

Patterns Support for Automatic Resource
Management in Cloud Computing

Guangjun Cai

Information Engineering College, Henan University of Science and Technology, Luoyang 471003, China
Email: caiguangj@hotmail.com

Lei Zhang, Bin Zhao and Yong Liu

Beijing Smartdot Tech. Co., Ltd, Beijing 100192, China
The Key Laboratory of Intelligent Information Processing, Institute of Computing Technology, Chinese Academy of

Sciences, Beijing 100190, China
Information Engineering College, Henan University of Science and Technology, Luoyang 471003, China

Email: {zhanglei1980, zhaobingmail,luoyangliuyong}@163.com

Abstract—Cloud computing has become a popular topic in
many areas. It can publish various resources offered by a
number of vendors as services. However, there is no valid
technology to manage the resources or services. In this
paper, the relations among the resources are classified into
four classes: the relations among the resources having the
same character, the relations among the variable part and
invariable part of a service, the relations among the
resources having the same interaction manner, and the
relations among the resources that are incompatible but
have to interoperate. Then four patterns are proposed to
manage the resources in cloud. The motivation, condition,
structure, generation and consequence are presented for
each pattern. They can be used to improve the availability,
scalability and reusability of the resources provided.

Index Terms—Automatic resource management, Design
pattern, Reusing, Semantic, Cloud computing, Service
composition

I. INTRODUCTION

Cloud computing [1,2], a method of computing as a
utility, has the potential to transform a large part of the IT
industry, make software or service and shape the way that
system is designed and purchased. With the advantages
such as cost savings, high availability and easy scalability,
it has emerged as a commercial reality and many vendors
and industry observers predict it a bright future. Service
composition, which can create new value, to solve
complex problems or to best suit the request by reusing
the existing services, is crucial to the success of cloud
computing. But for service composition to suit the future
cloud computing is usually used to satisfy an on-demand
request in an open, dynamic environment and need to
discovery suitable services from a large number of
existing services with a high complexity degree [3], there
are few methods solving it lonely. Meanwhile, the
resources in cloud often are provided in a virtual manner
and come from various providers. Through using the
domain control knowledge in some methods such as Ref.
[4] can improve service composition efficiency and

support more complex composition goal, they cannot
replace the role of reuse. However, most of the
composition results can only be reused in a low level for
they are rather unstructured and flat process [5].

To address these limitations, some patterns are
proposed in this paper. Design patterns can make
software more flexible and reusable in object oriented
programming by providing tested, proven development
paradigms [6]. They present a better way to divide or
organize the object and class. But most of them can only
be used in a manual way, we cannot directly use them in
cloud computing. In this paper, through considering
design patterns as methods to simplify the relations
among different objects, we propose four kinds patterns
to manage resources.

The rest of this paper is shown as follows. In section II,
we introduce the patterns and a specification language to
describe the resources. Then the aggregation pattern,
decomposition pattern, interaction pattern and mediation
pattern are presented in section III. We analysis their
effects and discuss some related works in section IV.
Finally, the results are concluded and some advices for
the future direction are given in section V.

II. PRELIMINARY

Patterns as a general reuse strategy received wide
acceptance in the field of software [7]. They can be
categorizes into three categories: a template, a solution
used to resolve the recurring problem and a rule depicting
a relation between a context, a problem, and a solution.
The resource manager pattern in this paper is derived
from the design pattern in Ref. [6] used to keep objects
separated and flexible. This may be helpful to manage
resources in cloud. However, most of the patterns are
given in a inform manner, we cannot automatically use.

The patterns in Ref. [6] can be thought of as
knowledge to simplify the relations among objects or
different parts in an object. Each pattern can reduce the
many-to-many relationship, one-to-many relationship or
many-to-one relationship by dividing or introducing

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2741

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.10.2741-2748

additional levels of indirection. For example, bridge
pattern decouples an abstraction from its implementation
allowing them to vary independently; build pattern
simplifies the relation between the construction process
and its representation. Based on this, this paper uses them
as a method to regulate recourses, to provide high-
availability and scalability services.

Semantic is a prerequisite for automatic discovery,
automatic composition and automatic management.
Consequently, we need a specification semantic language
to describe the resources for automatic management.
OWL-S [8] is a standard service ontology recommended
by W3C. It consists of the profile, the process model and
the grounding. The profile advertises the service in a
concise manner. It includes the service name, contacts
description, input, output, precondition, effect, parameter,
category and type. The process model gives a detailed
perspective on how to interact with a service. An atomic
process is a description of a service that expects one
message and returns one message. A composite process is
composed of one or more processes. The control
constructs in a composite process includes: sequence,
split, split+join, choice, any-order, condition, if-then-else,
iterate, repeat-while, and repeat-until. A simple process
may provide a view of some atomic process or a
simplified representation of some composite process. The
grounding specifies the details of how to access the
service. It can be seen as a mapping from an abstract
specification to a concrete specification of a service. In
this paper, we concentrate more on process model.

III. RESOURCE MANAGEMENT PATTERNS

In order to use patterns in service composition and
resource management, we in Ref. [9, 10] firstly classified
the resources to three classes: simple service, composite
service and atomic service according to process model in
OWL-S. Secondly, we conceive the patterns as methods
to divide or simplify the relations. Thirdly, we determine
the relations we need to simplify. The relations can be
classified into four categories. Ones are the relations
among the resources with the similar character; the
seconds are the relations in one resource or service; the
thirds are the relations between the resources with the
similar interactions or structure; the finals are the
relations between the two or more resources needing to
interact or compose. Finally, we present the motivation,
condition, structure, generation and consequence for each
pattern.

A. Aggregation Pattern
Aggregation pattern manages a set of resources which

have the similar or same character. It generates a new
aggregation service in a bottom to up manner. This
results a more flexibility relation between the resources
and the clients. The idea of this pattern comes from the
compositor, decorator, façade pattern, and so on in Ref.
[6]. It is applicable to the situation that more than one
resource can provide the same function or be used in
similar manner.

a. Motivation

Figure 1. Motivation example of aggregation pattern

Consider the situation library management or that
several teachers teach the same content. In the latter, it
may be difficult to let student select teacher. And if
binding the request to a specific teacher, it may be fail if
the teacher has any trouble. A solution is to create a
school to manage these teachers to provide the education
services. The change is shown in Fig.1.

b. Condition
Aggregation pattern is used for organizing the

resources owning similar characters. In OWL-S, some
categories of equivalence are listed below.
● name equivalence: the name of one resource is same

with another resource name;
● content equivalence: the content of one resource is

equal to the content of another resource;
● signature equivalence: the inputs and outputs of one

resource are equivalent to those of another resource;
● functional equivalence: beside with the equivalent

inputs and outputs, the preconditions and effects of one
resource are equivalent to those of another resource;

● behavior equivalence: one resource not only has the
equivalent inputs, outputs, preconditions and effects
with another resource, but also has equivalent process
model.
Besides these, there are some other type equivalences.

For example, two or more services are provided by the
same provider, can be used at the same time, and so on.

c. Structure
This pattern is a unary pattern, as listed in Fig. 2.

Resource1 and Resource2 represent the existing resources
which have similar characters. FuncManager is a newly
introduced service for invoking and managing the
existing resources.

Figure 2. The structure of aggregation pattern

In OWL-S, Resource1 and Resource2 can be any type
service; FuncManager can be a simple or composite
service. Resource1 and Resource2 inherit the resource
FuncManager.

2742 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

d. Generation
The task to construct this pattern is to create an

aggregation service for managing the resources having
the similar characters. The algorithm is listed as follow. It
needs some knowledge such as listed in section b to
determine how to select the suitable services.
Algorithm1GenAggPattern
Input: ResSet, Rule1, newSer;//Rule1 represents the knowledge,
newSer represents the new resources
Output: FuncManager
Initialization: //used for a group resources in ResSet

for(each subResSet⊆ResSet have the same character f
according to the Rule1)

 Create a service FuncManager according to the Rule1 and
the character f;

 Set each resources in SubResSet as a resource needing to be
managed by FuncManager;

endfor
updation: // used when adding a new resource into ResSet
if(there existing resource r in ResSet have the same character f
with newSer)

 if(there is FuncManager for r)
 add newRes as a resource needing to be managed by

FuncManager;
 else
 Create an service FuncManager according to the Rule1 and

the character f;
 add newRes and r as resources needing to be managed by

FuncManager;
endif

Its complexity depends on the type of resources
equivalence and the rule to create aggregation service. In
OWL-S, when improving the availability, the aggregation
service can be implemented as a simple service; when
improving the scalability, the aggregation service can be
implemented as a composite service.

e. Consequence
Aggregation pattern introduces a new kind of resources

for managing, locating and utilizing the existing
resources to provide more value-added service to the user.
It can let cloud users treat various resources uniformly or
organize them into a hierarchical structure.

Through aggregating the resources with the same
character, this pattern reduces the relations between the
cloud resources and the cloud user from many-to-one to
one-to-one between the user and the FuncManager and
some one-to-one relations between the cloud resources
and the FuncManager. Thus, this pattern can make it easy
for you to introduce new kinds of resources or replace the
existing resources.

Aggregation pattern let the resource availability unless
all the resources it aggregates are out of date. When there
are n resources with availability equal m, the availability
can be improved from m to 1-(1-m)*n. And we can scale
up or scale down the efficient by selecting the appreciate
resource or using more or less resources.

But aggregation pattern introduces a new kind of
services. In some cases, we need some new methods to
manage and invoke the aggregation services.

B. Decomposition Pattern
Decomposition pattern separates variable parts from a

resource to satisfy more requests. This results in more
flexible relationship between the variable parts and the
invariable parts. The idea of this pattern comes from the
factory pattern, state pattern and strategy pattern in Ref.
[6]. It is applicable to the situation that the user needs
multi-variants of the service.

a. Motivation
Consider the situation that a student only needs partial

function of a service or partial content of a resource at a
time. If each part of the service was static binding, it
could be only partial match or mismatch with the request
in most times. Meanwhile, it is difficult to change or
extend the service. A solution is to create a separate
service to manage the variable parts in the service in
order to provide various functions. The change is shown
in Fig.3.

Figure 3. Motivation example of decomposition pattern

b. Condition
Decomposition pattern is used when there are one or

more variable parts in a service or resource. In OWL-S,
only the composite service has a process description.
Some categories of changes in a service or resource are
listed below.
● choice change: there is one or more Choice, Condition

or If-Then-Else element in the process model;
● times change: there is one or more Iterate, Repeat-Until

or Repeat-While element in the process model;
● parallel change: there is one or more Split or Split+Join

in the process model.
Besides these, there exist some other changes in a

resource, such as the change of data type and the platform
that deploys on.

c. Structure
This pattern is a binary pattern, as shown in Fig. 4.

Variant1 and Variant2 represent the variant of the variable
parts of an existing resource. VarManager is a new
service which provides an interface for each variable part.
Constant is a new service consisting of invariable parts.

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2743

© 2014 ACADEMY PUBLISHER

Figure 4. The structure of decomposition pattern

In OWL-S, Variant1 and Variant2 can be any type
services; VarManager can be a simple or composite
service; Constant is a composite service. Variant1 and
Variant2 inherit VarManager, and Constant invokes
VarManager.

d. Generation
The task generating this pattern is to separate the

variable parts from a resource and to construct some
variable hierarchies. It needs some knowledge to
determine how to determine and to manage the variable
parts. The algorithm is shown as follow.

Algorithm2 GenDecPattern
Input: res,newVar,rule2 //Rule2 is the knowledge to manage the
variable parts in a resource res
Output: VarManager, Constant, VarSet
Initialization: //used for a resource

if(there is a variable part in a resource res according to the
Rule2)

 VarSet←{var | var is a variant of the variable part };
 Encapsulate each element in VarSet as a new service or

resource and add it into VarSet;
endif
create a service VarManager according to the Rule2 and

VarSet;
set each services in VarSet as a service needing to be

managed by VarManager;
modify ser to construct service Constant by replacing the

variable part with the invocation to VarManager;
updation: // used when a new resource can be as a variant of
the variable part

if(there existing a service VarManager that can manage
newVar)

 add newVar as a resource needing to be managed by
VarManager;

endif
The complexity mainly depends on the complexity of

the existing service and the rules to create service
managing the variable its parts. In OWL-S, the
VarManager service can be implemented as a simple
service.

e. Consequence
Decomposition pattern introduces three new kinds of

services for managing an existing service with the
variable parts. The variable parts are separated from the
service in order to satisfy more requests.

Through separating the variable parts from a resource,
decomposition pattern reduces the relationship between
the variable parts and the constant part from one-to-many
to one-to-one and some one-to-many relationships. Thus,
the same parts can be connected with more variants.

Decomposition pattern can help to use each part in
more situations. When there are n variable parts with m
variants in a service, this pattern can improve the number
of requests that the service equal matches from 1 to m*n.
And we can scale up or scale down the efficient by
changing or replacing the variant with the appreciate
service or by increasing or decreasing the number of
services. And it can help to improve the flexibility of the
variable parts of the resource.

The disadvantage of this pattern is that it may produce
more services than one without using it. And its effects
depend on the accuracy of the forecast to change.

C. Interaction Pattern
Interaction pattern decouples the composing (invoking)

resources and the composed (invoked) resources so that
they can vary independently. This results in high-
reusability of the organization structures, composition
methods or interaction manners and the relative elements.
The idea of this pattern comes from the bridge pattern,
the iterator pattern, the abstract factory pattern and so on
in Ref. [6]. It is applicable when a group of resources can
be interoperated or invoked in different manners or a
group of structures or processes can be used to organize
the different resources.

a. Motivation

Figure 5. Motivation example of interaction pattern

Consider the situation that several interaction manners
can be used both among the teachers and among the
students. Two class of services need to create for each
interaction manner. And when the other staffs come, new
services as many as the number of interaction manners
need to be created. A solution is to provide a mechanism
to manage the relationships between the interaction
manners and the entities. The change is shown in Fig. 5.

b. Condition
Interaction pattern is used when some resources have

the same or similar interaction or some structure and
process can achieve the equal effect. In OWL-S, some
categories of interaction equivalence are listed below.
• interaction type equivalence: the type of messages two

or more resources receiving and sending is same;
• interaction content equivalence: the content of

messages two or more resources receiving and sending
is same;

• interaction order equivalence: the order that two or
more resources receive and send messages is same;

• interaction structure equivalence: the effect that two or
more structures is equivalent;

2744 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

• interaction process equivalence: two or more process is
equivalent.
Besides these, there are some other type interaction

equivalences. For example, two or more resources are
described at the same language or need be used on the
same security level.

c. Structure

Figure 6. The structure of interaction pattern

This pattern is a binary pattern, as shown in Fig. 6.
Resource1 and Resource2 represent the existing resources
having the same invocation manner. ResInteraction
provides an interface encapsulating the invocation
manner of Resource1 and Resource2. ResMan1 and
ResMan2, standing for the resource can be interacted in a
specific manner. ResManager provides an interface
encapsulating the resources.

In OWL-S, Resource1 and Resource2 can be any type
services; ResMan1 and ResMan2 can also be any type
services; ResInteraction and ResManager are simple
services. In this pattern, Resource1 and Resource2 inherit
ResInteraction, ResMan1 and ResMan2 inherit
ResManager, and ResManager invokes ResInteraction.

d. Generation
The task generating this pattern is to create high level

services to manage the interaction, the composition or
invocation of the resources with the same interaction
manner. Some knowledge to determine how to invoke the
suitable resources and their composition are needed. To
create a specific composition service, we can use the
methods proposed in Ref. [4, 5, 11] or some others. The
algorithm to use the pattern is shown as follow.

Algorithm3 GenIntPattern
Input: ResSet, newRes, newSer, rule3, rule4;//Rule3 is the

knowledge manage the resources with the same
interaction manner; Rule4 is the knowledge how
to compose or invoke one or more resources
from a group of resources with same interaction
manner

Output: ResManager, ResInteraction, ResManSet
Initialization: //used for a group resources in ResSet
if(each subResSet⊆ResSet have the same interaction int
according to the Rule3)
 Create a service ResInteraction according to the Rule1 and

the interaction int;
 Set each resource in SubResSet as a resource needing to be

managed by ResInteraction;
 for(each composition manner responding to

ResInteraction according to Rule4)
 create a service ResMani and add it into ResManSet;
 endfor
 create a service ResManager according to the Rule4 and

ResManSet;
 endif
updationResInteraction: // used when a new interaction
manner are introduced
if(there existing a resource r in ResSet have the same
interaction int with newRes)

 if(there is ResInteraction for r)
 add newRes as a resource needing to be managed by

ResInteraction;
 else
 create a service ResInteraction according to the Rule3

and the interaction int;
 add newRes and r as resources needing to be managed

by ResInteraction;
endif
updationResManager: // used when a new manager manner
is introduced
if(there existing a resMan in ResManSet have the same
manner with newResMan)

 if(there is ResManager for resMan)
 add newResMan as a subserivce needing to be

managed by ResManager;
 else
 create a service ResManager according to the Rule4;
 add newResMan and resMan as subserivce needing to

be managed by ResManager;
endif

The complexity mainly depends on the type of
resources interaction and the composition methods. In
OWL-S, when improving the availability, the abstract
interaction or composition service can be implemented as
a simple service; when improving the scalability, they
need be implemented as composite services.

e. Consequence
Interaction pattern introduces three new kinds of

services responsible for the cooperation among some
resources or the composition of some resources with the
same interaction manner to provide value-added services.
It decouples the cooperation process or composition
structure from the specific resources so that they can vary
independently.

Through constructing the abstract interaction service
and the invocation or composition service, this pattern
reduces the relation between an invoker (composer) and a
service from many-to-many to some many-to-one
relations between the invoker (composer) and the specific
composite services, one-to-one relation between the
ResInteraction and ResManager and one-to-many
relation between the ResInteraction and the resources.
Thus, this pattern can make it easy for us to add new
kinds of resources as long as they can support a similar
interaction or composition interface.

Interaction pattern lets the resources, interaction
manner and composition logic to be used more situations.
When there are n services can be invoked in m manner,
this pattern can improve the number of satisfied requests
from m+n to m×n. And we can scale up or scale down the
efficient by changing or replacing composition manner.
And it can help to improve the flexibility among a group
of resources.

The disadvantage of this pattern is that it introduces a
very complexity interaction hierarchy and three new

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2745

© 2014 ACADEMY PUBLISHER

kinds of services. That may lead to new problem in some
application.

D. Mediation Pattern
Mediation pattern introduces mediator hierarchies as a

manager to decouple the relation among two or more
related resources. This results in a more flexibility
collaboration and lower couple among the resources. The
idea of this pattern comes from the adapter pattern,
memento pattern, and proxy pattern in Ref. [6]. It is
applicable when a set of services need to collaborate but
with some mismatch.

a. Motivation
Consider the situation that one teacher commonly need

to teaching a lot of students. It is inconvenient to do in a
one to one teaching model in most times for its low
effectiveness. We usually do that in a classroom. The
change is shown in Fig. 7.

Figure 7. Motivation example of mediation pattern

b. Condition
Mediation pattern is used when there are two or more

different type resources needing to collaborate or provide
value-added but cannot be seen as a whole. It is often
with some kind mismatches among them. For more detail
of the mismatch, please see the work in Ref. [12], etc. In
OWL-S, some categories of mismatches are listed below.
● number of messages mismatch: one resource needs to

send messages to two or more resources, or vice versa;
● message type mismatch: the type of the message one

resource sending is the subtype of the message another
resource needing to receive, or vice versa;

● message content mismatch: the content of the message
one resource sending is the subset or part of the
message another resource needing to receive, or vice
versa;

● message order mismatch: the order one resource
sending messages is different from the order another
resource receiving messages, or vice versa.
Besides these, there are some other type mismatches.

For example, two or more resources are performed at the
different location, used at the different time, and so on.

c. Structure
This pattern is a ternary pattern, as shown in Fig. 8.

Resource1 and Resource2 represent the resources needing
to collaborate but with some mismatch. ResInteract1 and
ResInteract2 are the same with ResInteraction in
interaction pattern. Mediator1 and Mediator2, standing for
the service being responsible for collaboration of the
ResInteract1 and ResInteract2. MedManager provides an

interface for Mediator1 and Mediator2. The tasks of
Mediator1, Mediator2 and MedManager may be to
receive messages from the resouces which sending
messages, to send messages to the resources which
receiving messages or to adapt the difference between the
messages and their order.

In OWL-S, Resource1, Resource2, Mediator1 and
Mediator2 can be any type service; ResInteract1,
ResInteract2 and MedManager can be simple or
composite services. In this pattern, Resource1 and
Resource2, inherit ResInteract1 and ResInteract2
respectively; Mediator1 and Mediator2 inherit
MedManager; ResInteract1 and ResInteract2 can interact
with each other through MedManager.

Figure 8. The structure of mediation pattern

d. Generation
The task of this pattern is to create high level services

to manage the interaction and mediation of the resources
to manage their mediation among the resources. To create
a specific mediator service, we can use the methods
proposed in Ref. [13]. The algorithm to use this pattern is
shown as follow.
Algorithm4 GenMedPattern
Input: ResSet, Rule3, Rule5 //Rule5 is the knowledge how to
coordinate the resources cannot collaborate directly
Output: MedManager, MedSerSet, ResInteract
Initialization: //used for a group resources in ResSet

create ResInteract for each resource r in ResSet according to
the Rule3, and set r as a resource needing to be
managed by ResInteract;

for(each mediation manner among the resources in ResSet)
 create a service Mediatori and add it into MedSerSet

according to the Rule5;
endfor
create a service MedManager according to the Rule5 and
MedSerSet;

updationResInteract: //same with the updationResInteraction
in Algorithm 3

updationMedManager: // used when a new mediation manner
are introduced

if(there existing a service med in MedSerSet have the same
mediator logic with newMed)

 if(there is MedManager for med)
 add newMed as a service needing to be managed by

MedManager;
 else
 create a service MedManager according to the Rule5 and

the mediator logic med;
 add newMed and med as the services needing to be

managed by MedManager;
endif

2746 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

The complexity mainly depends on the type of the
mediation logic. In OWL-S, the mediation services need
be implemented as composite services.

e. Consequence
Mediation pattern introduces a new kind of service for

the collaboration between the services or composition of
the resources to provide value-added services. The
mediation logic is separated from the existing resources
or services, allowing the same service to mediate or
organize various resources.

Through constructing a mediation hierarchy, this
pattern reduces the relations among the existing resources.
It can reduce the relationship from many-to-many to one-
to-one between the ResInteracti and the MedManager and
one-to-many relation between the ResInteracti and the
resources.

Mediation pattern allows the resources and the
mediator to be used in more situations. When there are n
manners the services can interact with each other, this
pattern can improve the availability of mediator from 1 to
n, the availability of service from 1 to n. Meanwhile, we
can scale up or scale down the efficient by changing or
replacing the mediator service.

The disadvantage of this pattern is that it may lead to a
very complexity mediation hierarchy and three new kinds
of services. That may result in new problem in some
application. Meanwhile, there is still no method to
automatically create the mediator service in some cases.

IV. RESULT ANALYSIS AND COMPARISON

In this section, we analysis the effect of our method
and compare it with the existing works.

A. Result Analysis
This method has been tested in a prototype platform

with some randomly generated resources and requests.
The number of satisfied requests before using pattern and
that after using pattern based on 1000 resources is
compared in fig. 5(a). And the number of satisfied request
using pattern based on 2000 and 4000 resources is
compared in fig. 5(b). The results show that our method
can improve the availability of the resources.

B. Relate Works
Automatic service composition is crucial to cloud

computing. Some composition results such as that in Ref.
[4] cannot be reused or only be reused as a whole. We
need to compose again from scratch once any one
constituent service changes or the request change. Only
few works have considered reuse problem by decoupling
the relations among services or raising the abstract level.
For example, a loose coupling operator is introduced in
Ref. [11] to handle the sequence composition. It
considers nothing about the reuse of the condition
structure, loop structure, and the rest structure. The work
in Ref. [5] develops a framework for analyzing composite
service reuse and specialization. Aiming to raise the level
of abstraction in services composition, it introduces the
concept of service component class. However, it can only
be done in a manual manner. Reference [7] creates a high

level semantic model with aggregation and specialization
relationships which can be used to automatic generate a
composite service instance. However, how to determine
the relationship at the concept level is remained nothing.

Figure 9. Performance comparisons

Patterns have been used in many aspects of service
composition. The first type of them is used as the
summary of the applications knowledge. For example,
patterns in Ref. [14] are proposed by extracting reusable
business logic. Secondly, patterns are used to classify the
relationships among services. The single-transmission
bilateral interaction patterns, single-transmission non-
routed patterns and so on are presented in Ref. [13]. The
third type patterns in Ref. [15] are dedicated to improve
service quality. Facing to the mismatch among services,
Reference [12] uses patterns as template to construct
adapter. Finally, some patterns may relate to two or more
aspects, such as that in Ref. [16, 17].

Different from the existing methods, our work improve
service reusability by raise the abstract level of the
resources with the four kinds of patterns. Different from
Ref. [7], our method concentrate more on the abstraction
and separation of the services or resources than the
aggregation and the specialization relationship, construct
the service or organize the resources from bottom to top
rather than from top to down, and be done in an
automatic manner rather than a manual manner.
Furthermore, our method can construct the new services
from scratch based on the semantic description of the
existing resources than to generate a specific service by
transforming from a high level model. Compared with
our previous work, this paper firstly presents four kinds

(a) The number of satisfied request
before and using pattern

(b) The number of satisfied request based
on 2000 and 4000 resources

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2747

© 2014 ACADEMY PUBLISHER

of patterns and uses them in a new area with some new
contents different from the pattern in the former.

V. CONCLUSION AND FUTURE WORK

Four kinds of patterns are proposed in this paper for
managing resources in cloud computing. The first is used
to aggregate the service with the same functionalities; the
second is used to separate the changes from the
composing result; the third is used to separate the
interactions from the function parts and the final pay
attention to two different roles. For each of them, we
present its name, condition, structure, generation,
consequence and example. These patterns can be used in
higher automation degree.

Subsequent work will extend the pattern for supporting
more effective manage strategy in more specific domain
or with more specific manage knowledge. In other hands,
the relation between the patterns and the other factors
need further research.

ACKNOWLEDGMENT

This research was supported in part by the Key Project
of National Natural Science Foundation of China under
Grant No. 90818026, the National 973 Fundamental
Research and Development Program of China under
Grant (No. 2009CB320701) and No. 2011CB302704.

REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz,
and et al, “Above the clouds: a Berkeley view of cloud
computing,” Tech. Rep., U.C. Berkeley, February 2009.

[2] Y. Wei, and M. B. Blake, “Service-oriented computing and
cloud computing: challenges and opportunities,” IEEE
Internet Computing, vol. 14, no. 6, pp. 72–75, November
2010.

[3] O. Seogchan, L. Dongwone, and R. T. Soundar, “A
comparative illustration of AI planning based web services
composition,” ACM SIGecom Exchanges, vol. 5, pp.1–10.
2005.

[4] G. Cai, and B. Zhao, “An approach for composing services
based on Environment Ontology,” Mathematical Problems
in Engineering, in press.

[5] J. Yang, “Web service componentization,”
Communications of the ACM, vol. 46, no. 10, pp. 35–40,
October 2003.

[6] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, USA, 1994.

[7] R. Quintero and V. Pelechano, Conceptual modeling of
service composition using aggregation and specialization
Relationships, 44th annual Southeast regional conference,
2006, pp. 452–457.

[8] D. Martin and M. Burstein, “OWL-S: Semantic Markup
for Web Services,” 2004, http://www.w3.org/ Submission/
2004/SUBM-OWL-S-20041122/.

[9] G. Cai, L Liang, X Zhao, and R Zheng, Patterns support
for automatic service composition, 6th Int. Conf.
Automation and Logistics, 2012, pp.101–104.

[10] G. Cai, and B. Zhao, “Interaction and mediation patterns
for service composition,” Applied Mechanics and
Materials, Vols. 121–126, 2012, pp. 3988–3992.

[11] S. McIlraith and T. C. Son, Adapting golog for
composition of semantic web services, 8th Int. Conf.
Knowledge Representation and Reasoning, 2002, pp. 482–
493.

[12] B. Benatallah, F. Casati, D. Grigori, H. M. Nezhad, and F.
Toumani, Developing adapters for web services integration,
17th Int. Conf. Advanced Information Systems
Engineering, 2005, pp.415–429.

[13] A. Barros, M. Dumas, and H. M. Hofstede, “Service
interaction patterns: towards a reference framework for
service-based business process interconnection,” 2005, pp.
1–26, http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.93.7328.

[14] M. Tut and D. Edmond, The use of patterns in service
composition, 6th Int. Workshop Web Services, Business,
and the Semantic Web, 2002, pp. 28–40.

[15] J. Joseph, “Patterns for high availability, scalability, and
computing power with windows azure,” 2009,
http://msdn.microsoft.com/enus/magazine/dd727504.aspx .

[16] O. F. Rana and D. W. Walker, “Service design patterns for
computational grids,” Patterns and skeletons for parallel
and distributed computing, UK: London, Springer-Verlag,
2003, pp.237–264.

[17] U. Zdun, C. Hentrich, and S. Dustdar, “Modeling process-
driven and service-oriented architectures using patterns and
pattern primitives,” ACM Transactions on the Web, vol.1,
No.3, pp. 1–44, September 2007.

Guangjun Cai received the MS degree
in computer science from the Xinjiang
Technical Institute of Physics &
Chemistry, Chinese Academy of
Sciences, in 2006 and received the phD
degree in computer science from the
Institute of Computing Technology,
Chinese Academy of Sciences, in 2011.
He is a lecturer in Information

Engineering College, Henan University of Science and
Technology. His research interests include service computing
and software engineer.

Lei Zhang is a lecturer in Information Engineering College,
Henan University of Science and Technology. Her research
interests include software engineer and biocomputing.

Bin Zhao received the phD degree in computer science from
the Institute of Computing Technology, Chinese Academy of
Sciences, in 2012. He is a post doctorate in Beijing Smartdot
Tech. Co., Ltd. His research interests include requirement
engineering, service computing and software engineer.

Yong Liu is a professor in Information Engineering College,
Henan University of Science and Technology. His research
interests include software architecture and software engineer.

2748 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

