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Abstract—For existing workflow models, it is still difficult to 
take into account both the hierarchical relations among 
activities and their execution orders at the same time, as 
well as the dynamic uncertainties of workflow processes. 
Aiming at these problems, an approach to modeling flexible 
workflow using activity decomposition and incremental 
refinement is presented. First, the activities as well as their 
decomposition relationship and the decomposition rules are 
analyzed to establish an activity decomposition model, 
where flexible activities, with verifying constraints, are used 
to package uncertainties. Then temporal relations are 
introduced into the model to ensure the proper execution 
orders of activities, which are tightly integrated with the 
hierarchical relationship as well as different granular 
activities to make the model perform well. The execution 
mechanism of the model, such as the delivering of events 
and states constraints of parent-child activities, is discussed 
in detail, and a common algorithm for activity execution is 
also presented. Finally, the proposed approach is applied to 
the PBL learning system, and the results indicate the 
effectiveness of the proposal. 
 
Index Terms—flexible workflow, activity decomposition, 
temporal activity tree, incremental refinement 
 

I.  INTRODUCTION 

With the development of economic globalization and 
increasing of market competition, the business processes 
should adapt to the varying of business goals and 
requirements. The business process is always a dynamic, 
incomplete process having a lot of uncertainties and 
ambiguities [1]. While most of the traditional workflow 
models are often used to handle predictable, completely 
specified workflow process. So it is very difficult to use 
them to model complex business processes. A business 
process consists of activities, participants and resources, 
and some of the activities can be specified clearly, while 
others are always ambiguous and can not be predicated. 
The ambiguity of activity content and the uncertainty of 
activity relations make the modeling and execution of 
workflow very difficult. Aiming at this, improving the 
workflow flexibility to deal with such ambiguities and 

uncertainties of workflow has become one of the hot 
research fields recently [2, 3]. 

The modeling of complex business processes is 
normally not a one-off occurrence and may experience 
several rounds. It is always an incremental multi-
granularity design process from coarse state to fine state, 
from rough frame design to specific details according to 
the requirements. In this process, the uncertainties of the 
model are gradually transformed into clearly specified 
elements, and obviously, it is an incremental refinement 
process of multiple rounds. Thus, an approach to support 
stepwise modeling process, which may contain multi-
granularity activities as well as proper execution 
mechanism is of great importance. 

By doing so, some research efforts were made. S. Li [4] 
adopted DNG (directed network graph) to model the 
production design process. By mapping from production 
tree to process templates, the runtime refinement of 
dynamic workflow nodes was realized. But the 
establishment of production tree, which often contains a 
large number of components and parts as well as their 
affiliations, and the corresponding complete process 
template database are time-consuming and difficult. So it 
is not suitable for processes with lots of uncertainties and 
ambiguities. S. A. Chun [5] proposed an approach to 
automatically generate workflow schema based on 
ontology. It uses domain service ontology and domain 
integration knowledge that serves as a model for 
workflow composition rules, and uses user profile to 
select a suitable workflow process. Its disadvantage is 
that the composition rules can not be moved to other 
domains easily, and the establishment of ontology is 
difficult. S. Nurcan [6] proposed a conceptual framework 
for flexible workflow modeling based on intention-driven 
methods. It offers the capacity to represent a well-
structured process chunks or an ill-structured one in the 
process definition. A. Luntovskyy [7] tried to make a 
trade-off between adequate flexibility and consideration 
of the specifics of project, and discussed a flexible 
workflow management system for CAD applications. In 
the work of Y. Zhang [8], an activity-center modeling 
approach was used for software development process. 
The decomposition of activity was analyzed, and ECA 
rules were used to form a dynamic model of software 
process. 
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Although the researches mentioned above can improve 
the flexibilities of workflow in a certain degree, there still 
exist some lacks. Some of the work only emphasizes the 
transverse connections of activities, and irrationally 
ignores the hierarchical relations of activities. So the 
support for modeling with multiple abstraction levels and 
multiple granularities is not sufficient. Some of the work 
establishes roughly the hierarchical decomposition model 
of workflow, but the temporal relations of activities as 
well as the execution constraints are not studied in depth, 
while this is crucial to the proper execution and the 
adaption of workflow model. Some other work focuses 
on detailed technologies, and the integration of them to 
improve the flexibility of workflow is still lacking.  

Hence, in this paper, we present an incremental 
approach to modeling flexible workflows using activity 
decomposition and gradual refinement. There are several 
advantages of this approach. First, different levels of 
abstraction and vertical decomposition relations of 
activities are taken into account, which will benefit the 
gradually incremental modeling of workflow process. 
Second, the introducing of temporal relationship of 
activities will help to control their execution orders, and 
its graphical expression is easy to visualize the meaning 
of activity relationship. Finally, flexible activity is used to 
package the uncertainties of workflow process, which can 
reduce modeling difficulties. 

II.  ACTIVITY DECOMPOSITION MODEL 

Activities are the basic units of workflow and are not 
isolated. There exist various relations among activities, 
such as the decomposition relation and the temporal 
relation, and their complexity reflects the difficulties of 
workflow modeling. Therefore, the main task of 
workflow modeling is to describe activities, perhaps with 
multiple granularity, and the relations among them 
clearly and directly. 

During the process of activity decomposition, vertical 
relationship among activities should be established to 
support top-down project design. By examining the 
relations between activity and its sub-activities, such 
relationship can be grouped into 3 categories: 
aggregation, generalization, and attribution relations, 
where the attribution relation is used to describe the 
properties of activities. 

Definition 1 (aggregation relation) the aggregation 
relation can be denoted as a(Ai, Aj), which is used to 
describe the “whole-part” relation (i.e., Ai is a part of Aj). 
When an activity is decomposed into several sub-
activities, it is referred to as a composite activity. Actualy, 
when the decomposed activity is also a composite activity, 
it can be decomposed further until all the activities 
decomposed are atom activities. 

Definition 2 (generalization relation) this relation is 
another case, which can be used to define the general-
special relation. It can be denoted as g(Ai, Aj), which 
means that Ai is a special case of Aj. For example, the 
activities such as object-oriented design, structured 
design and process-oriented design are the special cases 
of software design activity. 

Definition 3 (parent-child relation) for any two 
activities x and y, if a(x, y) or g(x,y) is satisfied, then y 
and x is called as the parent-child relation, which is 
denoted as s(x, y). This relation is transitive. For example, 
for activities A1, A2 and A3, if s(A1, A2) and s(A2, A3) are 
true, then s(A1, A3) is true. To distinguish this relation 
from ancestor-descendant relation, the parent-child 
relation can be noted further as sc(x, y). 

Definition 4 (Decompose operator) Decompose(y) is 
a unary operator, and its result is a collection of all the 
sub-activities of y. If y has no sub-activity, then an empty 
set is returned. Recursively calling this operator, we can 
decompose an activity gradually. Obviously, ∀x, sc(x, y) 
→ x∈Decompose(y) is true. 

Rule 1. the achievement of goals and functions of the 
parent activity relies on the achievement of goals and 
functions of all its sub-activities. The resources and 
personnel of parent activity is the sum of those of all its 
sub-activities. 

Rule 1 shows that during the process of activity 
decomposition, the parent activity with high level of 
abstraction and coarse granularity can be gradually 
decomposed into fine-grained sub-activity, and the 
function and goal of parent activity is also distributed to 
its sub-activities, which provides a basis for reasonable 
decomposition and the related decomposition algorithm. 
Rule 1 indicates that the decomposition standard is the 
independent function, rather than the structure, the 
advantage of which is that it can reduce the coupling 
between activities and improve the reusability of 
activities. 

Definition 5 (Activity tree) decomposing an activity A 
gradually will eventually generate a tree with a root of A, 
which is called an activity tree, denoted as T(A). In this 
tree, the child node is the sub-activity of the parent node. 
When all the composite activities are decomposed into 
atom activities, the decomposition process stops. For 
example, Fig.1 is an activity tree of software design 
process, which contains aggregation and generalization 
relation.  

 

Figure 1. Activity tree for software development 
The essence of the process to establish an activity tree 

is to gradually refine and determine the uncertain process 
model. This is a process from abstract to concrete, from 
coarse granular to fine granular, and from vague to clear 
process. It demands the gradual obtaining of domain 
knowledge and the in-depth analysis of the process to 
determine and refine the uncertain activities. 

The activities of workflow can be classified into 3 
categories: atom activity, composite activity and flexible 
activity. If a clearly specified activity can not be divided 
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into other sub-activities, it is referred to as an atom 
activity. Atom activity is the smallest execution unit. 
Composite activity is composed of several sub-activities 
with their relationship, and it can be considered as a sub-
process. Every sub-activity of it can be an atom activity 
or a composite activity. Flexible activity is used to 
describe and package the uncertain factor of a workflow 
process. 

Definition 6 (Flexible activity) flexible activity is a 
special activity. Due to the vague and uncertain 
information existing in processes, flexible activity can not 
be specified clearly and fully in advance. So further 
information is required later for the gradual determination 
of flexible activities. Flexible activity can be described by: 
FA=(Id, name, state, Ctx, FAP, FAR, FAC, Attr, dtype), 
where Id is the unique identify of the activity, 
state∈STATE, Ctx is the context, including its goal and 
functions to achieve, and the application scenarios. 
FAP=A∪CAS∪FA is the activity pool, where A is an 
atom activity set, CAS is a composite activity set, and 
FAS is a flexible activity set. FAR=FR∪CR is the rule set 
to describe the activity relations in the activity pool, 
where FR is the flexible rule set and CR is the common 
rule set expressed by ECA rule. Attr is the attribution set 
that the activity has. dtype {∈ aggregation, generalization, 
has_attribution} represents the decomposition type. 

FAC=C∪M is the constraint set for the verification 
and determination of the flexible activity, and the 
generated sub-processes must follow the constraints. 
Unary or binary predicates, preset operations and rules 
are used to express the constraints. Herein, C is the 
constraint rules used for the selection and combination of 
activities, determining the execution order of activities. M 
is the adjustment rule set, used to modify the generated 
sub-process. For example, the rule “IF select(a∧b) THEN 
Previous(a, b)” means that if activities a and b are 
selected, a must be executed before b. 

Activities have various states, and the state set can be 
described by: STATE={“Waiting”, “Ready”, “Executing”, 
“Committed”, “Aborted”}, where state Waiting(W) is the 
initial state of activities, which means that the triggering 
conditions of the activity are not satisfied, and the 
execution is not ready; Ready(R) represents that the 
activity’s triggering condition has been met and the 
activity will be executing; Executing(E) represents that 
the activity is running but not completed; Committed(C) 
represents that the activity is completed and Aborted(A) 
means that some exceptions occur and the execution will 
quit. Fig.2 illustrates the state transition of activities. 

Waiting Ready Executing

Aborted

Committed
Set ready Begin Completed

Abort

Recover

 
Figure 2. Transition of activity states 

III.  INTRODUCING TEMPORAL RELATIONS INTO THE 
ACTIVITY DECOMPOSITION MODEL 

A.  Temporal Activity Tree (TAT) 
Though the activity tree can clearly express the vertical 

decomposition relations between activities, the horizontal 
relations, however, such as the temporal relations, are not 
expressed in the tree. While this is of great importance of 
the process model. Next, the definition of temporal 
relation will be given first, then the temporal activity tree 
will be established. 

Definition 7 (Temporal relation) activities are often 
performed in a certain order in time, forming a sequence 
of activity execution. That is, the start of an activity must 
follow after the completion of another (or more) activity. 
Such constraint of timing relation is referred to as the 
temporal relation, denoted as ≺ ={<Ai, Aj>| 
Ai≺ Aj∧Ai∈A∧Aj∈A}, where A is the activity set of the 
workflow. 

Definition 8 (Predecessor-successor relation) for 
activity Ai and Aj, if the completion of Ai is a prerequisite 
to the start of activity Aj, Ai is referred to as the 
predecessor of Aj, and Aj is the successor of Ai, which is 
denoted as Ai ≺ Aj. All the predecessors of Ai form a 
predecessor set, Pre(Ai)={a|a≺ Ai}, and all the successors 
of Ai form a successor set, Succ(Ai)={a| Ai≺ a}. If there 
does not exist an activity Ak, which satisfies Ai≺ AK and 
AK≺ Aj, then Ai is called a direct predecessor of Aj, and Aj 
is the direct successor of Ai. 

Definition 9 (SERIAL relation) if the activity Ai and 
Aj satisfy predecessor-successor relation, and there does 
not exist an activity Ak, which satisfies Ai≺ AK but not 
AK≺ Aj, then Ai and Aj are said to satisfy SERIAL relation. 

Definition 10 (AND relation) if there exists a nearest 
common predecessor As and a nearest common successor 
Ae for activity Ai and Aj, and satisfy As ≺ Ai, As ≺ Aj, 
Ai ≺ Ae, Aj ≺ Ae, and there exists no temporal relation 
between Ai and Aj, and Ai and Aj execute in parallel, then 
Ai and Aj is referred to as the AND relation between As 
and Ae. 

Definition 11 (OR relation) if there exists a nearest 
common predecessor As and a nearest common successor 
Ae for activity Ai and Aj, and satisfy As ≺ Ai, As ≺ Aj, 
Ai ≺ Ae, Aj ≺ Ae, and there exists no temporal relation 
between Ai and Aj, and there is only one activity of they 
can be performed, then Ai and Aj is referred to as the OR 
relation between As and Ae. 

Definition 12 (Iteration relation) for activity set 
A=(A1, A2, ..., Ak), if the execution sequence consisting of 
all the activities is complete and repeated, and satisfies 
A1≺ A2≺ ...≺ Ak, there exists an interation relation <A1, 
A2, ..., Ak > in the activity set A. A1 is the start activity of 
the interation, and Ak is the terminal activity. We often 
use a directed edge pointing from Ak to A1 in workflow 
graphical model to express the interation relation. 

After introducing temporal relations, activity tree can 
be transformed into temporal activity graph. In this graph, 
nodes represent activities, directed edges represent 
temporal relations and decomposition relations. The 
attribution information of activities can be added to nodes. 

2630 JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014

© 2014 ACADEMY PUBLISHER



Next, an approach to transform the activity tree into 
temporal activity graph will be introduced, which is 
discussed according to the type of decomposition relation 
between parent and child activities. 

Case 1. aggregation relation 
For an activity A, its decomposed sub-activities are A1, 

A2, .., An, which satisfy a(Ai, A), 1≤i≤n, then we get: 1) if 
these sub-activities are in the relation of SERIAL, just 
determine the execution order of the activities, and mark 
the activity A as SERIAL type, which is called the node 
type; and 2) if these sub-activities execute in parallel, i.e., 
in the relation of AND, then mark the activity A as AND 
type. If the execution order of sub-activities is not certain, 
the default type of the parent activity will be marked as 
AND for the purpose of execution efficiency. 

Theorem 1. For a parent activity A, if the relations 
between its sub-activities contain both SERIAL and AND 
relations, then the AND relation can be eliminated by 
way of packaging the related sub-activities in AND 
relation into a composite activity. 

Proof. Set the sub-activities, a1, a2,..., am, 1<m<n, to be 
in AND relation, and their nearest common predecessor 
and successor are As and Ae. From Definition 10, we get 
that after packaging these sub-activities into a composite 
activity Ai, As is the predecessor of Ai, and Ae is the 
successor of Ai. So As, Ai and Ae are in the relation of 
SERIAL. Do the same operations to all the sub-activities 
that are in AND relation, then we eventually get the sub-
activities containing only SERIAL relation. 

Case 2. generalization relation 

For an activity A, its decomposed sub-activities are A1, 
A2, .., An, which satisfy g(Ai, A), 1≤i≤n, then the parent 
activity A can be marked as OR type. As a special case of 
the parent activity, the sub-activity inherits the features 
and functions of the parent activity, and has its own 
application conditions, which can be used to select the 
most suitable activity to execute according to the runtime 
contexts. 

Fig.3 is a temporal activity graph containing temporal 
relation after using the above approach. In this figure, 
atom activity, composite activity and flexible activity are 
represented by different kind of nodes. Every parent node 
is marked as SERIAL, OR, or AND type. For a node 
marked as SERIAL type, it means the execution order of 
its sub-activities is by sequence, from left to right. AND 
type means that the node’s sub-activities execute in 
parallel, and OR type means that only one of the sub-
activities will be selected to execute. For an interation, if 
any, its start node and terminal node are used to represent 
the iteration. For example, the interation(Interation-1) in 
Fig.3 is represented by the start node C22 and the 
terminal node C23. 

Thus, we established a hierarchical temporal process 
model with multiple granularity and refinement degree. 
In this model, temporal relations indicate the execution 
orders, and the different level of abstraction embodied by 
granularity will help to the gradual modeling and 
refinement. To emphasize the vertical relation of the 
temporal activity graph, we call it the temporal activity 
tree. 

 
Figure 3. Activity tree with temporal relation 

B.  Execution Constraints of TAT 
For the temporal activity tree, a certain mechanism to 

restrain the proper execution and the states of parent 
activity and sub-activities is required greatly. From rule 1, 
functions and goal of the parent activity are distributed 
into its sub-activities to achieve, and the sub-activities, in 

generalization relation to the parent, also inherit from the 
parent and are the embodiments of the parent activity. 
The state of a sub-activity, therefore, depends on not only 
the state of the parent activity, but the manner that the 
parent was decomposed in. That is, it is also related to the 
node type of the parent activity as discussed below. 
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Rule 2. the state of the sub-activity relies on the state 
of the parent as well as the node type. 

Set the parent activity is P, and its state is s. Use 
Decompose (P) to get its sub-activity set, {c1, c2, ..., cn}. 
Set si is the state of ci, then the corresponding state set is 
S={s1, s2, ..., sn}.  

1) P is marked as SERIAL type 
The sub-activities of P form a sequence of activities, 

c1, c2, ..., cn, executing successively. 
a) s = W, then ∀si ∈ S, si = W; 
b) s = R, then ∀si ∈ S, si = R; 
c) s = E, then s1 = E; 
d) ∃si ∈ S, si = C, 1≤ i ≤n-1, then si+1 = E; 
e) ∀si ∈ S, si = C, or sn = C, then s = C; 
f) ∃si ∈ S, si = A, then s = A, undo(c1, ..., ci-1);  

From the above rule items, we can see that there exist 
dependencies between sub-activities and parent activity. 
Herein, Waiting(W) indicates that the execution 
conditions are not ready. So if the state of parent is W, the 
state of all its sub-activities is W. If the state of the parent 
is Ready(R), then the state of all the sub-activities is 
Ready. For sub-activities, only when the previous activity 
is completed, may the subsequent activity start. When all 
the sub-activities are completed, the parent is completed. 
When any one of the sub-activities is aborted, the state of 
the parent is Aborted, meanwhile rollbacking all the 
finished activities, i.e., c1,...,ci-1. 

2) P is marked as AND type 
a) s = W, then ∀si ∈ S, si = W; 
b) s = R, then ∀si ∈ S, si = R; 
c) s = E, then ∀si ∈ S, si = E; 
d) ∀si ∈ S, si = C, then s = C; 
e) ∃si ∈ S, si = A, then s = A, undo(cj), j=1,...,m and sj 

=C; 
Due to the parallelism of sub-activities, when the 

parent activity starts, all the sub-activities begin to start; 
when any one of the sub-activities is aborted, the parent 
activity will be aborted, and rollback all the completed 
sub-activities. 

3) P is marked as OR type 
a) ∃si ∈ S, selected(si), and s∈{W, R, E}, then si = s; 
b) ∃si ∈ S, selected(si), and si = C, then s = C; 
c) ∃si ∈ S, selected(si), and si = A, then s = A; 

Obviously, the state of the triggered sub-activity relies 
on the parent’s state (i.e., W, R, E). After the sub-activity 
is completed, the parent activity is also completed. When 
exceptions occur in sub-activity, the parent activity is 
aborted. 

After introducing the temporal relation into the model,  
the mechanism of decomposing and transferring the 
parent activity’s execution conditions and trigger events 
to sub-activities should also be considered, and it is 
crucial to the proper execution of activities. Recalling the 
modeling process, actually, we often establish the parent 
activities and their relations first, and then build the 
decomposed sub-activities and their relations later by 
means of from coarse granularity to fine granularity. 
Obviously, the sub-activities should inherit the 
decomposed execution conditions and the context from 
the parent activity at runtime. The events triggering the 

execution of parent activity should also be delivered to 
the sub-activities to trigger their executions. 

Rule 3. the execution conditions and the trigger events 
of sub-activities rely on those of the parent activity. It is a 
top-down delivering process, from parent to child 
activities. The following discussion is based on the 
parent’s type. 

1. the delivering and decomposition of the condition 
cB of the parent activity 

1) the parent is marked as SERIAL type. Deliver cB to 
the first sub-activity. The execution conditions of other 
sub-activities are set as TRUE. 

2) the parent is marked as AND type. Deliver cB to 
every sub-activity. 

3) the parent is marked as OR type. Decompose cB into 
several sub-conditions according to the requirements of 
each path, and deliver the sub-conditions to the 
corresponding sub-activities in each path. 

2. the delivering of events 
The events that can cause a state change of parent 

activity should be delivered to sub-activities to change 
their states. We mainly consider the event that the 
previous activity is completed (i.e., event Done). Set the 
predecessor of the parent activity is A. After the event 
Done(A) occurs, we have: 

1) the parent is marked as SERIAL type. Deliver the 
event Done(A) to the first sub-activity. According to the 
rule 2, the trigger events of other activities rely on the 
completion of the previous activity. 

2) the parent is marked as AND type. Deliver the event 
Done(A) to every sub-activity. 

3) the parent is marked as OR type. Deliver the event 
Done(A) to the selected sub-activity. 

C.  Evaluation Indexes of the Decomposition Model 
In order to characterize the modeling process, some 

evaluation indexes with the corresponding calculation 
equations are defined. 

Definition 13 (Dom operator) Dom operator is used 
to obtain the atom activities for a node A by: 1) if A is an 
atom activity, Dom(A)={A}; 2) if A is a composite 
activity, Dom(A)= Dom (A1)∪ Dom (A2)∪......Dom (An), 
where sc(Ai, A), 1≤ i ≤ n; 3) if A is an empty composite 
activity (i.e., having no child), Dom(A)=∅.  

Definition 14 (Certainty) the certainty can be 

described by: | ( ) |( )
( ) 1prvs

Dom TT
counts T fc

α =
− −

, α∈[0,1], 

where |Dom(T)| is the count of atom activities in the tree 
T, counts(T) is the count of all the nodes in the tree, fcprvs 
is the count of flexible and composite activities in the tree 
at the previous modeling stage. 1) α=1, the activity tree 
consists entirely of atom activities, and the certainty is the 
biggest; 2) α=0, the activity tree consists of composite or 
flexible activities but no atom activity, and the certainty 
is the smallest; 3) α∈(0,1), the activity tree consists of 
atom, composite and flexible activities, the value of α is 
between 0 and 1. 

Definition 15 (Layer plot ratio) the layer plot ratio is 
used to describe the average decomposition degree of 
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activities, ( ) 1( )
( )

counts TT
height T

β −= , where height(T) is the 

height of the tree T (excluding the root). When β =1, the 
decomposition degree of activities reaches the minimum, 
and the activity tree degenerates into a linear list. 

Definition 16 (Ambiguity) the ambiguity can be 

described by: 
( )

( )
( ) 1

prvsFAcounts T f
T

counts T
γ

−
=

−
, where 

FAcounts(T) is the count of the flexible activities of tree 
T, fprvs is the count of flexible activities at the previous 
modeling stage. When γ=0, the activity tree has no 
flexible activity and has a minimum ambiguity. When the 
tree consists entirely of flexible activity, it has the biggest 
ambiguity. 

Definition 17 (Activity modeling difficulty) the 
activity modeling difficulty is used to describe the efforts 
and difficulties for modeling an activity, 

( )( )
( ) 1

counts Aeff A
counts T

=
−

, where A is a flexible or 

composite activity. It means the proportion of activities 
generated by activity A in all the activities of the tree 
when a modeling stage is completed (e.g., when flexible 
activity A is entirely determined). 

IV.  INTERPRETING AND EXECUTION OF THE 
DECOMPOSITION MODEL 

The most important issue to run a workflow model is 
the way to interpret and execute activities, and to control 
their execution orders. For the former, the difficulty is the 
execution of flexible activity [9-12], and for the latter, 
ECA rules as well as the workflow engine for interpreting 
and performing ECA rules are always adopted. The event 
and condition of an ECA rule can be merged as one under 
certain conditions, which is called a trigger [13]. After 
that, an ECA rule consists of two parts (trigger, action). 
When the structure of the workflow process is 
emphasized, the condition of an ECA rule can be ignored, 
and the ECA rule can be rewritten as a→b, which 
represents when activity a is completed, b will be 
triggered to start. 

Definition 18 (Flexible rule) an ECA rule consisting 
of a composite or flexible activity is referred to as a 
flexible rule. An important aim of flexible rule is to 
support the gradual refinement process of temporal 
activity tree, and to maintain the simplicity and 
maintainability of the rule base. 

Next, the incremental refinement algorithm for flexible 
rules will be proposed. It can be used to refine the 
flexible rule when the coarse granular activity in the rule 
is decomposed into several fine granular activities. In this 
algorithm, P is the composite or flexible activity to be 
refined, A is the activity set. For simplify, the rule 
containing activity P is called the related rule of P. For a 
rule a→b, a is called the antecedent of the rule, and b is 
called the consequent. 

Algorithm 1. FRule_ Refinement 
Input: P, and R (the related rule of P) 
Output: the refined rule set R’ 

 R’←∅; 
A←Sort(Decompose (P));  

 If P is marked as SERIAL{ 
      for each element ai in A{  

  if 1≤i<|A| { 
  create ECA rule “ai→ai+1” ;  
  add rule “ai→ai+1” to R’; 

  } 
      } //end for 
      for each rule r in R { 

         if P is in the consequent of r{ 
                 Replace P with a1 for r; 
                 add r to R’; 

   }  
   if P is in the antecedent of r { 

      Replace P with a|A| for r; 
      add r to R’; 
            }  

       }//end for 
     }//end if 
     If P is marked as AND { 

    Create the AND expression “a1 …∧ ∧a|A|”; 
  for each rule r in R { 

 replace P with “a1 …∧ ∧a|A|” for r; 
 add r to R’; 
   } 

 } //end if 
If P is marked as OR { 

      for each rule r in R { 
for each element ai in A{ 

r’←r ;  
       Replace P with ai for r’; 
       add r’ to R’; 

    }  
         } //end for 

} //end if 
return ExecutionConstrains(R’);  

In the above algorithm, the function Sort() is used to 
sort the sub-activities according to the SERIAL relation, 
and ExecutionConstrains() is used to add corresponding 
execution conditions to the generated rule. Next, a 
common execution algorithm, i.e., 
GeneralActivity_Execution(a), for activities including 
atom, composite and flexible activities is described (see 
Fig.4), and its main steps include: 

1. Determine the type of activity a. if it is an atom 
activity, execute it directly. 

Start

Type of a?

R’ ← FRule_ 
Refinement(a)

R’ is 
empty?

SaveRules(R’)

ExecuteRules(R’)

Popup 
warning

Return

A←Decompose(a)

 |A| = 0?

p←PatternMatch
ing(a)

p is null?

InteractiveExec
ute(a)

ExecuteRules(p)

a.|FAP|≠0 
a.|FAR|=0?

GeneralActivity
_Execution(ai)

a.|FAR|>0 
& well 

defined？N
Y

Y

N

Y

N

Y

NY

N

Atom 
activity

Composite 
activity

Flexible 
activity

for each 
element ai in A

End loop

 Execute(a)

Verify(p, FAC)

Figure 4. Flowchart of common activity execution algorithm 
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2. If a is a composite activity, call the algorithm 1 to 
refine it. If the result of the refinement is not empty, store 
the returned rule set and execute the rules; if the result is 
empty, popup the corresponding tips and then execute the 
next activity. 

3. If a is a flexible activity, do the following steps 
accordingly. 

 (1) a is an empty flexible activity. Search the process 
template library and try to find the process matching the 
goal and function of a. If the matching is successful, 
return the selected process template; or else, run the 
flexible activity in a manner of user interaction. 

(2) a is not an empty flexible activity. Analyze its sub-
activities. If there exist clearly specified atom activities or 
composite activities in the activity pool, but the 
relationship among the activities has not been defined, 
add the activity relations into the flexible activity in a 
user interactive manner and then execute it. If there exists 
well defined activity relation set, for each sub-activity ai 
in the relation set, execute the algorithm 
GeneralActivity_Execution(ai) recursively according to 
the execution order of sub-activities. In other cases, 
execute the activity in a user interactive manner. 

(3) use the constraints FAC to verify the generated 
process. If the verification is OK, the process can be 
executed, or else the warning message will be popup and 
the control logic turns to regenerate the process again. 

V.  APPLICATIONS 

The proposed approach was applied to the intelligent 
tutoring system[14] to develop an intelligent learning 
management system based on PBL(Problem-based 
Learning). In this system, flexible workflow technology 
is adopted to model and manage the learning process, 
which improves the system’s capability to deal with 
uncertainties greatly. 

PBL is a student-centered learning based on problems 
in which students learn about a subject through the 
experience of problem solving[15]. The learning process 
includes steps such as heterogeneous grouping of students, 
presenting problem scenario, self-directed learning of 
students, and the assessment and summary of the learning 
by tutors. In these steps, heterogeneous grouping (A), 
introducing problem scenario (B) and the summary (E) 
are clearly specified atom activities, which can be 
executed directly. Assessment (D) is a composite activity 
and need to be further decomposed. There exists 
ambiguity in the learning of students (C), which can be 
packaged as a flexible activity, and then be refined 
gradually according to the presented problem and the 
detailed application it belongs to (see stage 1 in Fig.5). 
For the assessment activity, it can be decomposed into 
two sub-activities: preliminary assessment (D1) and 
comprehensive assessment (D2), and the temporal 
relations is: D1≺D2. 

The domain characteristics should be considered when 
the learning of students (C) is decomposed. According to 
the character of computer-related courses, it can be 
decomposed into sub-activities: search for information 
(C1), processing information (C2), forming the solutions 
(C3), sharing the result of learning (C4), and 
C1≺ C2≺ C3≺ C4 (see stage 2 in Fig.5). In these sub-
activities, C2 is packaged as a flexible activity due to the 
fuzziness in it. In the preliminary assessment, the views 
of both students and tutors should be considered. So D1 
can be further decomposed into the students mutual 
assessment (D11) and the tutor assessment (D12), which 
are performed in parallel (AND relation). Processing 
information (C2) is roughly divided into gathering 
information (C21), analysis (C22) and discussion (C23), 
which satisfy C21 ≺ C22 ≺ C23. This incremental 
modeling process of PBL learning can be seen in Fig.5, 
where the right of the figure is the varying of rule set, and 
function FRR() is used to generate the rule set 
corresponding to the activity tree. 

There exists uncertain and fuzzy information in the 
modeling process. For example, to the learning activity, 
the task itself and its temporal relation can not be 
determined. If a traditional method is used, the vague and 
incomplete information may result in great difficulty of 
the modeling. For example, considering so much 
possibility makes the model bloated, and the whole 
learning process can not be expressed properly. While in 
our incremental modeling approach, the uncertain activity 
is packaged into a flexible activity, which can be refined 
to determined activities gradually, with the deepening of 
the project and the acquisition and accumulation of 
domain knowledge. This is an iterative, incremental 
modeling process, and as a result, a clearly specified 
process model will be formed. 

Fig.6 illustrates the varying of certainty and ambiguity 
of the model during the incremental modeling process. 
From stage 1 to stage 3, with the transition of flexible 
elements and the gradual decomposition of composite 
activities, the certainty of the model increases, the 
ambiguity decreases, and the whole model gets more and 
more closer to a determined process model. Fig.7 shows 
that the varying of the layer plot ratio is not big, which 
indicates that the decomposition degree of activities is 
rational, avoiding a linear or flat process structure, and 
thus helps to reduce the difficulty of modeling. Fig.8 
shows the modeling difficulties of the composite 
activities and flexible activities. We can see that activity 
C is with the highest modeling difficulty, and activity D 
and C2 are the next ones, which is consistent with the fact. 
In these activities, the ambiguity of C is the highest, so 
the effort put to decompose and to determine it is the 
most. As the calculation of modeling difficulty will be 
gradually corrected, its value will be more and more 
closer to the true value. 
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Figure 5. Incremental modeling and refinement for PBL learning  
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Figure 6. The variant of certainty and ambiguity of process model 

s1 s2 s3
0

2

4

6

8
 

La
ye

r p
lo

t r
at

io

Stage  
Figure 7. The variant of the floor area ratio of process model 

JOURNAL OF SOFTWARE, VOL. 9, NO. 10, OCTOBER 2014 2635

© 2014 ACADEMY PUBLISHER



C C2 C22 D D1
0.0

0.2

0.4

0.6

M
od

el
in

g 
di

ffi
cu

lty

Activities  
Figure 8. The modeling difficulty of activities 

 
Fig.9 Interface of the system and a determination process

Fig.9 illustrates a determination process of flexible 
activity C22, where red nodes represent the completed 
activities, green nodes represent the executing activities, 
and black nodes represent activities that are not executed 

yet. The detailed information of C22 can be seen in the 
left part of the main interface. Its context indicates that 
this activity is suitable for database operations. In the 
activity pool FAP, there exist some preset activities such 
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as connect (C221), add (C2221), delete (C2222), update 
(C2223), and examples (C223). The constraint FAC 
includes: Previous([C221], [C2221]), Previous([C221], 
[C2222]), Previous([C221], [C2223]), Previous([C221], 
[C223]). This context will help to find the best suited 
process template in the database for the activity. If it 
succeeds, the matched process templates will be listed 
according to their priorities. The default strategy for 
selecting process template is automatic, while other ways 
such as user interactive, and execute directly are also 
provided. After selecting the proper process template, the 
constraint FAC will used to verify the process. If it is OK, 
the process template will be applied to the flexible 
activity to execute (see Fig.9). 

VI.  CONCLUSIONS 

A pure traditional process model is much more suitable 
for describing temporal relations among activities than 
hierarchical relations often used for gradually workflow 
modeling and activity refinement; while the model 
consisting of only hierarchical relations is hard to 
describe and control the execution order of activities. 
Only the work integrating both of them can overcome the 
weakness and improve the flexibility of the workflow. 
That is, from the start of vertical decomposition of 
activities, one can introduce temporal relations into the 
decomposition model, and use a flexible activity to 
package uncertain factors and then gradually refine it. 
Therefore, an approach to modeling flexible workflow by 
activity decomposition and activity incremental 
refinement is presented. Activities as well as the 
decomposition relations and rules are analyzed and 
defined, and an activity decomposition model with 
different granularity and multiple abstract levels is 
established. After introducing the temporal relations into 
the model, the execution constraints and the related rules 
are discussed. In order to give an insight of the varying of 
model characteristics and to assess the model, some 
evaluation indexes are described. A common activity 
execution algorithm is proposed for multiple activity 
categories. The proposed approach was applied to an 
intelligent learning platform to develop a workflow 
application based on PBL, and the results indicate the 
effectiveness. 
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