

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal. Pattern-Oriented Software
Architecture, A System of Patterns, Volume 1. Wiley and
Sons, New York, 1996.

[10] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and
Frank Buschmann. Pattern-Oriented Software Architecture:
Patterns for Concurrent and Networked Objects, Volume 2.
Wiley & Sons, New York, 2000.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2835

© 2014 ACADEMY PUBLISHER

[11] Michael Kircher, Prashant Jain. Pattern-Oriented Software
Architecture: Patterns for Resource Management, Volume
3. Wiley in 2004.

[12] Frank Buschmann, Kevlin Henney, Douglas C. Schmidt.
Pattern-Oriented Software Architecture: A Pattern
Language for Distributed Computing, Volume 4.Wiley &
Sons in 2007.

[13] Frank Buschmann, Kevlin Henney, Douglas C. Schmidt.
Pattern-Oriented Software Architecture: On Patterns and
Pattern Languages, Volume 5. Wiley & Sons in 2007.

[14] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R.
Stafford, Patterns of Enterprise Application Architecture.
Reading, Massachusetts: Addison-Wesley, 2002.

[15] http://msdn.microsoft.com/en-us/library/ff647419.aspx
[16] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter

Sommerlad, and Michael Stal. Pattern-Oriented Software
Architecture, A System of Patterns, Volume 1. Wiley and
Sons, New York, 1996.

[17] Larry L. Peterson, Bruce S. Davie, Computer Networks,
Edition 4: A Systems Approach, pp.116-123, 2007,
Elsevier, Inc.

[18] Kevin R. Fall, W. Richard Stevens. TCP/IP Illustrated,
Volume 1: The Protocols, pp.114-116, 2012, Addison
Wesley.

[19] "IEEE Standard 802.3-2008". IEEE. Retrieved 22
September 2010.

[20] RFC768; Postel, Jon. User Datagram Protocol, IETF,
August 1980.

[21] RFC793; Postel, Jon. Transmission Control Protocol, IETF,
September 1981.

[22] W. Richard Stevens, UNIX Network Programming
Volume 1, Third Edition: The Sockets Networking API.
pp.209-121, 2003, Addison Wesley.

2836 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER

