
A Digraph-Based Approach to Component
Retrieving

Chunxia Yang

School of Computer Science & Engineering, Xi’an University of Technology, Xi’an, China
Email: ycxxaut@163.com

Yinghui Wang

School of Computer Science & Engineering, Xi’an University of Technology, Xi’an, China
Email: wyh_925@163.com

Abstract—Component retrieval is important to improve
software productivity in the field of component based
software development (CBSD). In this paper, static and
dynamic behavior information of component interface is
considered as retrieval items for component retrieval system
at the same time. And interface automaton is adopted as the
model to describe retriever’s query and component in
repository. Three kinds of matching models are developed
to satisfy exact or approximate matching according to the
information retriever can give. The implementation of the
matching is illustrated based on incidence matrix of digraph
corresponding to interface automaton. A retrieving
algorithm is developed in which offline computation of
matching relationship in repository is used to reduce the
searching space and amend the retriever’s request.

Index Terms—component retrieval, interface automaton,
incidence matrix

I. INTRODUCTION

Component-based software development (CBSD) is
believed as a way of resolving some issues identified by
the software crisis, which is to assemble software systems
from pre-existing software components to reduce
development costs and increase the quality of the final
system [1]. Then, the storage and retrieval reusable
component in a large scale repository is an important
issue in the field of CBSD. It is believed that a good
component retrieval method can effectively help users
find the appropriate components from a large scale of
component repository and improve the efficiency of
software development.

Nowadays various component retrieval methods have
been put forward. One of the most popular is facets based
searching [2-5], which involving semantic searching
based on ontology. Others associate with information
retrieval technique [6,7] and AI algorithm [8], etc..
However, it requires a well understanding of
characteristics of software components before reusing
them [9]. Component is an encapsulated unit, and the
only channel for component to interact with environment
is its interface [10]. Component interface exposes the
abstract specifications of component and describes the
behavior of the component for users to a great extent.

When using the reusable components to assemble
software, the first thing is to check interface to decide
whether the component matches the requirements or not
[11]. Therefore, the information provided by interface is
used as retrieval content for component retrieval naturally.

Additionally, we also concerned on Web Service, a
special branch of components, which used for business
level in architecture and developed more advanced than
usual components. The specification of Web Service,
BPEL, exposes internal process in behavioral aspects to
meet the need of reusing service. And the process view
changed the situation of Web Service retrieval [12,13].
Inspired by this, the study focuses on the behavior
expressed by component interface to design retrieving
scheme.

Earlier, the behavior information declared in
component interface, such as operations and their types,
pre-condition and post-condition, etc., is employed for
component retrieval. The representative methods are
signature matching [14,15] and specification matching
[16,17]. Signature matching is a component retrieval
method in which component is retrieved by its signature.
The signature of a component is the union of all
interfaces signatures that it defines, and the signature of
an interface is the union of the operations’ signatures it
declares. If the retriever knows in advance the component
signature, the approach will act well in retrieval system.
Specification matching is a component retrieval method
in which component is retrieved by its specification.
Compared with component signature, a more tight
constraint is appended in its specification, that is, the pre-
condition and post-condition of an operation is included
in operation’s specification. Since component
specification is always expressed in a formal language
based on the predicates, specification matching usually
has good results due to its mathematical rigor. But, the
formal expression and the following equivalence proof
also costs high overhead.

Later, the information implied in interface that
changed before and after component running, such as the
type of operations and the range of variables, is captured
for component retrieval. Components are described by a
set of tuples and each tuple represents a characteristic

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2491

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2491-2498

input-output transformation of a component [18,19].
Retriever can enlarge or shrink the range of results by
continually decreasing or increasing the number of tuples.
The tuple has a great influence on the retrieval effect in
this method, thus it is necessary for domain experts to
provide a set of candidate tuples.

Mili et al.[20] use a pair (S , R) to describe the
specification of a component, where S is the space of the
variables that the component defines on, and it is
structured as the cartesian product of named elementary
spaces, R is a relation on S and describes the change of
space before input and after output. The components in
repository are constructed as lattices by the refinement
relationship of R for certain S . When retriever inputs S ,
the corresponding lattice whose space is S is found. Then
retriever inputs R , a vertex of the lattice will be fixed and
the corresponding component is retrieved. All the
components under this vertex in the lattice are also
retrieved according to the refinement relationship.

The other type of dynamic behavior information
implied in component interface is the invocation
sequence of the operations declared in interface. Meng et
al. give a specification matching method for business
component [21]. A specification of business component
is described in two levels. One is the business operation
signature, including input business data types, output
business data types and the taxonomy of business
operations. The other is the invocation sequence of the
operations, where the symbol “≺ ” represents sequence
relationship between business operations, and the symbol
“&” represents concurrent relationship between business
operations. Given two business components, the
proportion of matching operations to the sum of all the
operations determines the degree of signature similarity,
and the proportion of matching operation sequences to
the sum of all the action sequence determines the degree
of action similarity. The weighted sum of these two
similarity degrees concludes the similarity of the two
components.

Through the above analysis of literature, interface
behavior information can be divided into two types, static
behavior information and dynamic behavior information.
The former mainly included operations, the type of
operations, parameters, the type of parameters, the
operation signature and the pre/post conditions declared
in interface. The latter mainly included the operation
invoking sequence and the changes happened before and
after the component running. The paper will develop
component retrieving method based on static and
dynamic behavior information at the same time.

Our study started from the model of component
interface. In the recent years, many component models
are proposed [22], and interface automaton [23] is chose
here for three reasons. Firstly, interface automaton
describes the operations declared in interface and their
invoked sequence, which including both static and
dynamic behavior information. Meanwhile, the
operations can be extended to almost all of existed static
behavior information. Secondly, comparing with usual
formal methods, interface automaton is more intuitive

and easier to use since it can also be represented as
digraph. Thirdly, interface automaton theory discusses
component composition completely, which facilitates the
further judgment and usage of retrieved component.

Our previous work [24] has a preliminary exploration
of component retrieving based on interface model. In that
work, retrievers’ requirement is expressed by a flow chart
that is transformed into an automaton later. Component is
indexed by the set of routes in its digraph. Component
matching in fact is the matching of the route sets of the
two digraphs, i.e., for every route of query automaton,
there must be a matching route in the matching
automaton.

In general, literature [21] and [24] design matching
method by automaton language matching, and no
implementation is discussed in both of them. In this paper,
a component retrieving method implemented based on
incidence matrix of digraph is proposed. The paper is
outlined as follows. In section 2, query and component in
repository are modeled by a slightly modified interface
automaton. In section 3, three levels of matching are
defined to satisfy the need of approximate matching. In
section 4, we propose a definition of digraph inclusion
relationship to implement the matching definition given
in section 3. We also give corresponding algorithm and
an example illustrates how the algorithm works in detail.
Component retrieving algorithm is developed in section 5
and related component organization in repository is
discussed. The advantage of the retrieving method is
discussed in section 6. Finally, a brief conclusion and
future work is described in the last section.

II. MODELS FOR QUERY AND COMPONENT

In search and retrieval system, same descriptions
model of query and elements of repository will be great
help of the retrieval effect. In order to formally model
query and component, we use interface automaton (IA)
[23], which is a state-based model, similar to finite state
diagrams, for representing behavior required by
retriever’s and component. For the sake of discussion, the
IA model is slightly modified to apply to our retrieval
purpose, as it is defined as follows.

Definition 1 An interface specification of a component
is a deterministic finite automaton 0:= , , ,M V v TΣ ,
where

V is a set of states,
0v V∈ is an initial state,

{ }| ?/ !, OpName, OutType, InTypeδ δΣ = = < > is a
set of operation signatures declared in interface, and each
is composed of four tuples, in which the symbol “?/!”
denotes the call direction of the operations, in the other
words, it indicates that the operation is a request function
or a provide function, OpName denotes the name of the
operation, OutType denotes the type of output, and
InType denotes a set of types of input parameters.

{ }| ,i j i jT v v v v Vδ= × × ∈ is a set of steps.
We specify Σ as the size of M.

2492 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

Fig.1 is an example of IA. Obviously, the diagram of
IA can be viewed as a digraph, in which the states, steps
and operations of the automation correspond to the
vertexes, directed edges and labels of edges of the
digraph respectively.

Definition 2 (Ancestor-junior relationship) In an IA, if
there exist some steps which constitute a continuous walk,
e.g., i i jv vδ× ×　 , j j lv vδ× × , …, m m nv vδ× × , then the
operations of the previous step is called an ancestor of the
operation of the following step, or the latter is called a
junior of the former. For example, we call operation iδ
an ancestor of operation jδ or operation jδ a junior of

operation iδ , denoted by ()i j= ancestorδ δ and
()j i= juniorδ δ respectively.

The ancestor-junior relationship is transitive. And we
specify that, if there is a circle in IA, the operation arrived
from 0v before others is an ancestor of the rest in the
circle.

III. THREE MATCHING LEVELS

For simplicity, M is denoted as IA in component
repository and Q is denoted as IA of query. Due to
approximate matching is necessarily for retrieval systems
to increase recall rate, three matching levels are
elaborately designed.

Definition 3 (Strong Constraint Matching, SCM) If
there exists a mapping :f Q M→ satisfies the following
three conditions, then f is called a strong constraint
matching, and M is called a SCM component of Q:

(1) () ()i j i jf fδ δ δ δ= ⇒ = , ,i j Qδ δ ∈ Σ .

(2) ()i ifδ δ≡ , where the meanings of “ ≡ ” is shown
as follows:

(a) The call direction of iδ is the same to that of
()if δ .

(b) ()()tan OpName, OpNamedis ce f w≤ , i.e., the

semantic of OpName is the same to that of ()OpNamef ,
and w is the semantic similarity threshold set by retriever.

(c) The number and the output type of iδ , i.e.,
OutType, is the same to that of ()if δ .

(d) The number and the input types of parameters of iδ ,
i.e., InType, are the same to that of ()if δ respectively.

(3) () () ()()i j i i= ancestor f = ancestor fδ δ δ δ⇒ .
Definition 4 (Strong Constraint Approximate

Matching, SCAM) If there exists a mapping :f Q M→
satisfies the following three conditions, then f is called a
strong constraint approximate matching, and M is called
a SCAM component of Q:

(1) () ()i j i jf fδ δ δ δ= ⇒ = , ,i j Qδ δ ∈ Σ .

(2) ()i ifδ δ≈ , some tuples of iδ can be neglected,
especially, the elements of InType can be neglected
completely or partially. And for the given tuples of iδ ,
“ ≈ ” means that:

(a) The call direction of iδ is the same to that of
()if δ .

(b) ()()tan OpName, OpNamedis ce f w≤ , i.e., the

semantic of OpName is the same to that of ()OpNamef ,
and w is the semantic similarity threshold set by user.

(c) The output type of iδ , i.e., OutType, is the same to
that of ()if δ .

(d) Each of the input types listed in InType of iδ has a
consistent item in InType of ()if δ .

(3) () () ()()i j i i= ancestor f = ancestor fδ δ δ δ⇒ .
Definition 5 (Weak Constraint Approximate Matching,

WCAM) If there exists a mapping :f Q M→ , satisfies
the following three conditions, then f is called a weak
constraint approximate matching, and M is called a
WCAM component of Q:

(1) () ()i j i jf fδ δ δ δ= ⇒ = , (),i j Qsubδ δ ∈ Σ ,

where ()Qsub Σ is a subset of QΣ , and the percentage of

()s Q Qub Σ Σ is set by retriever.

(2) ()i ifδ δ≈ , the meanings of “ ≈ ” is the same to
condition (2) of Definition 4.

(3) () () ()()i j i j= ancestor f = ancestor fδ δ δ δ⇒ .
In these definitions, the first condition is to ensure the

mapping is an injective mapping. The rest two conditions
are operation signature matching and operation invoked
sequence matching respectively, which are the two sides
of behavior matching the paper mainly focuses on.

Obviously, the constraints of the three kinds of
matching are weakening in order. And the difference of
the three levels matching is manifested in the second
condition, operation signature matching. Here, we do not
intend to discuss operation signature matching in detail,
but we conclude that, the matching of call direction is a
symbol or character matching, the matching of OpName
is a semantic matching, and the matching of OutType or
InType is a kind of type matching. The loosing matching
strategy results from the retrievers’ imperfect knowledge
of the requirements. And it is benefit for retriever to give
the query flexibly based his/her assurance of the need.

Figure 1. Interface automaton M.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2493

© 2014 ACADEMY PUBLISHER

IV. MATCHING IMPLEMENTATION

Since users cannot describe the query comprehensively
due to the complexity of requirements, they are always
demanded to describe no more than the behavior features
he/she assures. For a query IA Q and a component IA M
which satisfies query Q, there always has Q M≤ .
Moreover, as for the equivalence of IA and its diagram,
the matching relationship of M and Q is translated into
the inclusion relationship between their corresponding
digraphs. Here we don’t differentiate the symbolic
representation of IA and its digraph, but the matching is
actually implemented based on digraph. Next, the
matching algorithm based on incidence matrix of digraph
is described and an example is given.

A. Matching Algorithm
Since the matching is conceived based on the inclusion

relationship between the corresponding digraphs of two
IA, the digraph inclusion relationship and related concept
are defined firstly.

Definition 6 (Digraph inclusion relationship) Given
two digraphs = , ,Q Q QQ V E L and = , ,M M MM V E L ,

where ,Q MV V are the vertex sets, and ,Q ME E are the
directed edge sets, and ,Q ML L are the label sets of edges
respectively. If there is an injective mapping from QL (or

()QSub L) to ML , such that for every mapping pair (),l l′ ,
l′ matches with l in meanings of operation signature
matching. Moreover, for any two mapping
pairs ()1 1,l l′ and ()2 2,l l′ , if ()1 2l = ancestor l , there always

existing ()1 2l = ancestor l′ ′ , then, we say digraph M

including digraph Q.
Here, the label matching is corresponding to the

operation signature matching of SCM, SCAM, and
WCAM respectively. “ ()Qsub L ” is derived from

“ ()s Qub Σ ” in condition (1) of WCAM. And the
ancestor-junior relationship is kept. Therefore, the
digraph inclusion relationship realizes all the three levels
matching defined before. As the labels (operations in IA)
of the edges are different from each other, we use the
label to denote the directed edge.

Definition 7 (Matching edges, Irrelevant edges) Given
two digraphs M and Q, For an edge Ml L′∈ , if there
exists an edge Ql L∈ , such that l′ matches with l , then,
we say l′ is a matching edge; if there does not exist an
matching edge in QL , then, l′ is called an irrelevant edge.

We denote the set of matching edge as abbreviation
MatchingSet, and the set of irrelevant edge as
IrrelevantSet.

Here we give an implementation of component
matching algorithm based on incidence matrix. Usually
depth-first or width-first algorithm will be considered for
dealing of digraph. However, since the emphasis is the
edges in digraph rather than the vertexes, the work makes

use of incidence matrix of digraph to determine whether
the inclusion relationship exists between two digraphs.

The incidence matrix of IA M in Fig.1 is denoted
as MatrixM . For the convenience of description, edges
labels and vertexes are marked on the heads of columns
and rows of MatrixM respectively. As to retriever, diagram
is used to give his/her query and corresponding incidence
matrix is got automatically from the diagram.

0

1

2

3

4

5

6

1 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0
0 1 1 0 0 1 0 0 0
0 0 1 1 0 0 0 0 0
0 0 0 1 1 0 0 1 0
0 0 0 0 1 1 1 0 0
0 0 0 0 0 0 0 1 1

Marix

a b c d e f g h i
v
v
v

M
v
v
v
v

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎣ ⎦

When query Q and component M are both represented

as incidence matrixes, the matching algorithm is given as
follows.
Matching Algorithm
Input: MatrixQ , MatrixM and matching criteria SCM, SCAM
or WCAM
Output: Successful or Failure

Firstly, matching the labels in matrix MatrixQ and MatrixM ;
If Q ML L⊆
//here “ ⊆ ” is obtained by semantic matching of
matching definitions in section 3; and for WCAM, the
condition will be ()Q Msub L L⊆
 For each u IrrelevantSet∈

and [] []1 2, 1 , 1M v u M v u= ∧ = −
 {

If w MatchingSet∃ ∈

[] []1 2, 1 , 0M v w M v w= − ∧ =

[]2 , 1M v w ← −
 Delete u and the column it located
}

Arrange the order of the elements in MathcingSet as
that of the matching edges in QL
Else

 Return fault
For each Qw L∈ and its matching edge
w MatchingSet′∈ in ML
//the condition will be ()Qw sub L∈ if WCAM is chose

{
If [] [], 1 , 1n mQ v w M v w′= ∧ = then

n mv v′ ←
If nv′ already exists in the column
{

2494 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

 If [] [], , 1n mj MatchingSet M v j M v j′∃ ∈ ∧ = = −
For i MatchingSet∀ ∈

 Compute [] [] [], , ,n n mM v i M v i M v i′ ′← ⊕
Else

Return fault
}

Else
 Skip

Arrange the order of n Matrixv M′ ∈ in the column according
to that of n Matrixv Q∈
 If for [], 0nQ v j∀ ≠

 [] [], ,n nM v j Q v j′ ′ =
 Return successful

Else
 Return fault

The algorithm is actually divided into four steps, and

in the next subsection an example will be illustrated how
the algorithm is implemented.

The computational complexity of graph traversal is
()()max ,M M M MV V V Eο ⋅ ⋅ . In the aspect of

complexity, it looks like there is no great difference from
DFS algorithm based on adjacency matrix, whose
complexity is ()V Vο ⋅ . Noticed that, there involved
semantic matching in the matching process, whose
complexity cannot be ignored although no specific
semantic matching algorithm is assigned in this paper.
While the labels matching is repeated to adapted to a new
choice of path in DFS, it only needs to compute one time
to finish the whole matching process in our algorithm.
That is the efficiency of our method.

B. Examples
Suppose the IA M in Fig. 1 is a component in

repository, and Q1 and Q2 shown in Fig. 2 are query
automatons. Here, we show how to determine M is a
matching of Q1 but Q2.

Step 1 Suppose the kind of matching retriever chose is
SCM. QMatrix1 and QMatrix2 are the incidence matrixes of
Q1 and Q2 respectively. For simplicity, the same
lowercase letters marked on the head of the columns
stand for the matching edges.

0

1 1

2

3

1 0 1 0 1
1 1 0 1 0
0 1 0 0 1
0 0 1 1 0

Matrix

a d g f i
v

Q v
v
v

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

0

2 1

2

3

1 0 1 0 1
1 1 0 0 0
0 1 0 1 1
0 0 1 1 0

Matrix

a d g f i
v

Q v
v
v

− −⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥−
⎢ ⎥−⎣ ⎦

Step 2 The connected feature of irrelevant edges, b, c,
e, h, is extended to the matching edges and then these
edges are deleted in MatrixM . When all of the irrelevant
edges are deleted and the matching edges are arranged in
the same order as that appears in MatrixQ , the result is got
as MatrixM ′ .

Step 3 In 1MatrixQ , the start point of a is 0v , and the
start point of the matching edge a in MatrixM ′ is 0v , it
means that vertex 0v in MatrixM ′ is corresponding to
vertex 0v in 1MatrixQ , so 0v in MatrixM ′ is modified with 0v′ .
In 1MatrixQ , the start point of d is 1v , and the start point of
the matching edge d in MatrixM ′ is 3v , it means that
vertex 3v in MatrixM ′ is corresponding to vertex 1v in

1MatrixQ , so 3v in MatrixM ′ is modified with 1v′ .
Analogously, 5v and 6v in MatrixM ′ are modified with 3v′
and 2v′ respectively. As for vertex 2v in MatrixM ′ , it should
be modified with 1v′ , but 1v′ already exists, then the row
fixed by 2v is added to the row fixed by 1v′ , and we
denote 2v as ()1v′ . The correspondence of vertexes of

1MatrixQ to MatrixM ′ is shown as 1MatrixM ′′ . Finally, the order of
the corresponding vertexes is arrange as same as the
vertexes appear in 1MatrixQ , and the result is shown

Figure 2. Query automaton Q1 and Q2.

0

1

2

3

4

5

6

1 0 1 0 1
1 0 0 0 0
1 0 0 1 0
1 1 0 0 0
0 1 0 0 0
0 1 1 1 0
0 1 0 0 1

Matrix

a d g f i
v
v
v

M
v
v
v
v

− −⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

′ = ⎢ ⎥−⎢ ⎥
⎢ ⎥−
⎢ ⎥

− −⎢ ⎥
⎢ ⎥−⎣ ⎦

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2495

© 2014 ACADEMY PUBLISHER

as 1MatrixM ′′′ . The similar result is obtained for

2MatrixQ is 2MatrixM ′′ , but the combination of 2v and 6v can
not compute since the prerequisite is not hold. So the
conclusion is obtained that M is not a match of Q2.

()

0 0

1

2 1
1

3 1

4

5 3

6 2

1 0 1 0 1
1 0 0 0 0
1 0 0 1 0
1 1 0 1 0
0 1 0 0 0
0 1 1 1 0
0 1 0 0 1

Matrix

a d g f i
v v

v
v v

M
v v

v
v v
v v

′→ − −⎡ ⎤
⎢ ⎥−⎢ ⎥

′ ⎢ ⎥→ −
′′ = ⎢ ⎥′→ − −⎢ ⎥

⎢ ⎥−
⎢ ⎥

′→ − −⎢ ⎥
⎢ ⎥′→ −⎣ ⎦

0

1

1 2

3

1

4

1 0 1 0 1
1 1 0 1 0
0 1 0 0 1
0 1 1 1 0
1 0 0 0 0
0 1 0 0 0

Matrix

a d g f i
v
v

M v
v
v
v

′ − −⎡ ⎤
⎢ ⎥′ −⎢ ⎥

′′′ ′ ⎢ ⎥= −
⎢ ⎥′ − −⎢ ⎥
⎢ ⎥−
⎢ ⎥

−⎢ ⎥⎣ ⎦

0 0

1

2 2
2

3 1

4

5 3

6 2

1 0 1 0 1
1 0 0 0 0
1 0 0 1 0
1 1 0 1 0
0 1 0 0 0
0 1 1 1 0

() 0 1 0 0 1

Matrix

a d g f i
v v

v
v v

M
v v

v
v v

v v

′→ − −⎡ ⎤
⎢ ⎥−⎢ ⎥

′ ⎢ ⎥→ −
′′ = ⎢ ⎥′→ − −⎢ ⎥

⎢ ⎥−
⎢ ⎥

′→ − −⎢ ⎥
⎢ ⎥′→ −⎣ ⎦

Step 4 The first four lines of 1MatrixM ′′′ is compared
with 1MatrixQ to check the ancestor-junior relationship, and
the rest lines are redundant for the check. Clearly, for
each nonzero value in 1MatrixQ , there is a same value in the
corresponding position of 1MatrixM ′′′ , then, we conclude the
digraph M includes Q1, then component interface M
matches with query automaton Q1.

More examples are verified and the conclusion can be
confirmed by digraphs in Fig. 1 and Fig.2 directly, which
states the correctness of the method.

V. RETRIEVING ALGORITHM

A. Repository Organization
There are two problems to be solved in a component

library. One is how to build the component description, as
well as index components on the basis of the description.
Here, we suppose that diagrams of component and
corresponding incidence matrixes are two kinds of

indexes in repository. The former is showed for retriever
to further verify the retrieval result, and the latter is used
to check the inclusion relationship.

The other problem is how to classify those components
in the library. Here, components in repository are
classified into groups by the number of edges of
corresponding digraph, and the matching relationship
between them is established by applying the matching
algorithm to each of component. For a component M, the
number of its edges is denoted as |M|.

Additionally, the matching relationship between
components in repository can be computed offline. The
advantage of pre-computed matching relationship is that
the related components can be obtained through the
matching relationship in repository without compute once
a matching component is found. Then the cost of
retrieving all the matching components is largely less
than the method of comparing component in repository
one by one.

B. Retrieving Algorithm
As previously mentioned in section IV, the users gives

the query with the content he/she assures to get more
exact retrieving result. For a component and the related
component in repository determined by matching
algorithm, there is a transitivity relationship among them
only if SCM and SCAM matching are chose. Therefore,
considering the precision and recall ratio of searching,
here SCAM matching result in repository is used in
retrieving algorithm. And SCM can be used of course to
increase precision ratio.
Retrieving algorithm
Input: user’s query Q, where |Q|=k, and parameter i
Output: retrieving result MResult

Call the matching algorithm in component groups N k=
Return 1 2{ , , , }sMResult M M M= "
Compute

1 2() () ()sMResult MResult Match M Match M Match M= ∪ ∪ ∪"∪
 // ()iMatch M is the SCAM matching result of

iM obtained by pre-computed matching relationship
 For (N k i= + ; 1i = ; i + +)
{

If jM MResult∈
Skip

Else
{
Call matching algorithm
If jM matching successful
 ()j jMResult MResult M Match M= ∪ ∪
Else
 Skip
}

 }
Return MResult

Here, the algorithm searches the candidate components
only from groups whose number of edges is from k to k+i.

2496 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

The reason is the retriever already has a good knowledge
of his/her with the developed part of software, and under
this assumption, the number and correctness of
information of operations given by retriever is closed to
the true component. Therefore, a proper expansion of
retriever’s query could satisfy the need of searching
effect and efficiency. The value of parameter i is
determined by retriever, and he/she can modify it if the
retrieving result is dissatisfied. If the value of i is
increased to including all the groups in repository, then
the result is equal to traversing search of repository.

The repository organization is in favor of ranking the
retrieval result. The retrieved components are ranked by
the number of edges, and they can be given in random
sequence if their number of edges is same. And the
digraph of component will be great helpful for users to
verify quickly if the component is that he/she wants.

VI. DISCUSSIONS

In this paper, IA is used as the model of component to
discuss component retrieving, and three levels of
matching definition are given to meet the need of users.
Meanwhile, component matching algorithm and
retrieving algorithm are proposed respectively. The
advantage of the design is analyzed as follows.

Firstly, IA can describe both static and dynamic
behavior information. It is a model that can give
description of interface behavior comprehensively and
intuitively. Meanwhile, the discussion of composition
theory of IA in [23] provides a strong support for
software assemble, which reduces the troublesome arisen
by the inconsistent of model in following model checking
and composition verification. It is seldom considered by
most of literatures, and they usually viewed component
retrieving as a single problem rather than a part of
software product line.

Secondly, as we mentioned many times, the matching
definitions and algorithms in this paper are proposed
under a certain assumption, that is, users already have a
proper knowledge of the component they wanted with the
knowledge part of software that has been developed. This
assumption is naturally and it increases the believability
of the query given by retriever, which is part of the
reason of local searching in design of retrieving algorithm.

Thirdly, though retrievers have assurance of their
query to a large extent under our assumption, uncertainty
is usually happened, too. Then three different levels of
definitions are developed to meet the different assurance
of retrievers. Though no specific semantic matching
algorithm is assigned to the matching definitions,
different matching levels are also helpful to restrict the
range of result.

Next, most of literatures about component matching
are discussion of method. A specific implementation
algorithm of component matching is given in this paper
based on incidence matrix of digraph. It is a further step
for the applying of the method.

Lastly, repository organization, component index
method and retrieving result method are discussed in this
paper, and the retrieving algorithm is proposed. Different

from traversal search in literatures [14-17, 21], it adopts a
partial search strategy. The idea of utilization of
repository organization is similar to [20], but the
component model is different. Since the retrieving
algorithm makes full use of the features of component
organization and index methods, no bad influence will
happen to retrieving effect, but, retrieving efficiency is
increased.

VII. CONCLUSIONS

In the paper, a component retrieving method is
proposed based on the incidence matrix of diagram. The
paper starts from the model of component interface and
IA is chose to describe the static and dynamic behavior
information of interface. Three levels of matching are
defined to adapt retriever’s knowledge of requirement.
Component matching is turned into digraph inclusion
relationship which is implemented by incidence matrix.
Moreover, component classification in repository,
component index and how to rank the retrieving result is
discussed. With the discussion of repository organization,
a retrieving algorithm is developed. The most remarkable
feature of the algorithm is that it traverses part of
repository to get the candidate components and a quite of
them are obtained from the offline matching compute of
repository.

Since the paper gives full consideration of applicable
of component model in CBSD when choosing IA as the
model, the retrieving method can be integrated into
software product line perfectly. In the future, platform
will be built and tests will be conducted to checking the
result analyzed in this paper.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China (No. 61100009), Shaanxi
Province Major Project of Innovation of Science and
Technology (No. 2009ZKC02-08), Shaanxi Province
Department of Education Industrialization Training
Project (No.09JC08) and Shaanxi Technology Committee
Industrial Public Relation Project (No.2011K06-35).

REFERENCES
[1] M. D. McIlroy, “Mass produced software components,” In

NATO Software Engineering Conference, P. Naur and B.
Randell, Eds. Brussels.1968, pp.138-155.

[2] L. Yanpei , G. Yuesheng and J. Chen, “Research on
component retrieval methods,” Journal of Software. vol. 7,
pp.1633-1640, July 2012.

[3] W. Yuanfeng, Z. Yong, R. Hongmin, Z. Sanyuan and Q.
Leqiu, “Retrieving components Based on Faceted
Classification,” Journal of Software. China, vol.13, pp.
1546-1551, 2002.

[4] W. Yuanfeng, X. Yunjiao, Z. Yong, Z. Sanyuan and Q.
Leqiu, “A matching model for software component
classified in faceted scheme,” Journal of Software. China,
vol. 14, pp. 401-408, 2003.

[5] M. Liang, X. Bing and Y. Fuqing, “The unified faced-
based method to retrieve component in multi-library,”
ACTA Electronica SinicaL. China, vol. 30, pp. 2149-2152,
2002.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2497

© 2014 ACADEMY PUBLISHER

[6] L. Ge, Z. Lu, L. Yan, X. Bing and S. Weizhong,
“Shortening retrieval sequences in browsing-based
component retrieval using information entropy,” Journal of
Systems and Software. vol.79, pp.216-230, 2006.

[7] N. Sathit, S. Peraphon and E. R. William, “Fuzzy
subtractive clustering based indexing approach for
software components classification,” Proceedings of the 1st
ACIS International Conference on Software Engineering
Research & Applications (SERA’03), R. Y. Lee and K. W.
Lee Eds. San Francisco, 2003, pp. 100-105.

[8] R. K. Bhatia, M. Dave and R. C. Joshi, “Ant colony based
rule generation for reusable software component retrieval,”
Proceedings of the 1st Conference on India Software
Engineering Conference (ISEC’08), Hyderabad, 2008,
pp.129-130..

[9] S. Mahmood, R. Lai and Y. Kim, “Survey component
based software development,” IET Software. vol.1, pp.57-
66, 2007. Doi: 10.1049/iet-sen: 20060045.

[10] K. Wojtek. “Composite nature of component,”
Proceedings of International Workshop on Component-
Based Software Engineering, I. Crnkovic, S. Larsson and J.
Stafford, Eds. Los Angeles, 1999, pp.73-77.

[11] A. Y. Basem, “A precise characterization of software
component interfaces,” Journal of Software. vol. 6, pp.349-
365, March 2011.

[12] E. Rik and G. Paul, “Structural matching of BPEL
Processes,” Proceedings of 5th European Conference on
Web Service (ECOWS’07), Halle, 2007, pp.171-180, Doi:
10.1109/ECOWS.2007.22.

[13] M Bouzeghoub, D. Grigori and A. Gater, “A Graph-based
approach for semantic process model discovery,” Graph
Data Management: Techniques and Applications. S. Sakr,
& E. Pardede, Eds. Hershey, 2012, pp. 438-462,
Doi:10.4018/978-1-61350-053-8.ch019.

[14] A. M. Zaremski and J. M. Wing, “Signature matching: a
tool for using software libraries,” ACM Trans. Softw. Eng.
Methodol. vol.4, pp.146–170, 1995.

[15] A. M. Zaremski and J. M. Wing, “Specification matching
of software components,” ACM Trans. Softw. Eng.
Methodol. Vol.6, pp.335-369, 1997.

[16] A. M. Zaremski and J. M. Wing, “Signature matching: a k
ey to reuse,” Proceedings of 1st ACM SIGSOFT
Symposium on the Foundations of Software Engineering, N.
David, Eds. Los Angeles, 1993, pp.182-190.

[17] D. Hemer and P. Lindsay. “Specification-based retrieval
strategies for module reuse,” Proceedings of Australian
Software Engineering Conference, G. D. Douglas and S.
Leon, Eds. Canberra, 2001, pp. 235-243,
Doi:10.1109/ASWEC.2001.948517.

[18] J. Sametinger, Software Engineering with Reusable
Components, Springer-Verlag, 1997.

[19] R. T. Mittermeir and H. Pozewaunig, “Classifying
components by behavioral abstraction,” Proceedings of 4th
Joint Conference on Information Sciences, W. P. Paul, Eds.
North Carolina, 1998, pp. 547-550.

[20] R. Mili, A. Mili, and R. T. Mittermeir, “Storing and
retrieving software components: a refinement based
system,” IEEE Trans. Softw. Eng.. vol.23, pp.445-460, Jul
1997.

[21] M. Fanchao, Z. Dechen and X. Xiaofei, “A specification-
based approach for retrieval of reusable business
component for software reuse.” World academy of science,
engineering and technology. vol.15, pp.240-247, 2006.

[22] K. K. Lau and Z. Wang, “Software component models.”
IEEE Trans. Softw. Eng.. vol.33, pp.709-724, Oct 2007.

[23] L. de. Alfaro and T.A. Henzinger. “Interface automata,”
Proceedings of the joint 8th European Software
Engineering Conference and the 9th ACM SIGSOFT
Symposium on the Foundations of Software Engineering,
Vienna, 2001, pp.109-120. Doi: 10.1145/503209.503226.

[24] W. Yinghui and Y. Chunxia, “A perfect design of
component retrieval system,” Information. vol.15,
pp.1687-1704, 2012.

Chunxia Yang, is a phD student at
Xi’an University of Technology in
School of Computer Science &
Engineering, Xi’an University of
Technology. She received her M.S.
degree in 2007 from School of Science,
Xi’an University of Technology. Her
main research interests include software
component retrieval, component

composition and deployment in CBSE.

Yinghui Wang, is a professor of School
of Computer Science & Engineering,
Xi’an University of Technology, China.
He received his B.S., M.S., and PhD
degrees in 1989, 1999, and 2002,
respectively. He is a senior member of
China Computer Society (CCF). He has a
long software development and
maintenance experience in oil field

systems. His research interests include software development,
software evolution and pattern recognition.

2498 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

	jsw0909 253
	jsw0909 254
	jsw0909 255
	jsw0909 256
	jsw0909 257
	jsw0909 258
	jsw0909 259
	jsw0909 260
	jsw0909 261
	jsw0909 262
	jsw0909 263
	jsw0909 264

