
Ranking and Rules for Selecting Two Persons
in Pair Programming

Sultan Alshehri

Software Systems Engineering, Regina, Canada
Email: aljumais@uregina.ca

Luigi Benedicenti

Software Systems Engineering, Regina, Canada
Email: luigi.benedicenti@uregina.ca

Abstract— The analytic hierarchy process (AHP) has been
applied in many fields and especially to complex engineering
problems and applications. The AHP is capable of
structuring decision problems and finding mathematically
determined judgments built on knowledge and experience.
This suggests that the AHP should prove useful in agile
software development, where complex decisions occur
routinely. This paper provides a ranking approach to help
the XP team to set the rules of pairing two persons for pair
programming and proposes several criteria can be used for
the AHP evaluation. Two academic and the three-indusial
case studies have applied the AHP to decide these rules in
pairing.

Index Terms— Extreme Programming; Pair programming;
Analytic Hierarchy Process.

I. INTRODUCTION

Pair programming in (XP) means that two programmers
work together on one machine to do the same task. One of
them is responsible for the typing the code (the driver);
the second is responsible for watching and reviewing the
problem currently being worked on (the navigator) [14].
XP programmers can achieve numerous of benefits when
using pair programming, such as code with less defects,
improved design quality, accelerated problem solving,
timely delivery, fewer distractions and higher productivity
[114].

This paper is organized as follows: section 2 present the
current research on pair programming field; section 3
briefly explain the methodology of the work; section 4
explains the AHP method; the four pair programmers
options are presented in section 5; four criteria for ranking
the pair programmers alternatives are proposed in section
6; the case studies’ results and findings are presented in
section 7; section 8 discuss the validity of the study; and
section 9 concludes the paper.

II. CURRENT RESEARCH ON PAIR PROGRAMMING

The current research is focusing on such areas as pair
productivity, maximizing pair performance, evaluating
the impact of pairs on the code quality and solving
problems created when pair programmers have conflicts.

Jan Hendrik et al. [3] provided assessment strategies to
evaluate the individual programming abilities during pair
programming situations. Tomayko [4] proved that when
programmers work in pairs, they made fewer errors than
in individual programming situations. VanDeGrift [5]
found out that pair programming practice increases the
programming performance and confidence. It also
decreases the frustration levels of programmers. Also,
pair programming could be a promising way of teaching
the programming and elevate the programmers' skills.

Katira et al. [6] conducted a study involving 361
software engineering students at North Carolina State
University to investigate the compatibility of pairs in pair
programming. They found that students are compatible
with partners whom they perceive of similar skill. They
consider the midterm grades in class and the GPA to be
skills indicators. The authors also found that mixing the
genders pairs are less likely to be compatible. They stated
"A collaborative style of programming seems to appeal
more to female and minority students because of the
highlighted social nature of the pair programming
paradigm" [6].

Other work [7,9] examined the compatibility of the
pairs among freshman, advanced undergraduate, and
graduate students. They found that the students who have
a partner in same skill level are more compatible than
others. For example the graduate students work well with
partners of similar actual skill level and a freshmen work
better with partners with the same skill level.

Margolis [8] concluded that: "The feminine take on
technology looks right through the machine to its social
function, while the masculine view is more likely to be
focused on the machine itself. As a result, when
technology is introduced as an end in itself, as ill a
programming class, for instance, young women are less
likely to be interested than young men".

The National Centre for Education Statistics [10] shows
a low representation of women and minority in computer
science. Also, results of a survey-based study at the
University of Wales [11] showed that pairs with lower
self-esteem liked pair programming more than pairs with
higher self-esteem. Also, Nelson [12] implemented “peer
checking” experiment showed that the African-American

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2467

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2467-2473

success rates improved when shifting from individual
work to collaborative small groups. Salomon [13] states:
“Knowledge is commonly socially constructed, through
collaborative efforts toward shared objectives or by
dialogues and challenges brought about by differences in
persons' perspectives”. Andrew and Bryan [14]
emphasized that several personality traits should be
considered when two developers are paired to collaborate
effectively: effective communication, comfortableness
working with a partner, confidence in one’s abilities and
the ability to compromise. Moreover, the initial findings
indicate that pair programming produces shorter code (e.g.
[14,15]) and results in better adherence to coding
standards [16]. Müller [17] reported an increase of 5% on
the total project costs caused by applying pair
programming.

However, there does not appear to be a formal method
to choose pairs in accordance with specific criteria. In
this paper, we will show how AHP can be used to select
the best pair matching based on the proposed criteria and
among several alternatives.

III. METHODOLOGY
The study presented in this work is carefully designed

to include two academic case studies and three industrial
studies. This section describes in more detail the research
question, unit of analysis and used data sources.

1) Research Questions
The primary objective of this study is to investigate

how AHP can be used to decide the best pairs in pair
programming. Moreover, the following research questions
provided a focus for our case study investigation:

A. How can AHP help the XP team to match pairs
based on specific criteria?

B. How do AHP results affect the developer’s
relation and performance?

2) Unit of Analysis
According to [18] the unit of the analysis should be

defined from the main research questions of the study.
The main focus is to rank several potential pairs to work
together in coding. So the ranking and the process of
evaluation are the two units of analysis for this study. Also,
we consider the developer’s view of how AHP benefits
each XP practice. As result, this work is designed as
multiple cases (embedded) with two units of analysis.

3) Data Collection and Sources
In the beginning of the study we propose the criteria

affecting the ranking process and help to examine the
AHP tool ability and benefits. This data was collected
from literature review and previous studies. To increase
the validity of this study, data triangulation was obtained.
The data sources in this study were:

1. Archival records such as study plan from the
graduate students.

2. Questionnaire given to the participants when
developing the XP project.

3. Open-ended interviews with the participants.
4. Feedback from the customer.

The questionnaires and the open-ended questions only
have been done with educational case studies.

4) Case Study Design
The educational case studies were performed as part of

a course in the Advanced Software Design Class for
graduate students taught in Fall 2012 at the University of
Regina. The participants were 12 master’s students and a
client from a local company in Regina. Participants had
various levels of programming experience and a good
familiarity with XP and its practices. The Students'
background related to the experiment includes several
programming languages such as Java, C, C#, and ASP.net.
They had implemented projects previously using various
software process methodologies. The study was carried
out throughout 15 weeks; students were divided into two
teams. Both teams were assigned to build a project called
“Issue Tracking System” brought by the client along with
industrial requirements. It ran in 5 main iterations and by
the end of the semester, the whole software requirements
were delivered. The students were paired based on their
experience and knowledge, but we also had an
opportunity to pair some experts with novice and average
programmers for the purpose of the study. Participants
were given detailed lectures and supporting study
materials on extreme programming practices that focused
on pair programming rules. The students were not new to
the concepts of XP, but they gained more knowledge and
foundation specifically in the iteration plan, release
planning and prioritizing the user stories. In addition, the
students were exposed to the AHP methodology and
learned the processes necessary to conduct the pairwise
comparisons and to do the calculations. Several papers
and different materials about the AHP and pair
programming were given to the students to train them and
increase their skills in implementing the methodology. In
addition, a survey was distributed among students to get
further information about their personal experiences and
knowledge.

The researchers have visited three companies (two
companies in Regina, and one in Calgary; both in Canada)
several times and met with the developers and team
leaders to explain the purpose of the study and to collect
the data and feedback from the real industries. To preserve
their anonymity the names have been withheld. All the
companies are familiar with XP concept and currently
practicing the pair programming during their development.
In this study, eighteen experts have used their knowledge
and average of 10 years experience to evaluate the
proposed pair alternatives using the AHP.

IV. THE ANALYTICAL HIERARCHY PROCESS IDENTIFY
THE HEADINGS

AHP is a systematic approach for problems that involve
the consideration of multiple criteria in a hierarchical
model. AHP reflects human thinking by grouping the
elements of a problem requiring complex and multi-aspect
decisions [19]. The approach was developed by Thomas
Saaty as a means of finding an effective and powerful
methodology that can deal with complex decision-making

2468 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

problems [20]. AHP comprises the following steps: 1)
Structure the hierarchy model for the problem by breaking
it down into a hierarchy of interrelated decision elements.
2) Define the criteria or factors and construct a pairwise
comparison matrix for them; each criterion on the same
level is compared with other criteria in respect of their
importance to the main goal. 3) Construct a pairwise
comparison matrix for alternatives with respect to each
objective in separate matrices. 4) Check the consistency of
the judgment errors by calculating the consistency ratio. 5)
Calculate the weighted average rating for each decision
alternative and choose the one with the highest score.
More details on the method, including a step-by-step
example calculation, are found in [19].

Saaty [8] developed a numerical scale for assigning the
weight for criteria or alternative by giving a value between
1 (equal importance) and 9 (extreme importance), see
table 1.

TABLE 1.
AHP NUMERICAL SCALE DEVELOPED BY SAATY.TABLE TYPE STYLES
Scale Numerical

Rating
Reciprocal

Equal importance 1 1
Moderate importance of

one over other
3 1/3

Very strong or
demonstrated importance

7 1/7

Extreme importance 9 1/9
Intermediate values 2,4,6,8 1/2, 1/4, 1/6,

1/8

V. PAIR PROGRAMMING OPTIONS

There are many ways of pairing programmers; Laurie
Williams in his book “Pair Programming Illuminated”
stated four possible alternatives that can be investigated: 1)
Expert-Expert Pairing, 2) Expert-average Pairing, 3)
Expert-Novice pairing, 4) and Novice- Novice Pairing.
All of the possibilities of pairing have their own purposes
and effects that can be summarized as follows:

1) Expert-Expert:
When pairing two experts there might be ego issues,

but the work would benefit greatly. As Ron Jeffries states,
"When the two experts get in sync, you can hear the
lightning crackling. Working with a good expert partner is
like gaining 40 or more IQ points" [21]. However, Lui and
Chan conducted empirical experiment in pair
programming and found that novice–novice pairs against
novice solos are much more productive than expert–expert
pairs against expert solos [22].

2) Expert-Average:
When expert pairs with average expert there is possible

of raising his/her skill level. However, if the average
person is not interested to expand his/her knowledge or
doesn’t interact well with the expert very well, that might
create conflicts easily and defy the purpose of pairs.

3) Expert-Novice
The expert has to be willing to train the novice, which

requires him/her to be more patient with slow

development paces sometimes. On the other hand, the
expert should welcome advice or suggestion from the
novice and be able to admit the mistake if there is any.

4) Novice-Novice
This pairing is employed “[t]o produce production code

in a relatively noncomplex area of the project, giving
valuable experience to both programmers in the process”
[21].

VI. PROPOSED CRITERIA FOR SELECTING THE OPTIMAL
PAIRS

To find the best pair, it is necessary to determine the
most important criteria that affect the participants when
choosing the alternatives. The resulting criteria will be
compared among each other based on the goal for
importance. Finally, the potential pairs will be compared
against each of the criteria [23]. In this paper, we propose
four criteria that emerged during the case studies we
conducted, but the method described in this paper can be
applied to any set of criteria. The criteria shown below are
simply illustrative of the decision method.

A. Speed: pairs with the highest chance to accelerate
the coding practice;

B. Sharing Knowledge: pairs with the highest
chance to exchange knowledge;

C. Code Quality: pairs with the highest chance to
improve code quality more;

D. Learning: pairs with the highest chance to foster
a training and learning environment.

1) AHP in Practice :
The first step in the analytic hierarchy process is to

structure the problem as a hierarchy that includes three
levels. The top level is the main objective: finding the best
pairs; the second level is the criteria: speed, sharing
knowledge, code quality and learning; the third level is the
alternative: Expert-Expert Pairing, Expert-Average
Pairing, Expert-Novice Pairing, Novice-Novice pairing.
Fig.1 illustrates the AHP structure for the problem.

Figure 1. AHP structure for ranking the options of pairs.

Sheets of paper with appropriate AHP tables were
handed to the all participants to keep the time short and
facilitate the process of the comparison. The first page
was dedicated to collecting general information about the
evaluator, his/her experience, and the type and the level
of his/her programming skills. A matrix is to compare the
five criteria (C1: speed, C2: sharing knowledge, C3:
Code quality, C4: learning).

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2469

© 2014 ACADEMY PUBLISHER

VII. FINDINGS AND RESULTS
Each participant individually evaluated the pairs

options based on the criteria mentioned earlier. The
Expert Choice software [24] was used to calculate the
aggregation results for the entire two teams collectively.

1) Educational Case Studies Results
For team 1, the ranking for the pairs based on all

criteria, i.e. speed, sharing knowledge, code quality and
learning, is summarized as follows. First: Expert-Expert
(36.44); Second: Expert-Average (26.28); Third: Expert-
Novice (21.74); Fourth: Novice-Novice (15.54). Table 2
summarizes the results.

The ranking for the best pairs by Team2 is summarized
as follows: First: Expert-Expert (38.19); Second: Expert-
Average (33.58); Third: Expert-Novice (19.59); Fourth:
Novice-Novice (8.64). Table 3 summarizes the results.

TABLE 2.
PAIR PROGRAMMERS RANKING FOR TEAM 1

Pairs Ranking Scores
Expert-Expert 36.44%
Expert-Average 26.28%
Expert-Novice 21.74%
Novice - Novice 15.54%

TABLE 3.

PAIR PROGRAMMERS RANKING FOR TEAM 2
Pairs Ranking Scores
Expert-Expert 38.19%
Expert-Average 33.58%
Expert-Novice 19.59%
Novice - Novice 8.64%

Fig.2 shows the importance of each criterion as follows: code

quality (56.11), sharing knowledge (23.94), learning (0.82), and speed
(9.13).

Fig.3 shows the importance of each criterion as follows: code

quality (61.92), learning (15.64), speed (11.22), and sharing knowledge
(11.22).

2) The Industrial Cases Results
To keep the companies anonymous, they will be called

A, B, and C. The ranking for the pairs in the industrial
environment is similar to the educational results with
differences in the percentage ranking in each. The order
for the alternative was as follows: First: Expert-Expert;
Second: Expert-Average; Third: Expert-Novice; Fourth:

Novice-Novice. Table 3 summarizes the results for each
company.

TABLE 4.
PAIR PROGRAMMERS RANKING FOR COMPANY A

Pairs Ranking Scores
Expert-Expert 39.29%
Expert-Average 24.96%
Expert-Novice 21.37%
Novice - Novice 14.38%

TABLE 5.

PAIR PROGRAMMERS RANKING FOR COMPANY B
Pairs Ranking Scores
Expert-Expert 33.28%
Expert-Average 31.37%
Expert-Novice 27.96%
Novice - Novice 7.38%

TABLE 6.

PAIR PROGRAMMERS RANKING FOR COMPANY C
Pairs Ranking Scores
Expert-Expert 35.97%
Expert-Average 28.18%
Expert-Novice 26.26%
Novice - Novice 9.59%

3) Observations
A. Educational Cases:

• Considering all the criteria together, both teams
have the same ranking; the highest rank was
expert-expert, the second expert-average, then
expert-novice, finally novice-novice.

• Both teams considered code quality as the most
important criteria. Sharing knowledge
considered the second important criteria for
team1 while team2 ranked the learning criteria
the second important criteria.

• If we rank the best pairs considering each
criterion individually, we can see both teams
have ranked expert-expert the highest in terms
of speed and code quality criteria, see tables 5
and 6.

• Team1 ranked the expert-novice the highest in
terms of sharing knowledge and novice-novice
in term of portability criteria, see tables 7 and 8.

• Team 2 ranked the expert-average the highest in
terms of sharing knowledge and learning criteria,
see tables 9 and 10.

Figure 2. The Importance of the Crtiteria by Team1.

Figure 3. The Importance of the Crtiteria by Team2.

2470 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

• When we did pairing expert-expert as the AHP
results showed to be the highest, other issues
raised up to the researchers, which is the conflict
of opinions. In team 1, two experts had
requested to change their pairs with others.
However, team 2 has two expert as well without
complaints. This indicates that there are other
human factors that affect the interaction

• Also, when pairing experts with novices, the
expert student felt he was doing most of the
work. For the educational purposes, the students
became concerned about the marks more than
teaching others or sharing knowledge with
others especially if they had limited time to
submit the work.

B. Industrial Cases:
• Similar to the educational studies, the three

companies have the same order of ranking.
• Code quality was considered the most important

criterion for B and C companies, while A was
considering the sharing knowledge criterion as
the highest concern.

• If we look at the pair alternatives considering
each criterion individually, we see that the three
companies ranked the expert-expert in the top
position in the speed and code quality criteria.

• For the sharing knowledge criteria, B and C
ranked the expert-novice in the highest position,
while A ranked the expert-expert in the top.

• In term of learning, A, B, and C ranked the
expert-novice in the highest position.

• The expert in all the three companies admitted
that the expert-expert pair is the best in reality as
well, even though the conflict still exists
everywhere. They confirmed that building
relation through some social activities with the
team members can strengthen the relation.

4) Semi-structured Interview Results
The semi-structured interview was conducted after

showing the participants the results of the AHP
evaluation for all the XP practices. Some of the results
were surprising and others were expected. The interview
included open questions to obtain students’ general
opinions about AHP, advantages and disadvantage of the
using AHP, and the best experience for AHP among the
all XP practices. As said previously, the data was
collected in the form of handwritten notes during the
interviews. These notes were organized in a folder to be
analyzed and reached easily. The questions and answers
for the semi-structured interview are below and the
people names are kept anonymous:

From the interviews, we found that the AHP has
received very positive feedback from the participants.
AHP resolved the conflict of opinions of the process of
pairing and brought every team members’ voice to the
decision in a practical way. It also empathized the
courage among the team by letting every opinion be
shared. The time and the number of the comparisons were
the main concerns by the participants. All of them have

recommended using the AHP in the future with the XP.
Few recommendations such developing an automated
tool to reduce the time for the AHP calculation, adding
the mobility features, doing some cost and risk analysis,
and trying it with other XP areas and studying the
outcome.

5) Questionnaires
The questionnaires given to the participants were

aimed to obtain the participants’ perceptions and
experiences with AHP. The questionnaires are divided
into two main parts. The first part addresses questions
about the AHP as a decision and ranking tool. The second
part addresses questions regarding the direct benefit to
the XP practice and investigating the participant’s
satisfaction. We used the seven-point Likert scale to
reflect the level of acceptability impact about the AHP
tool. The following are the meaning of the seven-point
scale:

1. Totally unacceptable
2. Unacceptable.
3. Slightly unacceptable.
4. Neutral.
5. Slightly acceptable.
6. Acceptable.
7. Perfectly Acceptable.

After the participants answered the questionnaire, we
calculated the results and presented the total percentage
of the acceptability for each statement in the evaluation
(questionnaires) in tables 4,5,6.

The total percentage of the acceptability was
calculated as follow:

The total percentage of acceptability (TPA)
= The average of the score for each team * 100 / 7.
The average of the score for each team =
= The sum of the scores given by the team members /
number of the team.

Table 7 shows the acceptability level for the AHP as a

ranking tool.
TABLE 7.

 ACCEPTABILITY LEVEL FOR THE AHP AS A RANKING TOOL
 Team1 Team2

AHP as a decision tool used in Extreme Programming (team 1,
team 2)

A- Decision Quality
Capturing the needed Information 76% 88%
Clarity of the decision process. 88% 86%
Clarity of criteria involved. 81% 76%

Clarity of the alternatives involved 81% 79%
Goodness of the decision structure. 86% 90%

B- Practically
Understandability 83% 88%
Simplicity 71% 86%
Time Efficiency 59% 62%
Reliability 74% 76%

The following questionnaires results for the impacts of
the AHP to the process of selection

First: improving the team communication; team1 (83%)
and team2 (90%).

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2471

© 2014 ACADEMY PUBLISHER

• Second: creating a healthy discussion and
learning opportunity, team1 (86%) and team2
(90%).

• Third: clarifying the ranking problem; team1
(83%) and team2 (93%).

• Fourth: resolving the conflict opinions among
the members; team1 (78%) and team2 (93%).

• Fifth: increasing the team performance; team1
(79%) and team2 (94%).

VIII. VALIDITY

Construct validity, Internal Validity, External Validity
and Reliability describe common threats of the validity of
the performed study [25]. “Empirical studies in general
and case studies in particular are prone to biases and
validity threats that make it difficult to control the quality
of the study to generalize its results” [26]. In this section,
relevant validity threats are described. A number of
possible threats for the validity can be identified for this
work.

1) Construct Validity
This deals with the correct operational measures for

the concept being studied and researched. The major
threat to this study is the few number participated in each
case study.

However, this threat has been mitigated using several
techniques in order to ensure the validity of the findings.

• Data triangulation: a major strength of case studies is
the possibility to use many different sources of evidence
[25]. This issue has been taken into account through the
use of surveys and interviews with different types of
participations from different environments with various
levels of skills and experiences, and through the use of
several observations and feedback from the customer
involved in the study. By establishing a chain of evidence,
we could reach to our conclusion.

• Methodological triangulation: The research methods
have been a combination of a real project conducted to
serve this purpose, interviews, surveys, AHP results
comparisons, and notes and researcher’s observations.

• Member checking: presenting the results to the
people involved in the study always recommended
especially for the qualitative research. This is has been
done by showing the final results to all the participants to
ensure the accuracy of what was stated and to guard
against researcher bias.

2) Internal Validity
This is only concerned about the explanatory case

study [25] and it focused in establishing causal
relationship. Students and educational constraints

This issue can be addressed by relating the research
questions with other data sources providing information
regarding the questions.

3) External Validity
This involves the domain of the study and the

possibilities of generalizing the results. We address this
by involving three companies to validate the ranking

results. Even tough three companies had participated by
putting their evaluation for pair programming, the sample
size is very small: six experts from each company
resulting in a total of 18 people involved.

Thus, there is the need to conduct more case studies in
the industry involving more experts and developers to
observe the similarities and the differences in findings.

4) Reliability
This deals with the data collection procedure and

results. So, other researchers should arrive at the same
case study findings and conclusions if they follow the
same procedure. We address this by providing the
research questions, case study set up, data collection and
analysis procedure plan and execution steps and
questionnaires.

IX. CONCLUSIONS

After using AHP to rank the pair programming
alternatives, it was found to be an important tool that
provides a very good vision for XP team when deciding
how to create pairs. Considering the speed, sharing
knowledge, code quality and learning when selecting the
pairs could bring many advantages to the XP team,
including the stakeholders. The relative weighting
technique was the most preferable for both teams in our
case studies, but the method we chose is general and thus
the ranking can change depending on the team. More
importantly, though, AHP helped students evaluate each
pair option from different viewpoints. In addition, they
could mathematically reconcile the conflict of opinions
among them. The AHP introduces a cooperative decision
making environment, which could accelerates the XP
development process and maximizes the effectiveness of
the software developed.

From the studies we conducted, we found also that
even the results indicated that the expert-expert is the best
pairs, other personalities and factors could play
significant roles that may need efforts to compromise
these factors and add them to the criteria to be ranked and
evaluated.

REFERENCES

[1] J. Bevan, L. Werner, and C. McDowell, “Guidelines for the
Use of Pair Programming in a Freshman Programming
Class,” in Proceedings of the 15th Conference on Software
Engineering Education and Training, California University,
Santa Cruz, CA, 2002.

[2] M. Matthias and F. Walter, “Extreme Programming in a
University Environment,” in Proceedings of the 23rd
International Conference on, Page(s): 537-544,University
Karlsruhe, Germany, May 2001. �

[3] Hahn, Jan Hendrik, Mentz, Elsa Meyer, and Lukas,
“Assessment Strategies for Pair Programming,” Journal of
Information Technology Education, v8 p273-284, 2009.

[4] J. Tomayko, “A comparison of Pair Programming to
Inspection for Software Defect Reduction,” Computer
Science Education, Vol. 12, No. 3, pp. 213-223, September
2002.

[5] T. VanDeGrift, “Coupling Pair Programming and Writing:
Learning about Students’ Perceptions and Processes,”

2472 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

SIGCSE '04 in: Proceedings of the 35th SIGCSE technical
symposium on Computer science education Pages 2-6,
2004.

[6] N. Katira, L. Williams, and J. Osborne, “Towards Increasing
the Compatibility of Student Pair Programmers,” in
Proceedings of the 27th international conference on
Software engineering Pages 625-626, 2005.

[7] N. Katira, L. Williams, E. Wiebe, C. Miller, S. Balik, and E.
Gehringer, “On Understanding Compatibility of Student
Pair Programmers,” in Proceedings of the 35th SIGCSE
technical symposium on Computer science education
Pages 7-11, 2004.

[8] C. Rrunner, “Opening technology to girls,” Scholaslic.com
rcs. Rep, 1997, <http://scholastic.com/EL> (accessed
3.1.2013).

[9] J. Margolis, A. Fisher and F. Miller, “Caring about
Connections: Gender and Computing,” School of
Computer Science, Carnegie Mellon University, IEEE
Technology and Society Magazine, Winter, 1999/2000.

[10] National Centre for Education Statistics: Digest of
Education Statistics, 1990-2002, Institute of Education
Sciences, U.S. < http://nces.ed.gov/Programs/digest/>
(accessed 4.10.2012).

[11] L. Thomas, M. Ratcliffe and A. Robertson, “Code Warriors
and Code-a-Phoebes: a Study in Attitude and Pair
Programming,” SIGCSE Bull. 35, 1, 363-367, Jan2003.

[12] C. Nelson, “Student Diversity Requires Different
Approaches�to College Teaching Even in Math and
Science,” American Behavioral Scientist, vol. 40, pp. 165-
175, 1996.

[13] G. Salomon, “Distributed Cognitions: Psychological and
Educational Considerations (Learning in Doing: Social,
Cognitive and Computational Perspectives),” Cambridge
University Press; Reprint edition, December 28, 1996.

[14] A. Dick and B. Zarnett, “Paired Programming &
Personality Traits,” Red Hook Group, Toronto, Canada.

[15] W. Wood and W. Kleb, “Exploring XP for Scientific
Research,” IEEE Software, vol. 20, pp. 30 - 36, 2003.

[16] A. Cockburn and L. Williams, “The Costs and Benefits of
Pair Programming,” in the First International Conference
on Extreme Programming and Flexible Processes in
Software Engineering (XP2000). 2001.

[17] M. Müller, “Are Reviews an Alternative to Pair
Programming?,” in the 7th International Conference on
Empirical Assessment in Software Engineering, UK, 2003.

[18] R. Yin, “Case Study Research: Design and Methods,”
Second Edition, SAGE Publications, 1994.

[19] N. Tiwari, “Using the Analytic Hierarchy Process (AHP) to
Identify Performance Scenarios for Enterprise
Application”, the Computer Measurement Group (2006).

[20] T. Saaty “The Analytic Hierarchy Process,” McGraw-Hill,
New York, (1980).

[21] L. Williams and Robert Kessler, “Pair Programming

Illuminated,” Addison-Wesley Professional; 1 edition, Jun
28 2002.

[22] K. Lui, K. Chan, “Pair Programming Productivity: Novice–
Novice Vs. Expert–Expert,” International Journal of
Human-Computer Studies - Human-computer interaction
research in the management information systems discipline
archive Volume 64 Issue 9, Pages 915-925, September
2006.

[23] T. Saaty “How to Make a Decision: the Analytic Hierarchy
Process,” Interfaces, Vol. 24, No. 6, pp.19--43 (1994).

[24] Expertchoice for Collaborative Decision Making:
http://www.expertchoice.com. (accessed 5.12.12).

[25] R. Yin, “Case Study Research – Design and Methods,” 3rd
edition, Sage Publications, London, 2003.

[26] R. Lincke, “How do PhD Students Plan and Follow-up
their Work? – A Case Study,” School of Mathematics and
Systems Engineering, University Sweden.

Sultan Alshehri was born in Saudi
Arabia in 1981; a PhD Student in
Software Engineering Systems
Department at University of Regina,
Regina, Saskatchewan, Canada.

He worked as a computer science
teacher in Riyadh, Saudi Arabia, 2004-
2005. Currently, he is working as
Programmer Analysts at SmarTech
Company. In the same time, he holds the

position of CEO for the LogicDots Company in Regina.
Mr. Alshehri holds a reward of a scholarship since 2005 until

2013 from the high Ministry of education in Saudi Arabia.

Dr. Luigi Benedicenti is the Associate
Vice President (Academic) of the
University of Regina, and a full
professor in the Faculty of Engineering
at the University of Regina. Dr.
Benedicenti obtained his PhD in
software engineering in 1999 from the
University of Genoa, Italy.

He is a Professional Engineer
licensed in Saskatchewan and a licensed

Italian Engineer. His collaborative network extends beyond
Saskatchewan with TRLabs and IEEE, and Canada through
collaborative work with colleagues in Europe, South East Asia,
and North America.

Dr. Benedicenti’s current research is in three areas: Software
Agents, Software Metrics, and New Media Technology. He
envisions the unification of platform, tools, and optimizations
for the provision of persistent distributed digital services,
regardless of people’s location and delivery device.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2473

© 2014 ACADEMY PUBLISHER

