
A Metadata Management Method Base on
Directory Path Code

Hui Cai

Logistical Engineering University of P.L.A, Chongqing, China
Email: caihui_cool@126.com

Shenglin Li

Logistical Engineering University of P.L.A, Chongqing, China
Email: 492739390@qq.com

Zhaoxia Wang

Logistical Engineering University of P.L.A, Chongqing, China
Email: weimo1234@sina.com

Xingchen Li

Logistical Engineering University of P.L.A, Chongqing, China
Email: since0701@163.com

Lichuan Huang

Ministry of Supplies & Pol Chengdu Military Region, Chengdu, China
Email: lichuan_85@aliyun.com

Abstract—Metadata distribution is important in mass
storage system. Sub-tree partition and hash are two
traditional metadata distribution algorithms used in file
system. But they both have a defect in system scalability.
This paper presents a new metadata management method,
Directory Path Code Hash (“DPCH”). This method is to
store directory and file metadata separately, and effectively
solving the unbalanced metadata distribution and access hot
point problems in Sub-tree partition and the excessive
reading times and large metadata migration amount after
directory property modification in hash algorithm. The
experiment indicates that this method proposed significantly
outweighs other algorithms in terms of throughput rate,
metadata distribution, reading times, etc.

Index Terms—metadata distribution, binary code, file
system, directory path code hash(DPCH)

I. INTRODUCTION

With the rapid development of scientific computing
and network application, the data size of network
information is increasing constantly and PB-grade mass
data storage system plays a more and more important role.
As a new storage structure, object-based storage adopts
the current network technology and storage technology
and provides a foundation for mass data storage system.
The core idea of this object-based mass data parallel
storage system is to store the metadata and data of files
separately and manage them in a distributed cluster mode.
According to relevant studies, many operations in mass
data storage systems are for metadata only. 75.4% of read

operations requires the use of metadata, accounting for
49% of total time and space consumption; 82.2% of write
operations requires the use of metadata, accounting for
63.5% total time and space consumption [1-2]. Therefore,
the metadata management efficiency determines the
performance of the whole storage system, and the
realization of high performance, high reliability, load
balance and expansion of metadata management are the
hot topics of current study on mass data storage system.

Regarding to the structure of metadata management
system, exsiting researches mainly divided into two
methods, they are centralized metadata servers and
distributed metadata servers. The centralized metadata
servers means the single decisive metadata data server
node exists in the storage network, the interaction only
exsits between other metadata servers and the decisive
metadata server. Though the structure of this method is
relatively simple, it has an obvious bottleneck. To
decrease the happening rate of this bottleneck, we could
optimize the processing paths requested by metadata,
which could, to some extent, meet the requirements of the
system scale expansion. While the distributed metadata
servers indicates no single decisive server does not exsit
in the storage network, and all metadata server could
intercommunicate. Structurally speaking, there is no
bottleneck, but it is relatively complicated which need a
consistent preservation.

From the metadata distribution strategy, researches are
mainly include Sub-tree partition and Hash algorithm.
The research findings on Sub-tree partition are LOCUS
[Popek 1986], AFS [Morris 1986], CODA

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2443

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2443-2453

[Satyanarayanan 1990], Sprite [Ousterhout 1988],
Dynamic Sub-tree partition [Weil 2004], etc. The
research findings on Hash algorithm are Vesta [Corbett
1996], InterMezzo [Braam 1999], RAMA [Miller 1997],
Lustre [Braam2002], Dynamic Hashing [Li2006], etc.

This paper, based on previous studies, proposes a new
metadata management method based on path object codes
called Directory Path Code Hash. This method is to store
directory and file metadata separately, perform hash
distribution through binary coding of directory paths, and
introduce the concepts of bucket partition, comprehensive
access authority and main and secondary mapping tables,
effectively solving the access hot point and large
metadata migration amount after directory property
modification.

II. RELEVANT STUDIES

Metadata distribution is an important study aspect of
metadata management. Reasonable data distribution may
bring forth high retrieval efficiency, balanced load and
good system expansibility. Metadata is the data for data
description, and is small in size. However, with the
constant expansion of system size and application degree,
metadata size will increase gradually. Therefore, a good
metadata distribution strategy may maximize the use of
the whole cluster resources, realize the uniform load
distribution between different metadata servers, and
improve the performance of the whole storage system [3-
4]. The current study mainstreams may be classified into
two types; i.e., sub-tree partition [5] and hash algorithm
[6].

A. Sub-tree Partition
Sub-tree partition, proposed by Popek et al [7] from

Massachusetts Institute of Technology in 1986, could be
classified into static sub-tree partition and dynamic sub-
tree partition. Static sub-tree partition is to distribute all
subdirectories or certain subdirectories at a lower level to
different metadata servers for storage. The advantages
include that the metadata distribution is simple and it
could maintain a traditional hierarchical file directory
structure and the disadvantages include that it could not
effectively partition the load between different metadata
servers. When metadata becomes a hot access point, it
will become the performance bottleneck of the whole
system and the computing consumption during directory
traversal process is large. Dynamic sub-tree partition is to
entrust different sub-trees in the hierarchical directory
structure of file systems to different metadata servers.
The advantages include that the partition granularity is
smaller, the method is more flexible and the dynamic
load balance is realized according to the load of metadata
server; and the disadvantages include that the
consumption of directory traversal is large, the repeat
cache of prefix directory information reduces the
utilization rate and hit rate of Cache, and large amount of
metadata migration is required when a sub-tree is re-
entrusted.

B. Hash Algorithm
A hash algorithm is also called static hash algorithm,

which was proposed by Corbett et al [8] from IBM in
1996. The basic idea of a hash algorithm to hash a certain
key value in files, such as file name or path, and then
uniformly distribute the files to different metadata servers
according to the hash results. The best advantage of this
method is the realization of load balance, avoiding the
bottleneck problem that a certain directory becomes a hot
access point. This algorithm also has disadvantages. First,
hash algorithm destroys the original hierarchical directory
structure, which is not good for the search of instructions
similar to IS; actually, the system expansibility is poor in
that the output range will also be determined when a
certain hash function is determined, and mass data
migration will be required if output range needs to be
expanded and hash function needs to be changed. Second,
the file rename operation is not well supported. After a
file is renamed, a large amount of data between metadata
servers needs to be re-distributed.

C. Lazy Hybrid Algorithm
The Lazy Hybrid (LH) algorithm was proposed by

Brandt et al [9] from University of California, Santa Cruz
in 2003. It combines two types of algorithms, i.e., tree
structure and Hash algorithm, use full pathname of files
to compute hash value and then define the storage
position of metadata in Metadata Lookup Table (MLT)
with the hash value obtained as the index. The advantage
is that it integrates the directory access authority into the
metadata of every file, thus reducing the consumption of
directory path traversal. The disadvantage is that the re-
computation of hashed value will generate the migration
and upgrading of a large amount of metadata, thus not
reducing the consumption of system and not realizing the
goal of distributed directory renaming.

III. DIRECTORY PATH CODE HASH

A. Basic Idea
By analyzing the studies and exiting problems of

metadata management, this paper proposes a new
metadata management method, Directory Path Code Hash
(“DPCH”). The method differs from other traditional file
system metadata management methods in that it has the
following features. First, the partition granularity is
different. The hash codes adopted in traditional file
systems are for files, but this file hash algorithm has
manage defects, which are described in Article II hereof;
statistics indicates that the operation number of directory
only accounts for less than 10% of the total file number.
Therefore, the paper adopts the directory-based codes,
which differs from traditional file systems in partition
granularity, significantly reducing the complexity of
operation. Second, the storage method is different. In
traditional file systems, file metadata is used to store the
access properties of files and the storage position of data
block. From the perspective of management, data access
is controlled by file property, while data property is
controlled by directory path property. Therefore, this

2444 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

paper classifies file metadata into directory property and
file property, and store and management them separately.
Directory property includes the absolute directory path of
files and the access control authority of directories; file
property includes the access properties such as file name,
file type, creation time, modification time and file size.
This storage mode is the further deepening of object-
based storage structure, eliminating the metadata
upgrading and migration caused by directory
modification, and this separation storage mode may better
reduce the directory path traversal consumption and disk
I/O times. Third, the coding type is different. According
to the first feature, the paper adopts the coding method
based on directory path. However, the directory-based
coding in existing documents and studies mostly adopts
the full-path name as the main key value of hash codes,
the biggest problem of which is that the directory
renaming operation may require a large amount of file
migration. Therefore, this paper proposes a new coding
method, the basic idea of which is to perform binary
transcoding of directory name according to creation time
and then take it as a hash major key. That is, a mapping
layer is added between directory full-path name and hash
major key value, thus avoiding the metadata migration
caused by directory renaming operation. Fourth, the
concept of a bucket partition is introduced. For the
partition granularity based on directory coding, we
introduce the concept of bucket partition to overcome the
metadata distribution and load balance problems caused
by the uncertainty of file quantity under directory. That is,
every path code could store only a certain quantity of
metadata; and when the metadata quantity under a certain
path code, a new path code will be created.

B. System Model
The DPCH system model realized in this paper is

composed of the following parts: client, client file system
(CFS), directory management server (DMS), metadata
server (MDS) and object storage device (OSD). The
working principle of this system model is similar to the
tripartite transmission framework structure commonly
used in object-based storage systems, but the study object
is different slightly. The object-based storage studies the
storage and management of files, while this paper studies
the storage and index management of metadata. The
structure of the system model is shown in Figure 1.

Client

CFS

DMSMDSOSD

The operation of
directory

The operation of
file

FileRead

Metadate properties

Directory properties

Client operation

Figure 1. DPCH System Model

CFS is mainly responsible for providing hierarchical

directory structure and metadata management system
interface for upper application, and supports the upper

user operation to execute complete file operations such as
creation, deletion and modification.

DMS stores all directory paths, file names under
directory, father directory, existing file quantity of bucket
and binary encodes of path, and is mainly responsible for
the management of directory path properties such as path
coding and query, creation, deletion and modification.

MDS stores all metadata information and is mainly
responsible for the storage and management of all
metadata under directory, including the query, creation,
upgrading and deletion of metadata. The cooperation of
MDS and DMS provides uniform naming space and rules
for the whole storage system, controls the client’s access
authority to the storage system, and is responsible for
directory hierarchical partition and authority management
as well as relevant operations on metadata.

OSD is responsible for the storage of bottom data and
the supply of object-based storage interface service.

IV. METADATA DISTRIBUTION

In the metadata management system proposed in this
paper, metadata management is divided into two
independent parts; i.e., directory management server and
metadata server, so as to separate the directory
information and the file metadata under directory.
Directory information mainly comprises the authority
distribution and hierarchical management of directory,
and file information mainly includes the contents of file
metadata. Directory management server is specifically
responsible for directory coding, directory traversal and
authority management tasks, minimizes the cache
occupancy, applies more cache on file metadata and
reduces the disc I/O consumption of metadata read and
right, thus alleviating the management task of file
metadata in metadata server and enabling it to focus more
on the management of file data.

A. Improved Metadata Distribution Algorithm
Basically, metadata distribution algorithm based on

path object coding adopts Hash algorithm, but has two
features. First, the hash object is directory, not file;
second, the hash content is binary codes after path
transcoding, not directory path.

We may express the improved metadata distribution
algorithm with the following three formulas:

 pathcode=f（path） （1）
 result=Hash（ pathcode）错误 !未找到引用

源。 （2）
错误!未找到引用源。 MDS_Location=Search

（result） （3）
In Formula (1), f(x) is the function used for the coding

of directory path name. We specify fixed-length binary
code as the directory path name, with length as N and
formalization as 000…000 (N figures). Therefore, the
new equative directory under a certain path may be
expressed respectively according to the creation time
[000…000], [000…001], [000…010], [000…011],
[000…100], [000…101], [000…110], [000…111]…. The
absolute path of directory after coding is expressed as

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2445

© 2014 ACADEMY PUBLISHER

000…000\000…001\...\000…010\..., so the only code of
any directory in file system formed at creation could be
obtained by this analogy.

This algorithm may be expressed as:
CreatCode (path) /path is a new directory under

current directory/
if (PathCode_Father (path) != null) /path’s father

directory exists/
{
CodeID++; /under current directory, create

directory code ID plus 1/
PathCode (path); /code the path according to

the CodeID value/
 /path's absolute path code is path’s

upper directory/
 /code plus “\Code (path)”/
}

else /path’s father directory does not exist/
 {
 PathCode (path) = 000…000; /path’s code is N-

digit full 0 binary code/
 /path’s absolute path code is N-

digit full 0 binary code/
}

In Formula (2), Hash (x) is the hash function used by
this algorithm, the function value is the path code in
Formula (1), and result is the result obtained after path
code hash.In Formula (3), Search (x) is the distribution
function from has result to MDS_Location, while
MDS_Location is the distribution position of metadata
under this directory in MDS cluster. Therefore, Formula
(3) could also be considered as the mapping function
from hash directory code value in query operation to
metadata MDS cluster distribution position.

B. Storage Object Distribution
This paper separately stores the metadata directory and

files; thus, the storage objects include directory
information and file information respectively. When the
Client has new write-in contents, new metadata will be
written in DMS and MDS. For directory information,
DMS is responsible for the management and maintenance,
and the structure includes the absolute path of directory,
the binary code of directory, father directory information,
names of all files under this equative directory (excluding
the directory name under this directory) and bucket
volume information. See the following figure:

Figure 2. Distribution of Directory Storage Object

Dir1 contains the content such as Dir1’s absolute path,

binary code 000…000, name file1 and file2 under this
directory and bucket volume information. Since Dir1 has
no father directory, there is no father directory
information.Dir2 contains the content such as Dir2’s
absolute path, binary code 000…000\000…000, file3,
file4, bucket volume information and father directory
Dir1’s information.

For file information, DMS and MDS are jointly
responsible for the management and maintenance. To be
more specific, DMS is responsible for recording the
names of files under the corresponding directory, and
MDS is responsible for storing the metadata of the file.
The distribution of file metadata in MDS is determined
by the improved metadata distribution algorithm as
mentioned in Article III. First, it looks up the
corresponding binary codes according to the directory of
the files, hash the binary codes, then apply the hash result
into the distribution function, and finally determine the
actual storage position of file metadata in MDS.

During the actual application process of system, we set
a fixed upper volume limit for bucket. For example, we
specify the upper volume limit of bucket as 50, the bucket
volume information in every directory code in DMS the
actual file quantity and bucket status value respectively.
When there are new write-in contents in this directory,
DMS will first check the bucket status value under this
directory code. If the status value is not full, the file name
after successful creation will be stored in this directory,
and the actual file quantity will increase by 1.If the status
value is full, the binary code of the directory will be
created, and then the file name will be written in the new
directory code. This indicates that the same directory in
DMS may have several binary code records, that is, the
contained file metadata exists in the different positions of
MDS. This way may effectively avoid the problems of
unbalanced distribution of metadata and load balance.

C. Metadata Storage
Metadata storage is mainly classified into directory

storage and file storage.
For directory, the position of directory in DMS and

relevant information need to be determined. First, Client
sends a request on directory creation to DMS, which will
check whether this directory exists. If this directory exists,

2446 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

DMS will return the existence information to Client; if
this directory does not exist, DMS will check whether the
father directory of this directory exists. If the father
directory exists, DMS will create a new directory,
perform binary coding on the new directory according to
Formula (1) in Article III, perform binary transcoding, set
the volume information of the directory bucket, save the
father directory information, and finally return the
successful creation information to DMS. If DMS finds
that the father directory of the new directory does not
exist, will look up the maximum matching father
directory of this directory, then circularly construct the
directory according to the maximum matching father
directory and the method of level-by-level creation, and
finally return the successful creation information to Client.

For file, the following two aspects need to be
determined: first, directory structure of file storage, i.e.,
the position of file directory in DMS, since the tree
structure of file directory is mainly completed and
maintained by DMS; second, the position of file metadata
in MDS, i.e., the specific storage position of metadata.
Therefore, first, Client needs to send the file directory
look-up request to DMS, which will look up in the
existing directory. If DMS finds the path of the directory
and the bucket volume under this directory code is not
full, DMS will hash the binary codes of the path and look
up the storage ID of metadata in MDS according to the
hash results and metadata distribution algorithm, and then
return to Client which then sends the write application to
the corresponding MDS. After the write operation of
metadata is completed, MDS sends the success
information to DMS, which will add the file name under
corresponding directory and increase the actual bucket
volume under this directory code by 1. If DMS finds that
the bucket volume under this directory code is ready full,
it will create a new directory code record, perform the
binary coding on the directory according to the algorithm
in Formula (1) in Article III, reset the bucket volume
information and father directory information, hash the
binary code of the directory, look up the storage ID of
metadata in MDS according to the hash results and
metadata distribution algorithm, and then return to Client
which then sends the write application to the
corresponding MDS. After the write operation of
metadata is completed, MDS sends the success
information to DMS, which will add the file name under
corresponding directory and increase the actual bucket
volume under this directory code by 1. If DMS does not
find the directory, it will create a new directory according
to the method above and then complete the file creation
operation.

V. METADATA EXPRESSION

A. Directory Index Entry
We learn from the above introduction that the metadata

management method adopted in this paper differs from
traditional metadata management methods in that
directory path information is independently managed and
stored by DMS, the service is provided by one or several

servers (constituting a server cluster) according to storage
size, and the only directory binary code corresponding to
MDS address is distributed to all directory paths through
binary transcoding of path, thus guaranteeing the one-to-
one correspondence of binary code and MDS address.
The directory index entries of DMS include:

DirectoryPath: refers to the path name of the directory;
DirectoryID: refers to the binary code of the directory;
FatherDirectory: refers to the father directory path

name of the directory;
DircetoryAC: refers to the self access control authority

property of the directory;
DircetoryAC F: refers to the comprehensive access

control authority property of the directory;
FileName: refers to the names of all files under the

directory;
FileNum: refers to the quantity of files under the

directory;
BC: refers to whether the quantity of files under the

directory is full.
The directory index entry is determined only by

DirectoryID, and the file metadata under this directory is
distributed to different metadata servers according to the
hashed value of Directory. The codes may, according to
the system storage size, control the directory volume by
adjusting the digits of binary codes. This way may avoid
the migration and upgrading of metadata under this
directory caused by directory modification.
FatherDirectory refers to the upper father directory of the
directory, and is used for maintaining the tree structure of
directory. DirectoryAC is used for controlling user’s
access authority. Filename is used to express the file
name under the directory code. After the introduction of
bucket, a certain directory may have several codes and
each code may store different files. FileNum and BC is
about the information volume of bucket, with FileNum
referring to the quantity of files in the bucket and BC
referring to whether the bucket is full.

When accessing a certain file, it will first look up the
DircetoryAC of the file directory path in DMS and
determine whether the user has corresponding access
authority. If the user has no access authority, it will reject
the access; on the contrary, it will look up the file’s ID in
MDS through the binary code of the directory and return
it together with DircetoryAC to Client, which will store
the directory cache obtained to local Cache and then
obtain file metadata in corresponding MDS. The
positioning of directory index in local Cache is to
increase the metadata access efficiency. In default, the
user will access the local Cache for the first time. This is
because the possibility of the same user accessing the
same directory successively is very high according to
principle of locality. In the following two circumstances,
Cache will expire. First, the user detects that the cache
has expired; second, the directory index that the user
accesses changes.

The following is the comparison taking the file access
process according to static sub-tree segmentation as an
example and assuming the access file is
/usr/src/test/hello.c.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2447

© 2014 ACADEMY PUBLISHER

The access process of static sub-tree segmentation
includes: (1) GetAttr (usr); (2) LookUp (src); (3) GetAttr
(src); (4) LookUp (test); (5) GetAttr (test); (6) LookUp
(hello.c); (7) GetAttr (hello.c) and (8) Read (hello.c). The
first seven steps is the process of obtaining metadata,
Step (8) is to read the actual data of file.

The access process of the method adopted in this paper
includes: (1) GetAttr (/usr/src/test/); (2) LookUp(hello.c);
(3) GetAttr (hello.c) and (4) Read (hello.c). The first
three steps is the process of obtaining metadata, Step (4)
is to read the actual data of the file.

According to the above derivation, we may get the
general case of the access process of the two methods.
When the number of file layers to be accessed is n, it
takes 2n+2 times to access the actual metadata through
the way of static sub-tree segmentation. The first 2n+1
times are to obtain metadata, and the time is to read the
metadata; the method adopted in this paper is irrelevant
with the number of file directory layers, and it takes only
four times to read the metadata, with the first three times
obtaining metadata and the last time reading metadata.
Clearly, when n>1, the method adopted in this paper has
a significant higher file access rate over the static sub-tree
segmentation.

B. Directory Object
In a traditional file system, the directory file content

and file metadata are stored separately, and file metadata
may be obtained through several times of disk I/O. The
imbedding of file metadata into directory files may
increase the efficiency of access [10]. The directory
object referred to in this paper is classified based on the
binary code of directory path and according to the
number of files, and includes all metadata of files. It is
similar with the directory files in traditional file systems,
but differs from traditional directory file that contains
only file names and index numbers and obtains index
number and then reads the metadata. For the directory
object adopted in this paper, when the directory object is
accessed, the metadata could be obtained simultaneously.

Directory objects are uniformly managed by MDS, and
each object is comprised of several fixed-number entities
and file metadata entries. The file quantity of directory
object is determined by bucket size, while metadata entry
contains all metadata of the directory object properties.
The structure of the directory object is shown as follows:

Figure 3. Structure of Directory Object

The metadata of directory object mainly includes the

followings:

DirectoryID: corresponding to the DirectoryID in
DMS and used for examining the binary code information
of directory.

EntityID: indicating the ID of entity object inside the
directory object. It is the only identifier of the entity
inside the directory object, expressed by integer N, and
adjustable according to bucket volume. For example, 16-
digit identifier may support 65536 entities.

EntityFlag: indicating the current status of entity object;
Entry: indicating the entrance information of file

metadata in file object;
Name: indicating the name of file;
FileID: indicating the globally uniform file ID of file

objects;
FileType: indicating the type of file metadata;
FileFlag: indicating the current status of file metadata;
FileAC: indicating the access authority of file metadata.
Other basic properties of file metadata include mode,

uid, gid, size, atime, ctime, mtime, etc.
On one hand, the use of directory object changes the

inefficient linear method of positioning file metadata
through level-by-level traversal index in traditional file
systems and significantly reduce the disk I/O times
required by metadata reading; on the other hand, the use
of directory object increases the efficiency of MDS. In
traditional file system, in order to avoid large volume
problem, MDS needs to partition the directory volume
[11] apart from the storage of metadata. The partition of
directory volume will be handed over to DMS for
management. In this way, MDS could be responsible for
metadata storage in a more focusing and efficient manner.

VI. METADATA ACCESS

A. Setting of Access Authority
The paper classifies the access authority of a file or

directory as self access authority and comprehensive
authority, where self access authority refers to the own
access authority of the file of the directory; that is, each
file or directory has its own access authority, and is
recorded in the corresponding metadata of MDS. While
the comprehensive access authority is only available in
directory as we define. The comprehensive access
authority is the intersection of the self access authority of
directory and other upper directory authority and is
recorded in corresponding directory index in DMS.

This classification method mainly solves two problems.
First, it reduces the directory traversal times when access
authority is determined. In traditional directory-based
access control methods, when the access authority of a
certain file or directory needs to be determined, the user’s
access authority could finally be determined after the
traversal of all directories under the directory path. With
the introduction of comprehensive access authority, when
a new directory is to be created, the intersection of the
self access authority of new directory and the
comprehensive access authority of upper directory is
taken, then the comprehensive access authority of the
new directory is obtained and recorded in the
corresponding directory indexes (the self access authority

2448 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

and comprehensive access authority at the first level of
directory are the same). When a new directory is to be
created, this method could be used recursively. In this
way, when the access authority of a certain directory
needs to be determined, it only needs to access the
comprehensive access authority under the directory index,
without the need of the traversal of all upper directories
in the directory path. Second, it avoids the upgrading of a
large amount of metadata resulted from the change to the
access authority of directory. In a traditional file system,
the access authority is saved in file metadata and
distributed in each MDS, such as Lazy Hybrid method.
When the access authority of a certain directory is
changed, all metadata under this directory must be
changed, which will result in the upgrading operation of a
large amount of metadata. If the volume of file system is
large, this will be a heavy task and cause the
corresponding metadata compliance problems. This paper
classifies the access authority into self access authority
and comprehensive access authority. The file metadata of
MDS only stores the self access authority, while the
comprehensive access authority is stored in DMS.
Therefore, when the access authority of directory is
changed, it only needs to upgrade the comprehensive
access authority property in corresponding directory
index in DMS, without the need of changing the metadata
information in MDS.

The following figure illustrates the while construction
process of access authority:

Figure 4. Construction of Directory Comprehensive Access Authority

According to Linux file system rules, the access

authority of the directory is expressed with 9 characters,
with the left three characters indicating the authority of
the owner, the middle three characters indicating the
authority of users at the same group with the owner and
the right three characters indicating the authority of other
users. The characters r, w and x means read, write and
execute respectively. Assume a user creates a new
directory /root/app /newD under /root/app:

(1) First, obtain the comprehensive access authority
property of directory /root/app; assume it is rwxrwxrwx,
and then the user has the authority to create a new
directory under this directory.

(2). Second, the user sets the self access authority of
the new directory newD; assume it is rwxr--r--.

(3) Last, take the intersection of the comprehensive
access authority of upper directory /root/app and the self

access authority of the new directory new D, and obtain
the comprehensive access authority of directory /root/app
/ newD as rwxr--r--.

B. Metadata Positioning
The metadata positioning operation mainly adopts the

method of combining hashed and mapping tables. Hash
algorithm mainly includes the three algorithms in Article
III, which are established in DMS. The directory binary
codes and the mapping table corresponding to MDS
needs to be established in DMS according to the results
from hash algorithm. The mapping table is classified into
main mapping table and secondary mapping table, with
the first one being the mapping established with the value
from hash algorithm and MDS according to directory
binary code and the latter one being the mapping
established directly with the directory binary code and
MDS. The MDS found through main mapping table is
called the main MDS of a certain directory path, while
the MDS found through the secondary mapping table is
called the secondary MDS of a certain directory path. In
default, the first lookup of metadata positioning is to look
up the MDS entrance of the secondary mapping table and
then, if there is no corresponding entrance, look up the
MDS entrance of the main mapping table. The
establishment of the main and secondary mapping tables
is shown in Table 1 and Table 2.

TABLE 1.
MAIN MDS MAPPING TABLE

Value IP address of MDS

0 192.168.1.1

1 192.168.1.2

2 192.168.1.3

3 192.168.1.4

4 192.168.1.11

5 192.168.1.1

TABLE 2.
SECONDARY MDS MAPPING TABLE

Value IP address of MDS

1001 192.168.1.1

2001 192.168.1.2

3008 192.168.1.3

1008 192.168.1.4

… …

The advantages of classifying the mapping table into

main mapping table and secondary mapping table include
that the MDS load is balanced and that no certain MDS
will become a hot access point. The main mapping table
is established when a new directory is created. It is
determined according to the hashed value of the binary
code of directory path. According to the characteristic
that the binary code is globally unique and will not
change, the main MDS of any directory is unchanged,
regardless of the change to directory property. Under

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2449

© 2014 ACADEMY PUBLISHER

normal load circumstances, all metadata access will be
responded by the main MDS. In addition, according to
the processing capacity difference of each MDS, more
entrances may be allocated to the main mapping table of
the MDS with strong capacity, so that it could undertake
more metadata tasks. For example, the processing
capacity of the IP 192.168.1.1 in Table 1 is twice the
capacity of 192.168.1.11, and then the mapping entrance
in the main mapping table is also twice the capacity of
192.168.1.11.

In practical situations, unbalanced load or even more
extreme cases may be unavoidable. Therefore, we
balance the load through the way of establishing mapping
tables. The specific method is to set a counter and timer
in the directory object of MDS, while the access
frequency (counter/timer) indicates the access enthusiasm
of directory object, then MDS transmit through the
heartbeat mechanism the directory information and
access frequency to DMS, which will select the MDS
with lightest load as the secondary MDS of the directory
according to the set access frequency threshold after
receiving the information, and insert the mapping
information into the secondary mapping table. If the
access frequency of a certain directory in the secondary
mapping table also reaches the threshold, then MDS will
continue to add directory mapping relations from the
secondary mapping table. When the metadata read
entrance is to be selected, it is required to select the
lightest entrance. In order to guarantee the conformity of
metadata, the secondary table is only responsible for the
read operation of metadata, while the write operation
must be treated by the main mapping table.

VII. SIMULATION AND IMPLEMENTATION

In order to verify the effectiveness of DPCH proposed
in this paper, the paper compares this method and several
typical metadata management methods through
experiment, which utilizes 10 computers with LINUX
operation system (i5-3570K processor, 4GB memory and
500GB hard disk) and connected through gigabit Ethernet.
The prototype system uses JAVA language and Iozine as
performance testing tool.

The experiment is consisted of five parts; i.e., file
creation, file deletion, file reading, metadata distribution
and metadata migration.

A. File Creation
The file creation method is to create a 0 word length

file, because a 0 word length file does not requires the
involvement of storage node server and could be
completed by MDS independently, thus reducing the
impact of other links on metadata’ processing capacity
and enabling the test results to be more accurate. Then,
the file creation efficiency will be summarized, with
throughput rate as the performance evaluation index, i.e.,
the number of files created in a unit time.

The experiment includes balanced access load and
concentrated access load, with the former one referring to
the file creation of Client under different directories and
the latter one referring to the file creation of Client under

the same directory. The experiment uses 10 clients, 3
DMS nodes, 7 MDS nodes and 7 layers of directory tree
for new files, with each directory containing 7 sub-
directories and 50 files.

The following figures show the experiment results of
the two circumstances and the performance comparison
with other metadata management methods. Figure 5
shows the file creation throughput rate of balanced access
load, and Figure 6 shows the file creation throughput rate
of concentrated access load.

Figure 5. File Creation Throughput Rate of Balanced Access Load

Figure 6. File Creation Throughput Rate of Concentrated Access Load

According to Figure 5, under balanced access load, the

Sub-tree partition has the best throughput rate because
this algorithm processes the sub-tree directories in the
same MDS, thus enabling all metadata requests under this
directory to be completed in the same MDS, reducing the
disk I/O times of MDS and increasing the file creation
rate. The FileHash algorithm has the poorest throughput
rate, since this algorithm breaks the traditional directory
hierarchy structure concept of file systems and distributes
files through HASH evenly to each MDS, thus directly
causing massive MDS access requests and causing the
files under the same directory to be distributed in
different MDS. This algorithm needs the traversal of
several MDS, significantly increasing the disk I/O times
for accessing MDS. LazyHybrid algorithm has improved
throughput rate over the FileHash algorithm, but is
basically a file-based hash algorithm. It only makes some
improvements on file pre-treatment and Cache. The
algorithm proposed in the paper has a larger partition
granularity than that of the files, but is not completely the

2450 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

same with the Sub-tree partition. The creation process
involves the directory binary coding and hash distribution
function, thus the throughput rate under balanced access
load is lower than that of Sub-tree partition but higher
than that of FileHash algorithm and LazyHybrid
algorithm.

According to Figure 6, under concentrated access load,
the Sub-tree partition has an obvious low throughput rate.
This is because the files under the same directory will
increase with the increase of client nodes, which will
directly result in the load increase of MDS storing the
directory, thus causing it to be the access hot point and
finally the access bottleneck and reducing the file
creation throughput rate. The other three algorithms adopt
Hash distribution, and could still better process the access
hot point problem under concentrated access load. The
file creation throughput rate has only a minor difference
with that under balanced access load, and the throughput
curve also has only slight change with the increase of
clients. It is particularly worth mentioning that the
algorithm proposed in this paper takes directory code as
hash unit, with partition granularity larger than that of
files, but it is different from traditional directory structure.
Through the bucket partition and the two mechanisms,
i.e., main mapping table and secondary mapping table,
this algorithm may enable the file metadata to be evenly
distributed in each MDS, and the file creation throughput
rate is better than that with FileHash algorithm and
LazyHybrid algorithm.

B. File Deletion
The file deletion method is to delete the files based on

the new files created above, and the file deletion
throughput rate is also taken as the evaluation index. The
experiment environment is the same with that of file
creation operation above. The following figures show the
file deletion throughput rate of the two circumstances and
the performance comparison with other metadata
management methods.

Figure 7. File Deletion Throughput Rate of Balanced Access Load

Figure 8. File Deletion Throughput Rate of Concentrated Access Load

According to Figure 7, under balanced access load, the

experiment results are basically the same with that in
previous description. The Sub-tree partition has the best
file deletion throughput rate, followed by the algorithm
adopted in this paper, LazyHybrid algorithm and
FileHash algorithm in order. The reasons for the
performance differences of these algorithms are the same
with the previous description and will not be repeated
here.

The same conclusion could also be obtained from
Figure 8. Under the Sub-tree partition, an access
bottleneck will be formed with the increase of clients,
resulting in the decrease of throughput rate. For the other
algorithms adopting hash distribution, the throughput rate
will be reduced significantly with the increase of clients.

C. File Reading
File reading mainly refers to the file reading operation

from disk to memory. In file metadata operation, reading
operation accounts for a considerable proportion, thus the
file reading time is an important index to evaluate the
performance of different algorithms. The experiment data
is 10000 files randomly distributed under 1000 directories.
The method adopted is to test the total reading times of
each algorithm under the same file quantity and in the
same reading order. The following figure shows the
reading times of several algorithms.

Figure 9. Reading Times of Different MDS

According to Figure 9, the algorithm adopted in this

paper and the Sub-tree partition have the least reading
time, followed by the LazyHybrid algorithm and

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2451

© 2014 ACADEMY PUBLISHER

FileHash algorithm in order. The main reason for this
difference is due to the different Cache hit rate. The basic
idea of the algorithm adopted in this paper and the Sub-
tree partition is to distribute metadata into different MDS
according to the file location in directories. The only
difference of the two algorithms is the processing mode.
This partition may optimize the directory storage locality
and reduce the overlapping of prefix directory in different
MDS, thus increasing the Cache hit rate and reducing the
reading times. Particularly, the algorithm adopted in the
paper also introduces the concept of comprehensive
access authority, which may further reduce the reading
times enquired by directory traversal. LazyHybrid
algorithm and FileHash algorithm determine the metadata
distribution in MDS according to the hash value of full-
path file names, which results in the distribution of
metadata under the same directory into different MDS
and ignores the directory storage locality and prefix
directory MDS overlapping, thus reducing the Cache hit
rate and increasing the reading times. LazyHybrid
algorithm also adopts the method of storing directory
access authority, thus having less reading times than
FileHash algorithm.

D. Metadata Distribution
Metadata distribution mainly refers to the distribution

of metadata in each MDS. The experiment method is to
store, in the same order, 10000 files in 10 MDS with
same size. The figure below shows the metadata
distribution in different MDS in different algorithms.

Figure 10. Metadata Distribution in Different Algorithms

According to Figure 10, LazyHybrid algorithm and

FileHash algorithm have well balanced metadata
distribution, with minor difference of metadata quantity
in each MDS. This is because the two algorithms take
files as the partition granularity and evenly distribute
each metadata into each MDS through hash algorithm. It
is followed by the algorithm proposed in the paper. Since
the partition granularity is larger than files, the algorithm
proposed in the paper may have less balanced metadata
distribution in certain extreme circumstances compared
with the previous two algorithms. The Sub-tree partition
has the poorest metadata distribution, with obvious
difference of metadata quantity in each MDS.

E. Metadata Migration
Metadata migration refers to the migration of metadata

in each MDS when the user modifies directory properties
(path, directory name, etc.). The experiment method is,
based on the previous description, to draw 1-10% of all
directories at random. The figure below shows the
metadata migration after the modification of directory
property in centralized algorithm.

Figure 11. Metadata Migration after Modification of Directory

Proportion

According to the above figure, LazyHybrid algorithm

and FileHash algorithm have the largest metadata
migration amount. With the increase of directory
modification amount, the metadata migration amount
may reach 38.5%. This is because the two algorithms
adopt hash distribution based on file full-path name. The
modification of directory property results in the migration
of a large amount of metadata in MDS. The algorithm
proposed in the paper performs hash distribution after
binary coding of path names. The modification of
directory property will not affect the metadata
distribution in MDS and has no metadata migration. The
Sub-tree partition also only needs to modify a single
directory property, and it involves no migration of
metadata.

F. Experiment Summary
According to the simulation experiment results above,

a comprehensive comparison on different metadata
management performances is shown in the following
Table 3. The evaluation adopts five rating points, with 1
as the poorest and 5 as the best.

TABLE 3

PERFORMANCE COMPARISON OF DIFFERENT ALGORITHMS

According to the table above, the metadata

management method proposed in the paper shows good
performance in all aspects, i.e., throughput rate, reading

2452 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

times, metadata distribution and metadata migration, and
has the highest comprehensive points.

VIII. CONCLUSION

Based on the study on different metadata management
methods, this paper proposes improvements for existing
problems as well as the Directory Path Code
Hash(DPCH). This method is to store directory and file
metadata separately, perform hash distribution through
binary coding of directory paths, and introduce the
concepts of bucket partition, comprehensive access
authority and main and secondary mapping tables,
effectively solving the unbalanced metadata distribution
and access hot point problems in Sub-tree partition and
the excessive reading times and large metadata migration
amount after directory property modification in
LazyHybrid algorithm and FileHash algorithm. The
experiment indicates that the method proposed in this
paper significantly outweighs other algorithms in terms of
throughput rate, metadata distribution, reading times, etc.

ACKNOWLEDGMENT

Fund project: the army logistics key scientific research
program funded projects of PLA (BS211R099).

REFERENCES

[1] Roselli D, Lorch J, Anderson T. A comparison of file
system workloads [C]// Proceedings of the 2000 USENIX
Annual Technical Conference, San Diego. Boston:
USENIX Association, 2000: 41–54.

[2] Grorge A, Garcia J, Kim K. Distributed parallel processing
techniques for adaptive sonar beamforming[J]. Journal of
Computation Acoustics, 2002, 10(1):1-23.

[3] Weil s a, Pollack K T, Brandt S A, et al. Dynamic metadata
management for petabyte-scale file systems[C].
ACM/IEEE Conference on Supercomputing, DC, USA,
2004:4.

[4] National Information Standards Organization.
Understanding Metadata. [2012-01-01].
http://www.niso.org.

[5] Gongye Zhou, Qiuju Lan, Jincai Chen. A dynamic
metadata equipotent subtree partition policy for mass
storage system //Proc of the Japan-China Joint Workshop
on Frontier of Computer Science and Technology. 2008.

[6] Walter A, Francesco G, Marco M. Indexing and retrieval
of multimedia metadata on a secure DHT. Informatica,
2009,33(1):85-100.

[7] Popek G J, Rudisn G, Stoughton A, et al. Detection of
mutual inconsistency in distributed system[J]. IEEE
Transactions on software engineering, 1986,12(11):1067-
1075.

[8] Corbett P F, Feitelso D G. The Vesta Parallel File
System[J]. Transactions on Computer Systems, 1996,
14(3): 225-264.

[9] Brandt S A, Lan Xue, Miller E L, et al. Efficient Metadata
Management in Large Distributed File
Systems[C]//Proceedings of the 20th IEEE NASA Goddard
Conference on Mass Storage Systems and Technologies. [S.
1.]: IEEE Press, 2003: 290-298.

[10] Ganger GR, Kaashoek MF. Embedded inodes and explicit
groupings: Exploiting disk bandwidth for small files. In:
Proc. Of the 1997 USENIX Annual Technical Conf.

Anaheim: USENIX, 1997.1−17.
[11] Litwin W, Neimat MA, Schneider DA. LH—A scalable,

distributed data structure. ACM Trans. On Database
Systems, 1996,21(4):480−525.

[12] Tong Yang. Mass Data Analysis and Forecasting Based on
Cloud Computing. Journal of Software, Vol. 7, No. 10,
2012:2189-2195.

[13] Xindong You. ARAS-M: Automatic Resource Allocation
Strategy based on Market Mechanism in Cloud Computing.
Journal of Computers, Vol. 6, No. 7, 2011:1287-1296.

Hui Cai, born in 1983, Ph. D. His
research orientations are cloud and P2P
computing.

Shenlin Li, born in 1964, professor, Ph.D. His research interests
include Logistic Informationization and cloud computing.

Zhaoxia Wang, born in 1973, Ph.D. Her research direction
includes cloud and grid computing.

Xingchen Li, born in 1986, Ph.D. His main research interests
are data processing and intelligent interaction of the IOT.

Lichuan Huang, born in 1985, M.S. His main research interests
are oil gas station management, and oil Informationization.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2453

© 2014 ACADEMY PUBLISHER

