
A Graph Based Approach to Trace Models
Composition

Youness Laghouaoutaa, Adil Anwarb, Mahmoud Nassara, Bernard Coulettec
a IMS-SIME ENSIAS, Mohamed Vth Soussi University, Rabat, Morocco

Email: y.laghouaouta@um5s.net.ma, nassar@ensias.ma
b Siweb, EMI, Mohamed Vth Agdal Universtity, Rabat, Morocco

Email: anwar@emi.ac.ma
c IRIT-UTM, University of Toulouse II, Toulouse, France

Email: coulette@univ-tlse2.fr

Abstract— A model driven engineering process involves dif-
ferent and heterogeneous models that represent various
perspectives of the system under development. The model
composition operation allows combining those sub-models
into an integrated view, but remains a tedious activity.
For that, traceability information must be maintained to
comprehend the composition effects and better manage the
operation itself. Against this context, the current paper
describes a framework for model composition traceability.
We consider the traces generation concern as a crosscutting
concern where the weaving mechanism is performed using
graph transformations. A composition specification case
study is presented to illustrate our contribution.

Index Terms— traceability, model composition, model trans-
formation, aspect oriented modeling, graph transformation.

I. INTRODUCTION

One of the main Model Driven Engineering (MDE)
principles is to reduce system complexity by raising the
abstraction level. In MDE, the primary focus is on models
rather than computing concepts. Models represent all
artifacts handled by the software development process
and can be used as first class entities in dedicated model
management operations. Therefore, the gap between the
requirements definition and the solution is reduced by
metamodeling and transformation tools [1].

Usually, complex and large systems are built based on
different models; each one representing a view of the
system according to a different perspective, a different set
of concerns, and a different group of components [2]. The
main purpose is to separate concerns in order to represent
the software system as a set of less complex sub-models.
Hence, the complexity of the analysis/design activities is
reduced in the earlier phase of the software development
process.

However, several issues are raised, among them the
need to synchronize contributing models. This task can be
handled through the generation of views that cross differ-
ent perspectives in order to propagate changes occurring
in sub-models. Combining those models can be performed
using a model composition approach. Nevertheless, even
if model-oriented decomposition is interesting; model
composition remains a laborious activity.

Traceability is a necessary system characteristic [3] that
reveals the software process maturity. Model composition,
as all other model management operations, requires a
traceability mechanism for manifold uses: model vali-
dation, co-evolution of models and model composition
optimization. Indeed, traceability management provides
support to better manage the composition operation. It
specifies how source artifacts participate in the production
of the composed model. Those links detail the flow of
execution and are useful to analyze the impact of changing
sub-models during the evolution of the system and help
to optimize composition chains.

This paper deals with the tracing of the composition of
heterogeneous models. Our approach is based on a generic
and extensible metamodel accounting for structuring trace
links. Essentially, we aim at minimizing the trace links
management effort and expressing highly configurable
trace models. This paper extends our initial work pre-
sented in [4]. It focuses on the generation of traces by
using aspect oriented modeling (AOM) principles [5]
and graph transformations [6]. In fact, the weaving of
the traceability aspect is specified by a set of graph
transformation rules.

Graph transformations theory provides a formal support
for defining some activities related to model management
such as: model transformation, model refactoring and
model integration. We intend to populate our traceability
metamodel regardless of the composition language. To
that end, we believe that graph transformation is a pow-
erful technology for specifying and applying the weaving
mechanism of the traces generation code in a composition
specification in a more abstract manner.

The rest of the paper is organized as follows: in Section
II we review related approaches concerning model trans-
formation traceability; Section III represents an overview
of our approach, while Section IV details the generation
of the trace model. Thereafter, in Section V we present
a concrete working example, followed by a discussion
of our contribution in Section VI. Finally Section VII
summarizes this paper and presents future works.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2813

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.11.2813-2822



II. BACKGROUND AND RELATED WORK

A. Traceability management in MDE

Traceability is recognized as an essential issue in
software engineering, and model driven engineering is no
exception. In the literature there are several definitions
of traceability, which, differ depending on the artifacts
abstraction level and the traceability intensions. The IEEE
Standard Glossary of Software Engineering Terminology
[7] defines traceability as: the degree to which relationship
can be established between two or more products of
the development process, especially products having a
predecessor-successor or master-subordinate relationship
to one other; for example, the degree to which the
requirements and design of a given software component
match.

More definitions concerning model transformation
traceability have been proposed, notably:

• Dirvalos et al. [3] consider traceability as: Any rela-
tionship that exists between artifacts involved in the
software engineering life cycle.

• Grammel and Voigt [8] define traceability as: The
runtime footprint of model transformation .Essen-
tially, trace links provide this kind of information
by associating source and target model element
with respect of the execution of a certain model
transformation.

Traceability refers to the ability to capture and reuse
links between a set of artifacts handled by a model driven
development operation. This information represents the
changes that have occurred in these elements and reveals
the complexity of logical relations [9] existing among
them. In MDE, traceability is a matter of three concerns
[10]:

• What: Decide which concepts described in the mod-
els will be traced.

• How: Determine how to generate, represent and
manage trace links.

• Why: Identify the intentions of capturing trace links.

B. Related work

Several researches address model transformation trace-
ability issue. In this section we briefly outline the main
approaches.

Jouault [11] presents an approach to trace transfor-
mations written in the ATL language. It addresses the
problem of implicit traceability persistence. This approach
is the basis for several future researches addressing trace-
ability management. The author considers traces as a
model generated in the same way as other target models.
The traces generation code can be automatically inserted
into any existing ATL program, through the application
of a higher order transformation called traceAdder [11].
Since the author uses a simple metamodel to represent
the trace model structure, traces are not configurable.
Nevertheless, the use of the traceAdder transformation
enhances scalability and allows reusability of the trace
model stored externally.

Falleri et al. [12] suggest a framework for traceability of
imperative model transformations written in the Kermeta
language. The authors consider the trace model as a
bipartite graph where the nodes are of two types: source
nodes and target nodes. Trace links are stored in a separate
model conforms to a generic traceability metamodel and
can be reused. Besides, the manual adding of the traces
generation code allows the user to select elements to trace,
but this reduces scalability.

Amar et al. [13] propose a traceability framework for
imperative transformations. The authors present a generic
traceability metamodel based on the ”composite” design
pattern, while the trace generation is based on aspect-
oriented programming using AspectJ. Thus, it builds
traces without modifying the transformation code and
supports scalability and reusability of aspects too. The
framework defines categories of traceable operations and
their respective poincuts. Since it does not take into
account all the operations to trace, the programmer can
define new custom categories or restrict the predefined
ones. Furthermore, the application of the ”composite”
design pattern as well as the link type concept, allow
defining configurable trace models.

Grammel and Kastenholz [14] have defined a generic
traceability framework for model transformation ap-
proaches. It is based on a generic metamodel exten-
sible through facets to simplify hierarchical structure.
The approach offers two mechanisms for traces gen-
eration: transformation of the implicit trace model to
another model conforms to the suggested metamodel and
generation of traceability data based on aspect oriented
programming. These two mechanisms make the approach
scalable and enhance reusability. As for the trace model
configuration, it entails the choice of artifacts to trace and
the granularity level through the use of facets.

The confusion between model transformation and
model composition is a debate topic. Some researches
perceive model composition as a transformation with two
input models and one output model, when others discern
model transformation as a specific model composition
which computes the source model with an empty model
to produce the target one. Therefore, the presented ap-
proaches can be used to trace the model composition
operation; however, we judge that the proposal for a
model composition traceability approach proves advan-
tageous. Actually, model composition has specific inten-
sions (model synchronization, model integration. . . ) and
a particular process (matching step, merging step. . . ) that
have to drive the traceability approach.

C. Traceability requirements

In [4], we have detailed an evaluation of the presented
approaches based on three comparison criteria: configura-
tion, portability, and scalability. These criteria are inspired
from the traceability challenges stated by the Center of
Excellence for Software Traceability [15]. According to
the results of this analysis, we derived four traceability
requirements that have driven our approach.

2814 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER



Figure 1. The trace generation process

• In order to address the scalability challenge, the
trace model generation must be automatic; so as to
reduce the effort required to achieve traceability. Fur-
thermore, human intervention is useful to configure
model elements to trace.

• The code necessary to generate traces must not be
intrusive in the primary transformation in order to
allow its reuse.

• Traceability data has to be stored in a separate model
which conforms to a generic metamodel to reduce
trace links management effort. Thus, it supports
reusability of the trace model.

• The traceability metamodel has to be expanded with
an extensibility mechanism. Essentially, this mecha-
nism allows expressing configurable trace links de-
pending on the traceability scenario and the models
specifications.

In our approach, we propose to achieve the two first
requirements by using graph transformation rules to gen-
erate the trace model. The other points are achieved
by using generic composition traceability metamodel to
represent the traceability data structure.

III. OVERVIEW OF THE APPROACH

A. Trace generation process

We consider the trace model as an additional target
model of the composition operation (Fig. 1). To generate
it, we propose to use a weaving mechanism of the code
responsible of creating traceability elements in the compo-
sition specification. We describe in section IV the aspect
weaving process in more details. The trace model can be
visualized as a graph, or invoked by a selection request.
Furthermore, it can be used to validate the composition
by checking the consistency and the completeness of the
composed model. The co-evolution of models [16] can
be supported by analyzing the impact of changing source
elements through their corresponding trace links. Finally,

Figure 2. Composition traceability metamodel

we aim to optimize model composition chains; indeed,
some trace links are valuable for following steps.

B. The composition traceability metamodel

Several approaches address the model composition
operation: AMW [17], EML [18], Kompose [19]. We
take into account the typical composition process which
involves two major steps: matching and merging. During
the first step, similarities between left and right model
elements are calculated. Matching elements are merged
while other elements are eventually transformed to target
model elements or temporary modified to be merged.

We propose a traceability metamodel (see Fig. 2),
which defines the different kinds of relationships between
model elements independently from any given application
domain. We have extended the core traceability meta-
model proposed in [4] to support composition traceability
requirements and complement it with well-formedness
rules. Hereafter, we present the key elements of this
metamodel.

A MergingLink element connects the left and right
elements to the composed element, while a transforma-
tionLink element represents a transition from each left or
right element to the target one. A transformation link may
have no source or target element to allow tracing a deleted
element or a newly created one. Moreover, we represent
multi-scaled trace model that show the imbrications of
the rule calls, through a parent-child relation among trace
links. The nesting of traces allows the final user to
configure the granularity degree he desires.

In order to enhance the trace model semantic rich-
ness, we use the Context concept to assign additional
information to trace links depending on the traceability
point of view and the models to compose specifications.
Indeed, this extensibility mechanism is based on the
definition of the relevant context attributes that capture the
further expressiveness data to be assigned to a sub-set of

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2815

© 2014 ACADEMY PUBLISHER



traces, such as: the composition rule name, the traceability
intention. . .

We present thereafter some well-formedness rules spec-
ifying the static semantics of the traceability metamodel.

1) A merging link must have two source elements and
one target element.

context TraceLink
inv : self.oclIsTypeOf(MergingLink)
implies self.left->notEmpty() and self

.right->notEmpty() and self.target
->notEmpty()

2) A transformation link has at most one source ele-
ment.

context TraceLink
inv : self.oclIsTypeOf(

TransformationLink)
implies self.left.oclIsUndefined() or

self.left.oclIsUndefined()

3) There is one and only one root trace link of type
MergingLink.

context TraceModel
inv : let root:TraceLink = self.root

in
if root.oclIsUndefined()
then true
else
root.oclIsTypeOf(MergingLink) and root

.parent.ocIsUndefined()
endif

We illustrate a simple trace model in Fig. 3. The
purpose of the composition to trace is to merge two simple
class diagrams (Left model and Right model) each one
containing one class A. The trace model contains one
root element of type MergingLink that links the source
class diagrams with the target one. Childs of this element
represent the merging of the classes A and the types
int in the source models. Finally the copy of the class
attributes to the target model is represented by two nested
transformation links.

IV. TRACE MODEL GENERATION

In this section, we describe how we can use aspect
oriented modeling with graph transformations to trace the
model composition operation. Our objective is to address
our traceability requirements in order to automatically
build the trace model without modifying the code of the
composition specification by hand. Indeed, we consider
the insertion of the trace generation code as a weaving of
the base model (which represents the composition speci-
fication) with the aspect model (describes the traceability
concern). This weaving scenario is specified by graph
transformation rules.

A. AOM and graph transformations concepts

Aspect oriented modeling applies aspect oriented pro-
gramming [20] in the context of MDE, and focuses on
modularizing and composing crosscutting concerns during

Figure 3. A simple trace model

the design phase of a software system. Indeed, the aspect
that encapsulates the crosscutting structure and the base
model it crosscuts are both models. An aspect is defined
principally by:

• A pointcut: it is a predicate over a model used to
determine the places where the aspect should be
applied (joinpoints).

• An advice: It is the new structure that replaces the
relevant jointpoints.

A graph rewriting rule consists of two parts, a left-hand
side (LHS) and a right-hand side (RHS). A rule is applied
by substituting the objects of the left-hand side with the
objects of the right-hand side, only if the pattern of the
left-hand side can be matched to a given graph [21].

A formal definition of a graph transformation rule is
given in [22]: A graph transformation is a rule r : L → R
from a left-hand side (LHS) graph L to a right-hand side
(RHS) graph R. The process of applying r to a graph G
involves finding a graph morphism, h, from L to G and
replacing h(L) in G with h(R). To avoid dangling edges
i.e., edges with a missing source or target node h(R) must
be pasted into G in such a way that all edges connected to
a removed node in h(L) are reconnected to a replacement
node in h(R).

We establish the following correspondences to simulate
aspect weaving operation with graph transformation rules:
A set of rules correspond to an aspect, the LHS part
defines the points where the aspect should be applied

2816 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER



(the pointcut), and the RHS part defines the crosscutting
structure that should be inserted at those points (the
advice). Note that we have chosen the Henshin project
[23] to implement the weaving process.

Henshin is a transformation language and tool environ-
ment based on graph transformation concepts and operat-
ing on EMF models [23]. It provides features needed to
express complex transformation such as: negative appli-
cation conditions (NACs) which specify the non-existence
of model patterns in certain contexts and transformation
units to control the rules application sequence.

B. The weaving operation

We have chosen the Epsilon Merging Language EML
[18] as an example of dedicated composition language,
which is used to express a model merging specification.
EML belongs to the Epsilon platform, which is a model
driven framework for developing integrated languages for
model management tasks such as comparison, transfor-
mation, validation, etc. This language proposes to merge
models through three categories of rules: match rules,
merge rules and transformation rules.

An EML specification can be represented as a graph,
since the abstract syntax of EML can be considered as a
graph. Hence, the transformation of an EML module to
another EML module, which contains traceability gener-
ation code, can be considered as a graph transformation.
Fig. 4 depicts an excerpt of the EML abstract syntax
[24]. Note that the definition of some model elements
has been modified to simplify the specification of graph
transformations that deal with the generation task.

1) Trace link declaration for merge rules: The rule
presented in Fig. 5 allows declaring the traceability
element that captures the correspondence between the
two source elements matched by the application of an
EML merge rule and the merged one. This rule searches
for a MergeRule node with its connected parameters
corresponding to the left, right and target parameters.
Thereafter, it adds a new ParameterDeclaration node
stereotyped with create, referencing the merging link to
be generated. Besides, the added AssignStatement nodes
attribute the reference of the corresponding element to the
appropriate trace link property (left, right, and target).

2) Trace link declaration for transformation rules:
The graph transformation rule presented in Fig. 6 aims
to add the trace link declaration to EML transformation
rules. As with merge rules, it searches for a Transforma-
tionRule node and appends to it a new parameter of type
TransformationLink. This newly added parameter allows
generating a trace link that captures the transition from the
source element to the target one. Furthermore, the added
assign statements attribute the references of the matched
ParameterDeclaration nodes stereotyped with preserve to
the generated trace link.

Note that in the EML abstract syntax, no distinction
is made between the left and the right elements (the
transformation rule connects the source element to the
target one). Consequently, we can’t automatically resolve

Figure 4. Excerpt of the EML abstract syntax

the origin of the element (left or right model) without
user’s assistance.

3) Trace links nesting rule: Within EML, the rule
call is implicitly performed using the equivalent opera-
tion that automatically resolves source elements to their
transformed counterparts in the target models [24]. This
target equivalent is produced by an anterior application of
a given rule. We propose to structure traces conforming
to the rule invocation sequence. Indeed, the application
of the two previous rules allows generating extra-outputs
corresponding to trace links that are resolved as potential
target equivalents. Hence, we trace a rule call by assigning
the trace link generated by the called rule as a child of
the link generated by the calling rule.

Accordingly, the rule depicted in Fig. 7 searches for a
call of the equivalent operation. Thereafter, it copies the
reference of the element to resolve (which corresponds
to the source of the SimpleOperationCallExpression node
stereotyped with delete) to the variable named element.
Then, the target equivalents are divided on two subsets:
those corresponding to the traceability data that are used
to bind the traceability element to its parent and the other
element used to copy the original call of the equivalent
operation. This filtering mechanism is made by applying
the select operation.

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2817

© 2014 ACADEMY PUBLISHER



Figure 5. Trace link declaration for merge rules

Figure 7. Trace links nesting rule

C. The tool architecture

Fig. 8 depicts a high level view of the tool architecture.
Basically, it contains two major layers: the composition
and traceability layer and the serialization and visual-
ization layer. The first layer constitutes the core of our
architecture while the second one offers facilities to
perform the traceability management.

The serialization service is implemented using the
EMFText project [25]; it involves a text to model parser

and a model to text printer for the EML language.
Essentially, this allows transforming the textual EML
specification to the corresponding model conforms to the
EML abstract syntax. Thereafter, a specific graph transfor-
mation unit (which is specified using the Henshin project
cf. Section IV-B) weaves the traces generation patterns
in the corresponding model. Finally, we reproduce the
concrete specification by using the model to text printer.

The execution of the resulting specification generates
exta-outputs corresponding to the traceability elements

2818 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER



Figure 6. Trace link declaration for transformation rules

while producing the composed model. Besides, the vi-
sualization service provides support to transform the
generated trace model in a human friendly representation.

V. CASE STUDY

In this section, we provide an example to illustrate
the application of our approach. The merging scenario
we have chosen is the merging of two UML models
represented by class diagrams into a target model. The
source models as well as the merged model are displayed
in Fig. 9. Listing 1 represents the EML rule that merges
two source classes, while Listing 2 depicts the resulting
modifications over this rule.

1 rule MergeClassWithClass
2 merge l : left!Class
3 with r : right!Class
4 into t : target!Class
5 {
6 t.name = l.name;
7 t.ownedAttribute = l.ownedAttribute.includingAll

(r.ownedAttribute).equivalent();
8 }

Listing 1. Merge two classes rule

Depending on the rule type (merge or transformation),
the two first rules of the traces generation weaving unit,
declare the traceability parameter as another target param-
eter, and assign the traceability information to it (Listing

Figure 8. The tool architecture

Figure 9. Illustrative example

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2819

© 2014 ACADEMY PUBLISHER



2: lines 8,11-13). Besides, the call of the equivalent op-
eration (Listing 1: line 7) has been captured and replaced
with the fragment that divides its return to trace model
elements and default target elements (Listing 2: lines 1-
4,14-16). The first sub-set is used to copy the original call
of the equivalent operation (Listing 2: line 15), while the
traceability element is assigned as a child of current trace
link (Listing 2: line 16).

1 pre
2 {
3 var element : new Any ;
4 }
5 rule MergeClassWithClass
6 merge l : left!Class
7 with r : right!Class
8 into t : target!Class , tr:trace!MergingLink
9 {

10 t.name = l.name;
11 tr.left=l;
12 tr.right=r;
13 tr.target=t;
14 element = l.ownedAttribute.includingAll(r.

ownedAttribute);
15 t.ownedAttribute = element.equivalent().select(

it | not it.isKindOf(trace!TraceLink));
16 tr.child = element.equivalent().select(it | it.

isKindOf(trace!TraceLink));
17 }

Listing 2. Merge two classes with traces generation

Fig. 10 depicts an excerpt of the generated trace model.
This model conforms to our composition traceability
metamodel and contains two types of trace links (merging
links and transformation links) that are generated with
respect to the composition relationships kinds. Those links
are nested with respect to the rules invocation sequence.
Essentially, the multi-scaled character of trace links allows
the user to navigate over the trace model, from rough to
precise. Note that we have used the Emf2gv project1 to
visualize the trace model.

VI. DISCUSSION

As presented in section II, traceability involves three
concerns: what to trace, how to manage the traceability
information, and why we require it. Our approach allows
the user to identify a subset of elements to trace through
the selection of the relevant aspects (graph transformation
rules) to apply. On the other hand, the use of aspect
oriented modeling and graph transformation rules au-
tomatically insert the code responsible for generating
the traceability information. In order to reduce effort to
achieve traceability and support reusability of aspects, the
trace model conforms to a generic metamodel. Besides,
our metamodel is extensible to express traces regarding
traceability scenarios. Finally, we identified three major
intensions of capturing traces: validation in model compo-
sition, co-evolution of models and optimization of compo-
sition chains. These intensions will guide our future work.
We consider that the challenge is to make our approach
aware of the ”why”, in order to automatically select the

1See http://sourceforge.net/projects/emf2gv.

elements to trace and configure the trace management
process depending on the user’s intension.

The use of graph transformation proves to be ad-
vantageous for augmenting composition tools with a
traceability support, since, existing graph based tools as
Henshin project can perform this operation. It provides
features needed to express complex transformation such
as: application conditions and the control flow of graph
transformation rules. Furthermore, the plurality of the
composition languages and their characteristics (textual,
model-based, and graph-based) make traceability difficult
to manage; however, we believe that the exploration of
graph transformation options provides ways to overcome
this problem.

We aim to abstract as much as possible the composition
specification to the corresponding graph. Thereby, our ap-
proach can be used to trace model composition regardless
its nature: textual specifications written in EML, model-
based specification in ATL, and graph based composition
[2]. However, our contribution is currently a language
dependent approach, since the definition of the graph
transformation rules takes into account the composition
language. As a solution, we are considering a pivot
language.

VII. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach dedicated to
manage the traceability concern in a model composition
operation. Our solution fits a set of traceability require-
ments we have deduced from the analysis of the main
model transformation traceability approaches. Indeed, we
consider traceability as a cross-cutting concern and we
generate the trace model automatically based on the
aspect oriented paradigm. The aspect weaving is imple-
mented using graph transformation rules. Moreover, we
use a generic and extensible traceability metamodel that
deals with the configuration challenge.

Several perspectives to our work are under considera-
tion. We are completing the visualization of the generated
trace model in a human-friendly representation using
the graphviz tool [26]. Besides, we intend to work on
a pre-configuration tool support to generate the trace
model according to the user’s requirements. Finally, we
believe that traceability data is useful for optimizing the
establishment of correspondences between contributing
models, by automatically refining the matching model.

REFERENCES

[1] S. Kent, “Model driven engineering,” in Integrated formal
methods. Springer, 2002, pp. 286–298.

[2] A. Anwar, A. Benelallam, M. Nassar, and B. Coulette,
“A graphical specification of model composition with
triple graph grammars,” in Model-Based Methodologies for
Pervasive and Embedded Software. Springer, 2013, pp.
1–18.

[3] N. Drivalos, R. F. Paige, K. J. Fernandes, and D. S.
Kolovos, “Towards rigorously defined model-to-model
traceability,” in ECMDA Traceability Workshop (ECMDA-
TW’08), 2008, pp. 17–26.

2820 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER



Figure 10. Excerpt of generated trace model

[4] Y. Laghouaouta, A. Anwar, and M. Nassar, “A traceability
approach for model composition,” in 2013 ACS Interna-
tional Conference on Computer Systems and Applications
(AICCSA). IEEE, 2013, pp. 1–4.

[5] R. France, I. Ray, G. Georg, and S. Ghosh, “Aspect-
oriented approach to early design modelling,” IEE
Proceedings-Software, vol. 151, no. 4, pp. 173–185, 2004.

[6] G. Rozenberg and H. Ehrig, Handbook of graph grammars
and computing by graph transformation. World Scientific
Singapore, 1997, vol. 1.

[7] J. Radatz, A. Geraci, and F. Katki, “Ieee standard glos-
sary of software engineering terminology,” IEEE Std, vol.
610121990, p. 121990, 1990.

[8] B. Grammel and K. Voigt, “Foundations for a generic
traceability framework in model-driven software engineer-
ing,” in ECMDA Traceability Workshop (ECMDA-TW’09),
2009.

[9] N. Anquetil, B. Grammel, I. Galvão, J. Noppen, S. S.
Khan, H. Arboleda, A. Rashid, et al., “Traceability for
model driven, software product line engineering,” in
ECMDA Traceability Workshop (ECMDA-TW’08), 2008,
pp. 77–86.

[10] G. Spanoudakis and A. Zisman, “Software traceability: a
roadmap,” Handbook of Software Engineering and Knowl-
edge Engineering, vol. 3, pp. 395–428, 2005.

[11] F. Jouault, “Loosely coupled traceability for atl,” in
ECMDA Traceability Workshop (ECMDA-TW’05), vol. 91.
Citeseer, 2005.

[12] J.-R. Falleri, M. Huchard, C. Nebut, et al., “Towards
a traceability framework for model transformations in
kermeta,” in ECMDA Traceability Workshop (ECMDA-
TW’08, 2006, pp. 31–40.

[13] B. Amar, H. Leblanc, and B. Coulette, “A traceability
engine dedicated to model transformation for software
engineering,” in ECMDA Traceability Workshop (ECMDA-
TW’08), 2008, pp. 7–16.

[14] B. Grammel and S. Kastenholz, “A generic traceability
framework for facet-based traceability data extraction in
model-driven software development,” in ECMDA Trace-
ability Workshop (ECMDA-TW’10), 2010, pp. 7–14.

[15] O. Gotel, J. Cleland-Huang, J. H. Hayes, A. Zisman,
A. Egyed, P. Grünbacher, A. Dekhtyar, G. Antoniol, and
J. Maletic, “The grand challenge of traceability (v1. 0),”
in Software and Systems Traceability. Springer, 2012, pp.
343–409.

[16] B. Amar, H. Le Blanc, P. Dhaussy, B. Coulette, et al.,
“Trace transformation reuse to guide co-evolution of mod-
els,” in 5th Int. Conference on Software and Data Tech-
nologies (ICSOFT’10), 2010.

[17] M. D. Del Fabro, J. Bézivin, F. Jouault, E. Breton,
G. Gueltas, et al., “Amw: a generic model weaver,” Procs.
of IDM05, 2005.

[18] D. S. Kolovos, R. F. Paige, and F. A. Polack, “Merging
models with the epsilon merging language (eml),” in Model
Driven Engineering Languages and Systems. Springer,
2006, pp. 215–229.

[19] F. Fleurey, B. Baudry, R. France, and S. Ghosh, “A generic
approach for automatic model composition,” in Models
in Software Engineering: Workshops and Symposia at
MODELS 2007, vol. 5002. Springer, 2008, p. 7.

[20] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V.
Lopes, J.-M. Loingtier, and J. Irwin, “Aspect-oriented
programming,” in ECOOP, 1997, pp. 220–242.

[21] L. Lambers, H. Ehrig, and F. Orejas, “Conflict detection for
graph transformation with negative application conditions,”
in Graph Transformations. Springer, 2006, pp. 61–76.

[22] J. Whittle, J. Araújo, and A. Moreira, “Composing aspect
models with graph transformations,” in Proceedings of the
2006 international workshop on Early aspects at ICSE.
ACM, 2006, pp. 59–65.

[23] T. Arendt, E. Biermann, S. Jurack, C. Krause, and
G. Taentzer, “Henshin: advanced concepts and tools for
in-place emf model transformations,” in Model Driven
Engineering Languages and Systems. Springer, 2010, pp.
121–135.

[24] D. Kolovos, L. Rose, R. Paige, and A. Garcıa-Domınguez,
“The epsilon book,” Structure, vol. 178, 2010.

[25] F. Heidenreich, J. Johannes, S. Karol, M. Seifert, and
C. Wende, “Derivation and refinement of textual syntax for
models,” in Model Driven Architecture-Foundations and

JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014 2821

© 2014 ACADEMY PUBLISHER



Applications. Springer, 2009, pp. 114–129.
[26] E. R. Gansner, “Drawing graphs with graphviz,” Technical

report, AT&T Bell Laboratories, Murray, Tech. Rep., 2009.

Youness Laghouaouta received the Engineer of state degree
in Software Engineering from National High School of Com-
puter Science and Systems Analysis (ENSIAS) in 2009. He is
currently a PhD student in the IMS (Models and Systems Engi-
neering) Team of SIME Laboratory at ENSIAS. His research
interests are model traceability, model composition, Aspect
Oriented Engineering, and Model-Driven Engineering.

Adil Anwar works as an assistant professor in computer science
at the university of Mohammed-V Rabat, and as a member of
the Siweb research team of Mohammadia school of engineers.
In 2009, he received a Ph.D degree in Computer Science at the
University of Toulouse. He is interested in software engineering,
including model driven software engineering, mainly by hetero-
geneous software language modelling, traceability management
in MDE, combining formal and semi-formals methods in soft-
ware development.

Mahmoud Nassar is Professor and Head of the Software En-
gineering Department at National Higher School for Computer
Science and Systems Analysis (ENSIAS), Rabat, Morocco. He
is also Head of IMS (Models and Systems Engineering) Team
of SIME Laboratory. He received his PhD in Computer Science
from the INPT Institute of Toulouse, France. His research
interests are integration of viewpoints in Object-Oriented Anal-
ysis/Design (VUML profile), Model-Driven Engineering, and
Context-Aware Service-Oriented Computing.

Bernard Coulette works as a full professor at the University
of Toulouse, and as a member of the MACAO team of IRIT
laboratory. His research fields of interest are mainly integration
of viewpoints in Object-Oriented Analysis/Design (VUML pro-
file), modeling and enactment of Model Driven Processes. He
has directed several PHD thesis in the context of international
collaborations (Vietnam, Morocco).

2822 JOURNAL OF SOFTWARE, VOL. 9, NO. 11, NOVEMBER 2014

© 2014 ACADEMY PUBLISHER


