
An Incremental Approach to Modeling Flexible
Workflows Using Activity Decomposition and

Gradual Refinement

Yanrong Jiang, Weihua Li, Jingtao Yang
School of Computer, Guangdong University of Technology, Guangzhou, China

Email: yrjiang@gdut.edu.cn

Abstract—For existing workflow models, it is still difficult to
take into account both the hierarchical relations among
activities and their execution orders at the same time, as
well as the dynamic uncertainties of workflow processes.
Aiming at these problems, an approach to modeling flexible
workflow using activity decomposition and incremental
refinement is presented. First, the activities as well as their
decomposition relationship and the decomposition rules are
analyzed to establish an activity decomposition model,
where flexible activities, with verifying constraints, are used
to package uncertainties. Then temporal relations are
introduced into the model to ensure the proper execution
orders of activities, which are tightly integrated with the
hierarchical relationship as well as different granular
activities to make the model perform well. The execution
mechanism of the model, such as the delivering of events
and states constraints of parent-child activities, is discussed
in detail, and a common algorithm for activity execution is
also presented. Finally, the proposed approach is applied to
the PBL learning system, and the results indicate the
effectiveness of the proposal.

Index Terms—flexible workflow, activity decomposition,
temporal activity tree, incremental refinement

I. INTRODUCTION

With the development of economic globalization and
increasing of market competition, the business processes
should adapt to the varying of business goals and
requirements. The business process is always a dynamic,
incomplete process having a lot of uncertainties and
ambiguities [1]. While most of the traditional workflow
models are often used to handle predictable, completely
specified workflow process. So it is very difficult to use
them to model complex business processes. A business
process consists of activities, participants and resources,
and some of the activities can be specified clearly, while
others are always ambiguous and can not be predicated.
The ambiguity of activity content and the uncertainty of
activity relations make the modeling and execution of
workflow very difficult. Aiming at this, improving the
workflow flexibility to deal with such ambiguities and

uncertainties of workflow has become one of the hot
research fields recently [2, 3].

The modeling of complex business processes is
normally not a one-off occurrence and may experience
several rounds. It is always an incremental multi-
granularity design process from coarse state to fine state,
from rough frame design to specific details according to
the requirements. In this process, the uncertainties of the
model are gradually transformed into clearly specified
elements, and obviously, it is an incremental refinement
process of multiple rounds. Thus, an approach to support
stepwise modeling process, which may contain multi-
granularity activities as well as proper execution
mechanism is of great importance.

By doing so, some research efforts were made. S. Li [4]
adopted DNG (directed network graph) to model the
production design process. By mapping from production
tree to process templates, the runtime refinement of
dynamic workflow nodes was realized. But the
establishment of production tree, which often contains a
large number of components and parts as well as their
affiliations, and the corresponding complete process
template database are time-consuming and difficult. So it
is not suitable for processes with lots of uncertainties and
ambiguities. S. A. Chun [5] proposed an approach to
automatically generate workflow schema based on
ontology. It uses domain service ontology and domain
integration knowledge that serves as a model for
workflow composition rules, and uses user profile to
select a suitable workflow process. Its disadvantage is
that the composition rules can not be moved to other
domains easily, and the establishment of ontology is
difficult. S. Nurcan [6] proposed a conceptual framework
for flexible workflow modeling based on intention-driven
methods. It offers the capacity to represent a well-
structured process chunks or an ill-structured one in the
process definition. A. Luntovskyy [7] tried to make a
trade-off between adequate flexibility and consideration
of the specifics of project, and discussed a flexible
workflow management system for CAD applications. In
the work of Y. Zhang [8], an activity-center modeling
approach was used for software development process.
The decomposition of activity was analyzed, and ECA
rules were used to form a dynamic model of software
process.

Manuscript received February 13, 2014; revised March 25, 2014;
accepted April 1,2014.

Corresponding author: Yanrong Jiang.

2628 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.10.2628-2637

Although the researches mentioned above can improve
the flexibilities of workflow in a certain degree, there still
exist some lacks. Some of the work only emphasizes the
transverse connections of activities, and irrationally
ignores the hierarchical relations of activities. So the
support for modeling with multiple abstraction levels and
multiple granularities is not sufficient. Some of the work
establishes roughly the hierarchical decomposition model
of workflow, but the temporal relations of activities as
well as the execution constraints are not studied in depth,
while this is crucial to the proper execution and the
adaption of workflow model. Some other work focuses
on detailed technologies, and the integration of them to
improve the flexibility of workflow is still lacking.

Hence, in this paper, we present an incremental
approach to modeling flexible workflows using activity
decomposition and gradual refinement. There are several
advantages of this approach. First, different levels of
abstraction and vertical decomposition relations of
activities are taken into account, which will benefit the
gradually incremental modeling of workflow process.
Second, the introducing of temporal relationship of
activities will help to control their execution orders, and
its graphical expression is easy to visualize the meaning
of activity relationship. Finally, flexible activity is used to
package the uncertainties of workflow process, which can
reduce modeling difficulties.

II. ACTIVITY DECOMPOSITION MODEL

Activities are the basic units of workflow and are not
isolated. There exist various relations among activities,
such as the decomposition relation and the temporal
relation, and their complexity reflects the difficulties of
workflow modeling. Therefore, the main task of
workflow modeling is to describe activities, perhaps with
multiple granularity, and the relations among them
clearly and directly.

During the process of activity decomposition, vertical
relationship among activities should be established to
support top-down project design. By examining the
relations between activity and its sub-activities, such
relationship can be grouped into 3 categories:
aggregation, generalization, and attribution relations,
where the attribution relation is used to describe the
properties of activities.

Definition 1 (aggregation relation) the aggregation
relation can be denoted as a(Ai, Aj), which is used to
describe the “whole-part” relation (i.e., Ai is a part of Aj).
When an activity is decomposed into several sub-
activities, it is referred to as a composite activity. Actualy,
when the decomposed activity is also a composite activity,
it can be decomposed further until all the activities
decomposed are atom activities.

Definition 2 (generalization relation) this relation is
another case, which can be used to define the general-
special relation. It can be denoted as g(Ai, Aj), which
means that Ai is a special case of Aj. For example, the
activities such as object-oriented design, structured
design and process-oriented design are the special cases
of software design activity.

Definition 3 (parent-child relation) for any two
activities x and y, if a(x, y) or g(x,y) is satisfied, then y
and x is called as the parent-child relation, which is
denoted as s(x, y). This relation is transitive. For example,
for activities A1, A2 and A3, if s(A1, A2) and s(A2, A3) are
true, then s(A1, A3) is true. To distinguish this relation
from ancestor-descendant relation, the parent-child
relation can be noted further as sc(x, y).

Definition 4 (Decompose operator) Decompose(y) is
a unary operator, and its result is a collection of all the
sub-activities of y. If y has no sub-activity, then an empty
set is returned. Recursively calling this operator, we can
decompose an activity gradually. Obviously, ∀x, sc(x, y)
→ x∈Decompose(y) is true.

Rule 1. the achievement of goals and functions of the
parent activity relies on the achievement of goals and
functions of all its sub-activities. The resources and
personnel of parent activity is the sum of those of all its
sub-activities.

Rule 1 shows that during the process of activity
decomposition, the parent activity with high level of
abstraction and coarse granularity can be gradually
decomposed into fine-grained sub-activity, and the
function and goal of parent activity is also distributed to
its sub-activities, which provides a basis for reasonable
decomposition and the related decomposition algorithm.
Rule 1 indicates that the decomposition standard is the
independent function, rather than the structure, the
advantage of which is that it can reduce the coupling
between activities and improve the reusability of
activities.

Definition 5 (Activity tree) decomposing an activity A
gradually will eventually generate a tree with a root of A,
which is called an activity tree, denoted as T(A). In this
tree, the child node is the sub-activity of the parent node.
When all the composite activities are decomposed into
atom activities, the decomposition process stops. For
example, Fig.1 is an activity tree of software design
process, which contains aggregation and generalization
relation.

Figure 1. Activity tree for software development
The essence of the process to establish an activity tree

is to gradually refine and determine the uncertain process
model. This is a process from abstract to concrete, from
coarse granular to fine granular, and from vague to clear
process. It demands the gradual obtaining of domain
knowledge and the in-depth analysis of the process to
determine and refine the uncertain activities.

The activities of workflow can be classified into 3
categories: atom activity, composite activity and flexible
activity. If a clearly specified activity can not be divided

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2629

© 2014 ACADEMY PUBLISHER

into other sub-activities, it is referred to as an atom
activity. Atom activity is the smallest execution unit.
Composite activity is composed of several sub-activities
with their relationship, and it can be considered as a sub-
process. Every sub-activity of it can be an atom activity
or a composite activity. Flexible activity is used to
describe and package the uncertain factor of a workflow
process.

Definition 6 (Flexible activity) flexible activity is a
special activity. Due to the vague and uncertain
information existing in processes, flexible activity can not
be specified clearly and fully in advance. So further
information is required later for the gradual determination
of flexible activities. Flexible activity can be described by:
FA=(Id, name, state, Ctx, FAP, FAR, FAC, Attr, dtype),
where Id is the unique identify of the activity,
state∈STATE, Ctx is the context, including its goal and
functions to achieve, and the application scenarios.
FAP=A∪CAS∪FA is the activity pool, where A is an
atom activity set, CAS is a composite activity set, and
FAS is a flexible activity set. FAR=FR∪CR is the rule set
to describe the activity relations in the activity pool,
where FR is the flexible rule set and CR is the common
rule set expressed by ECA rule. Attr is the attribution set
that the activity has. dtype {∈ aggregation, generalization,
has_attribution} represents the decomposition type.

FAC=C∪M is the constraint set for the verification
and determination of the flexible activity, and the
generated sub-processes must follow the constraints.
Unary or binary predicates, preset operations and rules
are used to express the constraints. Herein, C is the
constraint rules used for the selection and combination of
activities, determining the execution order of activities. M
is the adjustment rule set, used to modify the generated
sub-process. For example, the rule “IF select(a∧b) THEN
Previous(a, b)” means that if activities a and b are
selected, a must be executed before b.

Activities have various states, and the state set can be
described by: STATE={“Waiting”, “Ready”, “Executing”,
“Committed”, “Aborted”}, where state Waiting(W) is the
initial state of activities, which means that the triggering
conditions of the activity are not satisfied, and the
execution is not ready; Ready(R) represents that the
activity’s triggering condition has been met and the
activity will be executing; Executing(E) represents that
the activity is running but not completed; Committed(C)
represents that the activity is completed and Aborted(A)
means that some exceptions occur and the execution will
quit. Fig.2 illustrates the state transition of activities.

Waiting Ready Executing

Aborted

Committed
Set ready Begin Completed

Abort

Recover

Figure 2. Transition of activity states

III. INTRODUCING TEMPORAL RELATIONS INTO THE
ACTIVITY DECOMPOSITION MODEL

A. Temporal Activity Tree (TAT)
Though the activity tree can clearly express the vertical

decomposition relations between activities, the horizontal
relations, however, such as the temporal relations, are not
expressed in the tree. While this is of great importance of
the process model. Next, the definition of temporal
relation will be given first, then the temporal activity tree
will be established.

Definition 7 (Temporal relation) activities are often
performed in a certain order in time, forming a sequence
of activity execution. That is, the start of an activity must
follow after the completion of another (or more) activity.
Such constraint of timing relation is referred to as the
temporal relation, denoted as ≺ ={<Ai, Aj>|
Ai≺ Aj∧Ai∈A∧Aj∈A}, where A is the activity set of the
workflow.

Definition 8 (Predecessor-successor relation) for
activity Ai and Aj, if the completion of Ai is a prerequisite
to the start of activity Aj, Ai is referred to as the
predecessor of Aj, and Aj is the successor of Ai, which is
denoted as Ai ≺ Aj. All the predecessors of Ai form a
predecessor set, Pre(Ai)={a|a≺ Ai}, and all the successors
of Ai form a successor set, Succ(Ai)={a| Ai≺ a}. If there
does not exist an activity Ak, which satisfies Ai≺ AK and
AK≺ Aj, then Ai is called a direct predecessor of Aj, and Aj
is the direct successor of Ai.

Definition 9 (SERIAL relation) if the activity Ai and
Aj satisfy predecessor-successor relation, and there does
not exist an activity Ak, which satisfies Ai≺ AK but not
AK≺ Aj, then Ai and Aj are said to satisfy SERIAL relation.

Definition 10 (AND relation) if there exists a nearest
common predecessor As and a nearest common successor
Ae for activity Ai and Aj, and satisfy As ≺ Ai, As ≺ Aj,
Ai ≺ Ae, Aj ≺ Ae, and there exists no temporal relation
between Ai and Aj, and Ai and Aj execute in parallel, then
Ai and Aj is referred to as the AND relation between As
and Ae.

Definition 11 (OR relation) if there exists a nearest
common predecessor As and a nearest common successor
Ae for activity Ai and Aj, and satisfy As ≺ Ai, As ≺ Aj,
Ai ≺ Ae, Aj ≺ Ae, and there exists no temporal relation
between Ai and Aj, and there is only one activity of they
can be performed, then Ai and Aj is referred to as the OR
relation between As and Ae.

Definition 12 (Iteration relation) for activity set
A=(A1, A2, ..., Ak), if the execution sequence consisting of
all the activities is complete and repeated, and satisfies
A1≺ A2≺ ...≺ Ak, there exists an interation relation <A1,
A2, ..., Ak > in the activity set A. A1 is the start activity of
the interation, and Ak is the terminal activity. We often
use a directed edge pointing from Ak to A1 in workflow
graphical model to express the interation relation.

After introducing temporal relations, activity tree can
be transformed into temporal activity graph. In this graph,
nodes represent activities, directed edges represent
temporal relations and decomposition relations. The
attribution information of activities can be added to nodes.

2630 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

Next, an approach to transform the activity tree into
temporal activity graph will be introduced, which is
discussed according to the type of decomposition relation
between parent and child activities.

Case 1. aggregation relation
For an activity A, its decomposed sub-activities are A1,

A2, .., An, which satisfy a(Ai, A), 1≤i≤n, then we get: 1) if
these sub-activities are in the relation of SERIAL, just
determine the execution order of the activities, and mark
the activity A as SERIAL type, which is called the node
type; and 2) if these sub-activities execute in parallel, i.e.,
in the relation of AND, then mark the activity A as AND
type. If the execution order of sub-activities is not certain,
the default type of the parent activity will be marked as
AND for the purpose of execution efficiency.

Theorem 1. For a parent activity A, if the relations
between its sub-activities contain both SERIAL and AND
relations, then the AND relation can be eliminated by
way of packaging the related sub-activities in AND
relation into a composite activity.

Proof. Set the sub-activities, a1, a2,..., am, 1<m<n, to be
in AND relation, and their nearest common predecessor
and successor are As and Ae. From Definition 10, we get
that after packaging these sub-activities into a composite
activity Ai, As is the predecessor of Ai, and Ae is the
successor of Ai. So As, Ai and Ae are in the relation of
SERIAL. Do the same operations to all the sub-activities
that are in AND relation, then we eventually get the sub-
activities containing only SERIAL relation.

Case 2. generalization relation

For an activity A, its decomposed sub-activities are A1,
A2, .., An, which satisfy g(Ai, A), 1≤i≤n, then the parent
activity A can be marked as OR type. As a special case of
the parent activity, the sub-activity inherits the features
and functions of the parent activity, and has its own
application conditions, which can be used to select the
most suitable activity to execute according to the runtime
contexts.

Fig.3 is a temporal activity graph containing temporal
relation after using the above approach. In this figure,
atom activity, composite activity and flexible activity are
represented by different kind of nodes. Every parent node
is marked as SERIAL, OR, or AND type. For a node
marked as SERIAL type, it means the execution order of
its sub-activities is by sequence, from left to right. AND
type means that the node’s sub-activities execute in
parallel, and OR type means that only one of the sub-
activities will be selected to execute. For an interation, if
any, its start node and terminal node are used to represent
the iteration. For example, the interation(Interation-1) in
Fig.3 is represented by the start node C22 and the
terminal node C23.

Thus, we established a hierarchical temporal process
model with multiple granularity and refinement degree.
In this model, temporal relations indicate the execution
orders, and the different level of abstraction embodied by
granularity will help to the gradual modeling and
refinement. To emphasize the vertical relation of the
temporal activity graph, we call it the temporal activity
tree.

Figure 3. Activity tree with temporal relation

B. Execution Constraints of TAT
For the temporal activity tree, a certain mechanism to

restrain the proper execution and the states of parent
activity and sub-activities is required greatly. From rule 1,
functions and goal of the parent activity are distributed
into its sub-activities to achieve, and the sub-activities, in

generalization relation to the parent, also inherit from the
parent and are the embodiments of the parent activity.
The state of a sub-activity, therefore, depends on not only
the state of the parent activity, but the manner that the
parent was decomposed in. That is, it is also related to the
node type of the parent activity as discussed below.

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2631

© 2014 ACADEMY PUBLISHER

Rule 2. the state of the sub-activity relies on the state
of the parent as well as the node type.

Set the parent activity is P, and its state is s. Use
Decompose (P) to get its sub-activity set, {c1, c2, ..., cn}.
Set si is the state of ci, then the corresponding state set is
S={s1, s2, ..., sn}.

1) P is marked as SERIAL type
The sub-activities of P form a sequence of activities,

c1, c2, ..., cn, executing successively.
a) s = W, then ∀si ∈ S, si = W;
b) s = R, then ∀si ∈ S, si = R;
c) s = E, then s1 = E;
d) ∃si ∈ S, si = C, 1≤ i ≤n-1, then si+1 = E;
e) ∀si ∈ S, si = C, or sn = C, then s = C;
f) ∃si ∈ S, si = A, then s = A, undo(c1, ..., ci-1);

From the above rule items, we can see that there exist
dependencies between sub-activities and parent activity.
Herein, Waiting(W) indicates that the execution
conditions are not ready. So if the state of parent is W, the
state of all its sub-activities is W. If the state of the parent
is Ready(R), then the state of all the sub-activities is
Ready. For sub-activities, only when the previous activity
is completed, may the subsequent activity start. When all
the sub-activities are completed, the parent is completed.
When any one of the sub-activities is aborted, the state of
the parent is Aborted, meanwhile rollbacking all the
finished activities, i.e., c1,...,ci-1.

2) P is marked as AND type
a) s = W, then ∀si ∈ S, si = W;
b) s = R, then ∀si ∈ S, si = R;
c) s = E, then ∀si ∈ S, si = E;
d) ∀si ∈ S, si = C, then s = C;
e) ∃si ∈ S, si = A, then s = A, undo(cj), j=1,...,m and sj

=C;
Due to the parallelism of sub-activities, when the

parent activity starts, all the sub-activities begin to start;
when any one of the sub-activities is aborted, the parent
activity will be aborted, and rollback all the completed
sub-activities.

3) P is marked as OR type
a) ∃si ∈ S, selected(si), and s∈{W, R, E}, then si = s;
b) ∃si ∈ S, selected(si), and si = C, then s = C;
c) ∃si ∈ S, selected(si), and si = A, then s = A;

Obviously, the state of the triggered sub-activity relies
on the parent’s state (i.e., W, R, E). After the sub-activity
is completed, the parent activity is also completed. When
exceptions occur in sub-activity, the parent activity is
aborted.

After introducing the temporal relation into the model,
the mechanism of decomposing and transferring the
parent activity’s execution conditions and trigger events
to sub-activities should also be considered, and it is
crucial to the proper execution of activities. Recalling the
modeling process, actually, we often establish the parent
activities and their relations first, and then build the
decomposed sub-activities and their relations later by
means of from coarse granularity to fine granularity.
Obviously, the sub-activities should inherit the
decomposed execution conditions and the context from
the parent activity at runtime. The events triggering the

execution of parent activity should also be delivered to
the sub-activities to trigger their executions.

Rule 3. the execution conditions and the trigger events
of sub-activities rely on those of the parent activity. It is a
top-down delivering process, from parent to child
activities. The following discussion is based on the
parent’s type.

1. the delivering and decomposition of the condition
cB of the parent activity

1) the parent is marked as SERIAL type. Deliver cB to
the first sub-activity. The execution conditions of other
sub-activities are set as TRUE.

2) the parent is marked as AND type. Deliver cB to
every sub-activity.

3) the parent is marked as OR type. Decompose cB into
several sub-conditions according to the requirements of
each path, and deliver the sub-conditions to the
corresponding sub-activities in each path.

2. the delivering of events
The events that can cause a state change of parent

activity should be delivered to sub-activities to change
their states. We mainly consider the event that the
previous activity is completed (i.e., event Done). Set the
predecessor of the parent activity is A. After the event
Done(A) occurs, we have:

1) the parent is marked as SERIAL type. Deliver the
event Done(A) to the first sub-activity. According to the
rule 2, the trigger events of other activities rely on the
completion of the previous activity.

2) the parent is marked as AND type. Deliver the event
Done(A) to every sub-activity.

3) the parent is marked as OR type. Deliver the event
Done(A) to the selected sub-activity.

C. Evaluation Indexes of the Decomposition Model
In order to characterize the modeling process, some

evaluation indexes with the corresponding calculation
equations are defined.

Definition 13 (Dom operator) Dom operator is used
to obtain the atom activities for a node A by: 1) if A is an
atom activity, Dom(A)={A}; 2) if A is a composite
activity, Dom(A)= Dom (A1)∪ Dom (A2)∪......Dom (An),
where sc(Ai, A), 1≤ i ≤ n; 3) if A is an empty composite
activity (i.e., having no child), Dom(A)=∅.

Definition 14 (Certainty) the certainty can be

described by: | () |()
() 1prvs

Dom TT
counts T fc

α =
− −

, α∈[0,1],

where |Dom(T)| is the count of atom activities in the tree
T, counts(T) is the count of all the nodes in the tree, fcprvs
is the count of flexible and composite activities in the tree
at the previous modeling stage. 1) α=1, the activity tree
consists entirely of atom activities, and the certainty is the
biggest; 2) α=0, the activity tree consists of composite or
flexible activities but no atom activity, and the certainty
is the smallest; 3) α∈(0,1), the activity tree consists of
atom, composite and flexible activities, the value of α is
between 0 and 1.

Definition 15 (Layer plot ratio) the layer plot ratio is
used to describe the average decomposition degree of

2632 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

activities, () 1()
()

counts TT
height T

β −= , where height(T) is the

height of the tree T (excluding the root). When β =1, the
decomposition degree of activities reaches the minimum,
and the activity tree degenerates into a linear list.

Definition 16 (Ambiguity) the ambiguity can be

described by:
()

()
() 1

prvsFAcounts T f
T

counts T
γ

−
=

−
, where

FAcounts(T) is the count of the flexible activities of tree
T, fprvs is the count of flexible activities at the previous
modeling stage. When γ=0, the activity tree has no
flexible activity and has a minimum ambiguity. When the
tree consists entirely of flexible activity, it has the biggest
ambiguity.

Definition 17 (Activity modeling difficulty) the
activity modeling difficulty is used to describe the efforts
and difficulties for modeling an activity,

()()
() 1

counts Aeff A
counts T

=
−

, where A is a flexible or

composite activity. It means the proportion of activities
generated by activity A in all the activities of the tree
when a modeling stage is completed (e.g., when flexible
activity A is entirely determined).

IV. INTERPRETING AND EXECUTION OF THE
DECOMPOSITION MODEL

The most important issue to run a workflow model is
the way to interpret and execute activities, and to control
their execution orders. For the former, the difficulty is the
execution of flexible activity [9-12], and for the latter,
ECA rules as well as the workflow engine for interpreting
and performing ECA rules are always adopted. The event
and condition of an ECA rule can be merged as one under
certain conditions, which is called a trigger [13]. After
that, an ECA rule consists of two parts (trigger, action).
When the structure of the workflow process is
emphasized, the condition of an ECA rule can be ignored,
and the ECA rule can be rewritten as a→b, which
represents when activity a is completed, b will be
triggered to start.

Definition 18 (Flexible rule) an ECA rule consisting
of a composite or flexible activity is referred to as a
flexible rule. An important aim of flexible rule is to
support the gradual refinement process of temporal
activity tree, and to maintain the simplicity and
maintainability of the rule base.

Next, the incremental refinement algorithm for flexible
rules will be proposed. It can be used to refine the
flexible rule when the coarse granular activity in the rule
is decomposed into several fine granular activities. In this
algorithm, P is the composite or flexible activity to be
refined, A is the activity set. For simplify, the rule
containing activity P is called the related rule of P. For a
rule a→b, a is called the antecedent of the rule, and b is
called the consequent.

Algorithm 1. FRule_ Refinement
Input: P, and R (the related rule of P)
Output: the refined rule set R’

 R’←∅;
A←Sort(Decompose (P));

 If P is marked as SERIAL{
 for each element ai in A{

 if 1≤i<|A| {
 create ECA rule “ai→ai+1” ;
 add rule “ai→ai+1” to R’;

 }
 } //end for
 for each rule r in R {

 if P is in the consequent of r{
 Replace P with a1 for r;
 add r to R’;

 }
 if P is in the antecedent of r {

 Replace P with a|A| for r;
 add r to R’;
 }

 }//end for
 }//end if
 If P is marked as AND {

 Create the AND expression “a1 …∧ ∧a|A|”;
 for each rule r in R {

 replace P with “a1 …∧ ∧a|A|” for r;
 add r to R’;
 }

 } //end if
If P is marked as OR {

 for each rule r in R {
for each element ai in A{

r’←r ;
 Replace P with ai for r’;
 add r’ to R’;

 }
 } //end for

} //end if
return ExecutionConstrains(R’);

In the above algorithm, the function Sort() is used to
sort the sub-activities according to the SERIAL relation,
and ExecutionConstrains() is used to add corresponding
execution conditions to the generated rule. Next, a
common execution algorithm, i.e.,
GeneralActivity_Execution(a), for activities including
atom, composite and flexible activities is described (see
Fig.4), and its main steps include:

1. Determine the type of activity a. if it is an atom
activity, execute it directly.

Start

Type of a?

R’ ← FRule_
Refinement(a)

R’ is
empty?

SaveRules(R’)

ExecuteRules(R’)

Popup
warning

Return

A←Decompose(a)

 |A| = 0?

p←PatternMatch
ing(a)

p is null?

InteractiveExec
ute(a)

ExecuteRules(p)

a.|FAP|≠0
a.|FAR|=0?

GeneralActivity
_Execution(ai)

a.|FAR|>0
& well

defined？N
Y

Y

N

Y

N

Y

NY

N

Atom
activity

Composite
activity

Flexible
activity

for each
element ai in A

End loop

 Execute(a)

Verify(p, FAC)

Figure 4. Flowchart of common activity execution algorithm

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2633

© 2014 ACADEMY PUBLISHER

2. If a is a composite activity, call the algorithm 1 to
refine it. If the result of the refinement is not empty, store
the returned rule set and execute the rules; if the result is
empty, popup the corresponding tips and then execute the
next activity.

3. If a is a flexible activity, do the following steps
accordingly.

 (1) a is an empty flexible activity. Search the process
template library and try to find the process matching the
goal and function of a. If the matching is successful,
return the selected process template; or else, run the
flexible activity in a manner of user interaction.

(2) a is not an empty flexible activity. Analyze its sub-
activities. If there exist clearly specified atom activities or
composite activities in the activity pool, but the
relationship among the activities has not been defined,
add the activity relations into the flexible activity in a
user interactive manner and then execute it. If there exists
well defined activity relation set, for each sub-activity ai
in the relation set, execute the algorithm
GeneralActivity_Execution(ai) recursively according to
the execution order of sub-activities. In other cases,
execute the activity in a user interactive manner.

(3) use the constraints FAC to verify the generated
process. If the verification is OK, the process can be
executed, or else the warning message will be popup and
the control logic turns to regenerate the process again.

V. APPLICATIONS

The proposed approach was applied to the intelligent
tutoring system[14] to develop an intelligent learning
management system based on PBL(Problem-based
Learning). In this system, flexible workflow technology
is adopted to model and manage the learning process,
which improves the system’s capability to deal with
uncertainties greatly.

PBL is a student-centered learning based on problems
in which students learn about a subject through the
experience of problem solving[15]. The learning process
includes steps such as heterogeneous grouping of students,
presenting problem scenario, self-directed learning of
students, and the assessment and summary of the learning
by tutors. In these steps, heterogeneous grouping (A),
introducing problem scenario (B) and the summary (E)
are clearly specified atom activities, which can be
executed directly. Assessment (D) is a composite activity
and need to be further decomposed. There exists
ambiguity in the learning of students (C), which can be
packaged as a flexible activity, and then be refined
gradually according to the presented problem and the
detailed application it belongs to (see stage 1 in Fig.5).
For the assessment activity, it can be decomposed into
two sub-activities: preliminary assessment (D1) and
comprehensive assessment (D2), and the temporal
relations is: D1≺D2.

The domain characteristics should be considered when
the learning of students (C) is decomposed. According to
the character of computer-related courses, it can be
decomposed into sub-activities: search for information
(C1), processing information (C2), forming the solutions
(C3), sharing the result of learning (C4), and
C1≺ C2≺ C3≺ C4 (see stage 2 in Fig.5). In these sub-
activities, C2 is packaged as a flexible activity due to the
fuzziness in it. In the preliminary assessment, the views
of both students and tutors should be considered. So D1
can be further decomposed into the students mutual
assessment (D11) and the tutor assessment (D12), which
are performed in parallel (AND relation). Processing
information (C2) is roughly divided into gathering
information (C21), analysis (C22) and discussion (C23),
which satisfy C21 ≺ C22 ≺ C23. This incremental
modeling process of PBL learning can be seen in Fig.5,
where the right of the figure is the varying of rule set, and
function FRR() is used to generate the rule set
corresponding to the activity tree.

There exists uncertain and fuzzy information in the
modeling process. For example, to the learning activity,
the task itself and its temporal relation can not be
determined. If a traditional method is used, the vague and
incomplete information may result in great difficulty of
the modeling. For example, considering so much
possibility makes the model bloated, and the whole
learning process can not be expressed properly. While in
our incremental modeling approach, the uncertain activity
is packaged into a flexible activity, which can be refined
to determined activities gradually, with the deepening of
the project and the acquisition and accumulation of
domain knowledge. This is an iterative, incremental
modeling process, and as a result, a clearly specified
process model will be formed.

Fig.6 illustrates the varying of certainty and ambiguity
of the model during the incremental modeling process.
From stage 1 to stage 3, with the transition of flexible
elements and the gradual decomposition of composite
activities, the certainty of the model increases, the
ambiguity decreases, and the whole model gets more and
more closer to a determined process model. Fig.7 shows
that the varying of the layer plot ratio is not big, which
indicates that the decomposition degree of activities is
rational, avoiding a linear or flat process structure, and
thus helps to reduce the difficulty of modeling. Fig.8
shows the modeling difficulties of the composite
activities and flexible activities. We can see that activity
C is with the highest modeling difficulty, and activity D
and C2 are the next ones, which is consistent with the fact.
In these activities, the ambiguity of C is the highest, so
the effort put to decompose and to determine it is the
most. As the calculation of modeling difficulty will be
gradually corrected, its value will be more and more
closer to the true value.

2634 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

Figure 5. Incremental modeling and refinement for PBL learning

s1 s2 s3
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

va
lu

e

Stage

 certainty
 ambiguity

Figure 6. The variant of certainty and ambiguity of process model

s1 s2 s3
0

2

4

6

8

La
ye

r p
lo

t r
at

io

Stage
Figure 7. The variant of the floor area ratio of process model

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2635

© 2014 ACADEMY PUBLISHER

C C2 C22 D D1
0.0

0.2

0.4

0.6

M
od

el
in

g
di

ffi
cu

lty

Activities
Figure 8. The modeling difficulty of activities

Fig.9 Interface of the system and a determination process

Fig.9 illustrates a determination process of flexible
activity C22, where red nodes represent the completed
activities, green nodes represent the executing activities,
and black nodes represent activities that are not executed

yet. The detailed information of C22 can be seen in the
left part of the main interface. Its context indicates that
this activity is suitable for database operations. In the
activity pool FAP, there exist some preset activities such

2636 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER

as connect (C221), add (C2221), delete (C2222), update
(C2223), and examples (C223). The constraint FAC
includes: Previous([C221], [C2221]), Previous([C221],
[C2222]), Previous([C221], [C2223]), Previous([C221],
[C223]). This context will help to find the best suited
process template in the database for the activity. If it
succeeds, the matched process templates will be listed
according to their priorities. The default strategy for
selecting process template is automatic, while other ways
such as user interactive, and execute directly are also
provided. After selecting the proper process template, the
constraint FAC will used to verify the process. If it is OK,
the process template will be applied to the flexible
activity to execute (see Fig.9).

VI. CONCLUSIONS

A pure traditional process model is much more suitable
for describing temporal relations among activities than
hierarchical relations often used for gradually workflow
modeling and activity refinement; while the model
consisting of only hierarchical relations is hard to
describe and control the execution order of activities.
Only the work integrating both of them can overcome the
weakness and improve the flexibility of the workflow.
That is, from the start of vertical decomposition of
activities, one can introduce temporal relations into the
decomposition model, and use a flexible activity to
package uncertain factors and then gradually refine it.
Therefore, an approach to modeling flexible workflow by
activity decomposition and activity incremental
refinement is presented. Activities as well as the
decomposition relations and rules are analyzed and
defined, and an activity decomposition model with
different granularity and multiple abstract levels is
established. After introducing the temporal relations into
the model, the execution constraints and the related rules
are discussed. In order to give an insight of the varying of
model characteristics and to assess the model, some
evaluation indexes are described. A common activity
execution algorithm is proposed for multiple activity
categories. The proposed approach was applied to an
intelligent learning platform to develop a workflow
application based on PBL, and the results indicate the
effectiveness.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (61171141, 61142012), Science and
Technology Planning Project of Guangdong Province,
China (2012B010600014, 2012B010500025), and Open
project of key laboratory of innovation method and
decision management system of Guangdong Province
(2011A060901001-13B, 2011A060901001-09D).

REFERENCES

[1] S. Zhang, S. Li, S. Zhang, and N. Gu, "Workflow Based on
Interaction and Machine Learning," Mini-micro Systems,
vol.26, pp.1270-1274, July 2005.

[2] J. Li, W. Wang, and F. Yang, "Review on approaches of

flexible workflow," Computer Integrated Manufacturing
Systems, vol.16, pp.1569-1577, August 2010.

[3] G. Yang, Y. Zheng, and G. Wang, "An Application
Research on the Workflow-based Large-scale Hospital
Information System Integration," Journal of Computers,
vol.6, pp.106-113, January 2011.

[4] S. Li, X. Shao, and J. Chang, "Dynamic workflow
modeling oriented to product design process," Computer
Integrated Manufacturing Systems, vol.18, pp.1136-1144,
June 2012.

[5] S. A. Chun, V. Atluri, and N. R. Adam, "Domain
knowledge-based automatic workflow generation," in 13th
International Conference on Database and Expert Systems
Applications (DEXA 2002), Berlin, Germany, 2002.

[6] S. Nurcan, and M. H. Edme, "Intention-driven modeling
for flexible workflow applications," Software Process
Improvement and Practice, vol.10, pp.363-377, Oct. 2005.

[7] A. Luntovskyy, S. Uhlig, and D. Guetter, "A flexible
Workflow Management System for CAD of
Telecommunication Networks," Pomiary Automatyka
Kontrola, vol.56, pp.1166-1169, 2010.

[8] Y. Zhang, "The Design and Implementation of Software
Process Modeling Language Based on Activity
Decomposition & ECA Rule," Hunan university, 2004.

[9] G. Ye, X. Li, D. Yu, Z. Li, and J. Yin, "The Design and
Implementation of Workflow Engine for Spacecraft
Automatic Testing," Journal of Computers, vol.6, pp.1145-
1151, June 2011.

[10] J. Bae, H. Bae, S. Kang, and Y. Kim, "Automatic control
of workflow processes using ECA rules," IEEE
Transactions on Knowledge and Data Engineering, vol.16,
pp.1010-1023, August 2004.

[11] S. Zhang, Y. Xiang, Y. Shen, and M. Shi, "Workflow
execution mechanism in grid workflow generation,"
Journal on Communications, vol.29, pp.43-50, June 2008.

[12] C. Yan, H. Luo, Z. Hu, X. Li, and Y. Zhang, "Deadline
guarantee enhanced scheduling of scientific workflow
applications in grid," Journal of Computers, vol.8, pp.842-
850, April 2013.

[13] J. Hu, S. Zhang, and X. Yu, "A Workflow Model Based on
ECA Rules and Activity Decomposition," Journal of
Software, vol.13, pp.761-767, April 2002.

[14] Y. Jiang, J. Han, and W. Wu, "An Adaptive Approach to
Personalized Learning Sequence Generation," Computer
Science, vol.40, pp.204-209, August 2013.

[15] J. R. Savery, "Overview of Problem-based Learning:
Definitions and Distinctions," Interdisciplinary Journal of
Problem-based Learning, vol.1, pp.9-20, May 2006.

Yanrong Jiang was born in 1976. He received his Ph.D. degree
in 2007 in Computer Science from South China University of
Technology, China. His research interests include human-robot
social interaction, affective computing, attentional control, and
context-aware computing, etc. He is now working at the School
of Computer, Guangdong University of Technology, China.

Weihua Li was born in 1957. She received her Ph.D degree in
Computer Science from Sun Yat-Sen University, China. She is
now a professor at the School of Computer, Guangdong
University of Technology, China. Her research interests include
Agent oriented computing, intelligent software, etc.

Jingtao Yang was born in 1971. He received his Ph.D. degree
in 2005 in Computer Science from South China University of
Technology, China. His research interests include web service,
software engineering, etc.

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2637

© 2014 ACADEMY PUBLISHER

