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Abstract—Association rules mining approach can find the 
relationship among items. Using association rules mining 
algorithm to mine resource fault, can reduce the number of 
wrong alarm resources to be replaced. This paper proposed 
an efficient association rules mining algorithm: CSRule, for 
mining closed strong association rules based on association 
rule merging strategies. CSRule algorithm adopts several 
pruning strategies to mine closed strong association rules 
without storing the candidate set. To improve the mining 
efficiency, CSRule algorithm adopts effective pruning 
strategies to mine closed strong association rules in real time, 
instead of secondary mining only through the definition. 
The experimental results show our algorithm is more 
efficient than traditional algorithm. 
 
Index Terms—frequent pattern, closed, resource 
 

I.  INTRODUCTION 

The resource is physical support of the avionics system. 
Normal operation in the system is achieved through 
reasonable scheduling of numerous resources. Every 
resource has certain capacity, while the resource 
capability is mainly reflected in the degree of satisfying 
specified demand. In the avionics system, different 
resource demands have different resource capability 
combinations; different resource capability combinations 
have different capacity integration approaches, while 
different capacity integration approaches give rise to 
resource capability relevance. Such capacity relevance 
makes as long as one resource goes wrong, other normal 
resources will warn the failure simultaneously. So, the 
analysis of association rules of capacity-related resources 
from the resource effectiveness data contributes to quick 
positioning of main fault resource, improving the rate of 
resource utilization, reducing system resource allocation, 
lowering complexity influence and enhancing system 
resource efficiency. 

Since the number of resources in the system is large, 
the scale of resource effectiveness matrix collected in a 
sampling time bucket is huge. The influence of how to 
efficiently mine resource mode from these data on system 
prognostics and health management [1] of system 
efficiency is very pivotal. Data mining technology widely 
applied currently can mine knowledge from large 

quantities of data. Association rule mining [2-5] is an 
important branch of data mining technology. This method 
can mine the resource mode with some derivation 
relationship from large quantities of data. The form of 
association rule is denoted as X⇒Y, where X and Y 
represent one or more items in the dataset. The 
occurrence of X results in the occurrence of Y. In the 
analysis of resource effectiveness matrix, the form of 
association rules includes R1⇒R2 (support: 80%, 
confidence: 100%), where R1 and R2 are two different 
resources or a group of resources. The meaning of this 
rule is that when R1 is very healthy, R2 is also 100% 
healthy; meanwhile, the proportion of common health for 
R1 and R2 in the whole resource effectiveness is 80%. The 
resources which go wrong and need to be replaced, can 
be gained according to the result of association rules. 
Assuming such association rule that -R3⇒-R4 (support: 
80%, confidence: 100%) exists, “-” means the occurrence 
of failure. It can be seen from the above association rule 
that after R3 goes wrong, the probability of R4 failure is 
100%. So, R4 failure may result from R3 cascading 
delivery. From the perspective of frequent pattern mining, 
R4 resource may be regarded as failure resource. However, 
from the perspective of association rules, after R3 
resource is replaced, R4 resource may be normal. 
Therefore, association rules used to mine resource failure 
can reduce the number of wrong alarm resources to be 
replaced. From the economic perspective, association 
rules analysis is very important. 

Traditional association rules mining approaches 
generally adopt the basic method, i.e. first mine frequent 
items [6-19] and then produce association rules. The 
association rules with high confidence can be gained 
through mining frequent items. But the duration of 
association rules mining and the internal storage 
consumption are very huge. For example, assuming 
R1R2R3 is a frequent item, a total of 6 association rules 
can be produced, including R1⇒R2R3, R2⇒R1R3, R3⇒R1R2, 
R1R2⇒R3, R1R3⇒R2 and R2R3⇒R1. The number of 
resources involved in the system is often very numerous, 
so it will be time-consuming to produce association rules 
based on frequent pattern mining. Meanwhile, there is no 
judgment of confidence in the process of frequent pattern 
mining in the first step, so the results mined in the first 
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step may be pruned in the second step. This will greatly 
influence the efficiency of the algorithm. Thus, SAW 
algorithm [20] proposed by Wang et al. can directly mine 
inter-genic association rules from gene chip data. This 
algorithm is different from traditional method (first mine 
frequent pattern and then use confidence to produce 
association rules. SAW algorithm first mines all 2-length 
association rules that two genes meet support and 
confidence simultaneously; then all gene association rules 
are produced through merging these rules. Rule merging 
strategy contains two ways: forward merging and 
backward merging, as shown in Fig.1. But, this algorithm 
has no efficient mining strategy and just mines closed 
strong association rules through the definition. 

 
Figure 1. Two merging strategies in SAW algorithm 

On the basis of the above analysis, this paper proposes 
closed strong association rules mining algorithm: CSRule, 
which is based on association rules merging strategies. 
This algorithm adopts several pruning strategies and thus 
can mine closed strong association rules without storing 
the candidate set. Different from SAW algorithm, CSRule 
algorithm adopts effective pruning strategies to mine 
closed strong association rules in real time, instead of 
conducting secondary mining only through the definition. 

II.  PROBLEM DESCRIPTION 

Resource effectiveness matrix is defined as a two-
dimensional real matrix D R S= × . Here, row set R 
represents the resource name; column set S refers to 
different sampling sites. Element Dij of matrix D is a real 
number which refers to the effective value (e.g., BIT 
value) of resource i under sampling j. |R| is the number of 
resources in data set D and |S| is the number of sampling 
sites in data set D. For the convenience of mining, the 
original effective value in resource effectiveness matrix is 
usually discretized into 1, -1 and 0, where 1 means 
resource health; 0 refers to resource sub-health; -1 means 
resource failure, as shown in Table 1. 

Definition 1: the relationship of resource R1 and R2 can 
be defined as follows: (1) If R1 and R2 are very effective 
simultaneously (both values are 1), R1 and R2 are of 
effective positive correlation, expressed as R1R2 with the 
support of 1 2

1 2
| |( )

| |
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S
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number of sampling sites when R1 and R2 are very 
effective simultaneously (similarly hereinafter); (2) If R1 
and R2 go wrong simultaneously (both values are -1), R1 
and R2 are of failure positive correlation, expressed as -
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If R1 is very effective and R2 goes wrong, R1 and R2 are of 
effective negative correlation, expressed as R1-R2; if R2 is 
very effective and R1 goes wrong, R1 and R2 are of 

effective negative correlation, expressed as -R1R2. When 
R1 and R2 are of effective negative correlation, the 

support is 1 2 1 2
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According to the above support definition, confidence 
of association rules can be calculated, i.e. conf（R1-
>R2）=sup(R1R2)/sup(R1), where R1 and R2 can be a 
group of resources. So, three association rule modes 
aiming at the three modes of support can be gained 
through the support of three relations among resources, 
i.e. corresponding resource association rules can be 
gained through calculating resource frequent mode 
according to the definition of association rule. In this 

paper, resource association rules mined by CSRule 
algorithm are four types described in Definition 2. 

Definition 2: There are four types of resources 
association rules mined by CSRule: (1) -Rm->-Rn means 
Rm resource failure will result in Rn resource failure, 
where Rm and Rn can be a group of resources (similarly 
hereinafter), conf (-Rm->-Rn)=sup (-Rm-Rn)/sup(-Rm); (2) -
Rm->Rn means Rm resource failure will result in normal 
operation of Rn. At this moment, Rm and Rn may have 
some kind of coupling. If Rm is changed, Rn failure may 
be caused. conf (-Rm->Rn)=sup (-RmRn)/sup(-Rm); (3) Rm-
>-Rn means normal operation of Rm will lead to Rn failure. 
At this moment, Rm and Rn may have some kind of 
coupling. If Rn is changed, Rm failure may be caused, conf 
(Rm->-Rn)=sup (Rm-Rn)/sup(Rm); (4) Rm->Rn means when 
Rm normally operates, Rn also normally operates. The 
significance is that when Rm is used, the reliability of the 
use of Rn is higher, conf (Rm->Rn)=sup (Rm-Rn)/sup(Rm). 

Definition 3: if an association rule has not the superset 
with the same support threshold and confidence threshold, 
this association rule is closed strong association rule.  

The purpose of CSRule algorithm is to mine all closed 
strong association rules meeting support and confidence 
thresholds as well as four modes in Definition 2 and 
restraints in Definition 3 from resource effectiveness 
matrix. Unlike traditional association rules mining, 
CSRule algorithm mines in the way of association rule 
extension. The specific mining process will be introduced 
in next section. 

III.  THE CSRULE ALGORITHM 

The mining steps of CSRule algorithm can be divided 
into two steps: firstly, produce all association rules (for 
the convenience of expression, association rules are 

TABLE I.   
DISCRETE RESOURCE EFFECTIVENESS MATRIX 

 S0 S1 S2 S3 S4 
R1 1 -1 1 -1 1 
R2 1 -1 1 -1 -1 
R3 0 1 -1 1 1 
R4 1 1 0 1 1 
R5 -1 -1 0 -1 1 
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called association rule pair for short) which satisfy the 
support and confidence thresholds and whose precursor 
and successor have only one resource; then, merge 
association rules according to “forward merging” and 
“backward merging” used in SAW algorithm to mine all 
closed strong association rules. 

A.  Association Rule Pair Generation 
Generation of all association rule pairs can delete 

association rules which dissatisfy support threshold and 
confidence threshold so as to avoid the shortcoming of 
traditional generation of association rules based on 
frequent pattern: frequent pattern only satisfies support 
threshold and possible item sets dissatisfy confidence 
threshold. Meanwhile, to improve the emerging 
efficiency in next step of the algorithm, the sample 
information of each rule is saved while association rule 
pairs are generated. During generation of closed strong 
association rules, the sample information can be directly 
used to calculate and generate support and confidence of 
association rules so as to avoid scanning of original data. 
For example, in the resource effectiveness matrix shown 
in Table 1, for the rule R3->-R2, the support is 0.6 and the 
confidence is 100%; the frequent sample of R3-R2 
recorded is S1S3S4. For R3 and R4, the expression mode of 
the association rule is R3->R4. The support is 0.6 and the 
confidence is 100%; the frequent sample recorded is 
S1S3S4. In order to boost merging and extension efficiency, 
for each association rule, not only frequent sample 
information but also the sample information of rule 
precursor should be recorded. For instance, precursor 
frequent sample information of the rule R3->-R2 is 
frequent sample set of R3, i.e. S1S3S4. The purpose of 
recording precursor frequent sample information is to 
facilitate calculation of confidence of association rules 
newly generated in follow-up “merging”. How to use the 
information will be stated in the next section. 

B.  Merging Strategy 
After all association rules whose confidence and 

successor have only one resource are produced, the above 
association rules can be merged in line with “forward 
merging” or “backward merging” strategies. In 
accordance with “forward merging” or “backward 
merging” strategies described in SAW algorithm, the form 
of closed strong association rules finally gained is Ri-
>Rm…Rn or Rm…Rn->Rj. That is to say, the number of 
resources in precursor set or successor set in the rules 
cannot exceed 1 simultaneously, i.e. either the precursor 
has only one resource or the successor has only one 
resource; the precursor and the successor cannot have 2 
resources or above. So, it is known according to the 
definitions of four association rules in Definition 2 that 
association rules in the first mode and the second mode 
comply with “backward merging” strategy; association 
rules in the third mode and the fourth mode comply with 
“backward merging” strategy; association rules in the 
first mode and the third mode comply with “forward 
merging” strategy; association rules in the second mode 
and the fourth mode comply with “forward merging” 
strategy.   

The establishment of the above merging strategies can 
boost the efficiency of CSRule algorithm to generate 
candidate association rules: (1) the association rule 
extended currently is in the first mode. During “forward 
merging”, its candidate association rules can only be in 
the first mode and the third mode; during “backward 
merging”, its candidate association rules can only in the 
first mode and the second mode; (2) the association rule 
extended currently is in the second mode. During 
“forward merging”, its candidate association rules can 
only be in the second mode and the fourth mode; during 
“backward merging”, its candidate association rules can 
only in the first mode and the second mode; (3) the 
association rule extended currently is in the third mode. 
During “forward merging”, its candidate association rules 
can only be in the first mode and the third mode; during 
“backward merging”, its candidate association rules can 
only in the third mode and the fourth mode; (4) the 
association rule extended currently is in the fourth mode. 
During “forward merging”, its candidate association rules 
can only be in the second mode and the fourth mode; 
during “backward merging”, its candidate association 
rules can only in the third mode and the fourth mode. 
Therefore, during candidate judgment, it is necessary to 
first judge the mode type. If the mode of association rule 
currently extended and the mode of follow-up association 
rules comply with one of the above four requirements, 
support and confidence thresholds can be calculated.    

We will briefly introduce how to use frequent sample 
information of association rules and precursor frequent 
sample information to calculate support and confidence. 
For instance, during “backward merging” of R3->-R2 and 
R3->R4, frequent sample information of R3-R2R4 can be 
obtained through calculating the intersection of frequent 
samples of the above two association rules, i.e. S1S3S4. 
Thus, the support of R3-R2R4 is 0.6. This avoids scanning 
of original data set. For association rule R3->-R2R4 
generated through “backward merging”, it is necessary to 
know the support of precursor R3 during calculation of 
the confidence. So, it is necessary to scan storage linked 
list only once where support values if each resource is 
stored. Thus, the support of each resource can be gained. 
Therefore, during “backward merging”, it is only 
necessary to record support of single precursor resource, 
without the need of recording frequent sample 
information.  

For “forward merging”, since precursor resources of 
association rules generated grow dynamically, it is 
necessary to know the support of the precursor during 
calculation of confidence. So, during extension, it is 
necessary to record precursor frequent sample 
information of the association rules generated. For 
example, for -R2->R3, its support is 0.6 and confidence is 
100%; frequent sample of -R2R3 needs recording, i.e. 
S1S3S4; precursor frequent sample of -R2 needs recording, 
i.e. S1S3S4; for R4->R3, its support is 0.6 and confidence is 
75%; frequent sample of R1-R4 needs recording, i.e. 
S1S3S4; precursor frequent sample of R4 needs recording, 
i.e. S0S1S3S4. -R2R4->R3 can be generated through 
“forward merging” of the above two rules. Frequent 
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sample of -R2R4R3 is the intersection of the sample 
information of the above two association rules: S1S3S4, so 
the support is 0.6. The precursor frequent sample of -
R2R4->R3 can be obtained through calculating the 
intersection of precursor frequent sample of -R2 in -R2-
>R3 and precursor frequent sample of R4 in R4->R3: 
S1S3S4. Therefore, confidence of -R2R4->R3 is 100%. 
Thus, the support and confidence of the association rules 
generated after the merging can be directly calculated 
according to sample information and precursor frequent 
sample information of merged association rules, which 
avoids scanning of original data set and improving 
mining efficiency of the algorithm. 

C.  Pruning Strategy 
We are about to introduce how to design pruning 

strategies to mine closed strong association rules in real 
time without storing the candidate set. According to the 
previous analysis, there are two ways for association rule 
extension: “forward merging” and “backward merging”. 
Extension of initial association rules can be “forward 
merging” or “backward merging”. For the association 
rule with middle extension, if this rule is gained through 
“forward merging” extension of initial association rule, 
all candidate association rules of this association rule can 
only be extended through “forward merging”. If this rule 
is gained through “backward merging” extension of 
initial association rule, all candidate association rules of 
this association rule can only be extended through 
“backward merging”. For “backward merging”, it is 
known from the following Lemma 1 that the support and 
confidence satisfy anti-monotonicity; for “forward 
merging”, it is known from the following Lemma 2 that 
the support meets anti-monotonicity, but the confidence 
dissatisfies anti-monotonicity. So, during design of 
pruning strategies, the pruning ways of “forward 
merging” and “backward merging” are slightly different.  

Lemma 1: when association rules are in accordance 
with “backward merging” strategy, the support and the 
confidence satisfy anti-monotonicity.  

Proof: when association rules are in accordance with 
“backward merging” strategy, the number of resources in 
the rules newly generated will increase, so the support of 
resource set will not increase. Thus, the support meets 
anti-monotonicity during “backward merging” of 
association rules. According to the definition of 
confidence, the numerator is the support of al resources in 
the rules newly generated and the denominator is the 
support of precursor resources. The number of precursor 
resources is unchanged during “backward merging” of 
association rules”, and the number of successor recourses 
increases. Thus, the support of the denominator in the 
computational formula of confidence is unchanged and 
the support of numerator will not increase. Therefore, the 
confidence also meets anti-monotonicity during 
“backward merging” of association rules”.   

Lemma 2: when association rules are in accordance 
with “forward merging” strategy, the support satisfies 
anti-monotonicity, but the confidence dissatisfies anti-
monotonicity.  

Proof: when association rules are in accordance with 
“forward merging” strategy, the number of resources in 
the rules newly generated will increase, so the support of 
resource set will not increase. Thus, the support meets 
anti-monotonicity during “forward merging” of 
association rules. According to the definition of 
confidence, the numerator is the support of al resources in 
the rules newly generated and the denominator is the 
support of precursor resources. The number of precursor 
resources increases during “forward merging” of 
association rules”, and the number of successor recourses 
is unchanged. Thus, the support of the denominator in the 
computational formula of confidence will not increase 
and the support of numerator will not increase, either. 
Therefore, the confidence also meets anti-monotonicity 
during “backward merging” of association rules”. 
Consequently, the following conclusion cannot be gained: 
with the execution of “forward merging”, the confidence 
of association rules newly generated shows less or equal 
variation trend. Thus, the confidence dissatisfied anti-
monotonicity during “forward merging” of association 
rules.  

According to Lemma 1, for “backward merging”, since 
both support and confidence meet anti-monotonicity, as 
long as strong association rules currently extened do not 
meet the support threshold or confidence threshold, the 
extension can stop. CSRule algorithm adopts precursor 
detection to design pruning strategies. In other words, if 
frequent sample information of candidate association 
rules to be extended currently is the subset of frequent 
sample information of a precursor candidate association 
rule (i.e. all closed strong association rules which can be 
obtained through extension of current candidate 
association rules can be gained through extension of this 
precursor candidate association rule), current candidate 
association rules can be pruned. For example, as shown in 
Table 1, assuming the association rule currently extended 
is -R1->-R2, and -R1->R3 has been extended, the candidate 
association rule to be extended currently is -R1->R4. At 
this moment, relative to -R1->-R2, frequent sample of 
candidate association rule -R1->R4 is S1S3 (in other words, 
calculating the intersection of frequent sample S1S3 of -
R1->-R2 and frequent sample S1S3 of -R1->R4, i.e. frequent 
sample of -R1->-R2R4). Since -R1->R3 has been extended, 
-R1->R3 is the precursor candidate sample of -R1->-R2. 
And, relative to -R1->-R2, frequent sample of -R1->R3 is 
S1S3 (in other words, calculating the intersection of 
frequent sample S1S3 of -R1->-R2 and frequent sample 
S1S3 of -R1->R3, i.e. frequent sample of -R1->-R2R3). At 
this moment, frequent sample S1S3 of -R1->-R2R4 is the 
subset of frequent sample of -R1->-R2R3. So, all closed 
strong association rules which can be gained through 
extension of -R1->-R2R4 can be obtained through 
extension of -R1->-R2R3. At the same time, the latter is 
the superset of the former, and they have the same 
support and confidence. Thus, -R1->-R2R4 can be pruned.  

According to Lemma 2, for “forward merging”, when 
the support meets closed judgment conditions (i.e. as the 
scale of association rules continuously extends, the 
support of strong association rules newly generated is 
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unchanged), the confidence of the extended rules is on 
the rise. This is because the support of the numerator is 
unchanged, if the support of the denominator is also 
remains unchanged, the definition of closed strong 
association rules is satisfied. So, during “forward 
merging”, not just frequent sample of current candidate 
association rules should satisfy the pruning strategy in the 
last “backward merging”, but also precursor frequent 
sample of candidate association rules should also meet 
that: precursor frequent sample of candidate association 
rules is the subset of precursor frequent sample of a 
precursor candidate sample. For example, as shown in 
Table 1, assume the association rule currently extended is 
-R1->R3; -R2->R3 has been extended; candidate 
association rule to be extended currently is R4->R3. At 
this moment, frequent sample set of -R1R4->R3 is the 
subset of frequent sample set of -R1-R2->R3 (from the 
perspective of support). Meanwhile, precursor frequent 
sample set of -R1R4->R3 is the subset of precursor 
frequent sample set of -R1-R2->R3 (from the perspective 
of confidence). Then, current candidate association rule 
R4->R3 can be pruned.  

Lemma 3: assuming that P is a strong association rule 
extended currently, M is the candidate association rule set 
of P and N is the prior candidate association rule set of P. 
For a candidate sample Mi(Mi∈M), if there exists a prior 
candidate association rule Nj(Nj∈N) making the frequent 
sample set of PMi be the subset of frequent sample set of 
PNj, association rules which can be gained through 
extension of PMi is the subset of the association rules 
gained through extension of PMiNj. 

Proof: proof by contradiction is adopted. Assume 
when frequent sample set of current candidate association 
rule Mi is not the subset of frequent sample set of 
precursor candidate association rule Nj, Mi can be pruned. 
According to the assumption, the sample set which does 
not belong to PNj exists in PMi. Since closed association 
rule mining adopts depth-first way and Nj prior to Mi for 
extension, another association rule Rm making frequent 
sample set of PMiRm unequal to frequent sample set of 
PMiNjRm may exist. So, Mi cannot be pruned. This 
contradicts the assumption, so the original proof is 
established.   

Lemma 4: assuming that P is a strong association rule 
extended currently, M is the candidate association rule set 
of P and N is the prior candidate association rule set of P. 
For a candidate sample Mi(Mi∈M), if there exists a prior 
candidate association rule Nj(Nj∈N) making frequent 
sample set of PMi be a subset of the frequent sample set 
of PNj and the prior frequent sample set of PMi is the 
subset of prior frequent sample set of PNj, then 
association rules which can be gained through extension 
of PMi, is the subset of the association rules gained 
through extension of PMiNj. 

Proof: proof by contradiction is adopted. (1) Assume 
when frequent sample set of current candidate association 
rule Mi is not the subset of frequent sample set of 
precursor candidate association rule Nj, Mi can be pruned. 
This process of proof is the same with that of Lemma 3, 
so it is omitted here; (2) assume when precursor frequent 

sample set of current candidate association rule Mi is not 
the subset of precursor frequent sample set of precursor 
candidate association rule Nj, Mi can be pruned. 
According to the assumption, another association rule Rm 
making precursor frequent sample set of PMiRm unequal 
to precursor frequent sample set of PMiNjRm (i.e. the 
confidence of PMiRm may be unequal to that of PMiNjRm) 
may exist. In accordance with the definition of closed 
association rules, PMiRm may be a closed association rule, 
so it cannot be pruned. This contradicts the assumption, 
so the original proof is established.  

Based on the above lemmas, CSRule algorithm uses 
the following four pruning strategies to prune candidate 
samples so as to improve mining efficiency of the 
algorithm.  

Pruning strategy 1: when association rules are in 
accordance with “backward merging” strategy, if the 
support or confidence of the association rule currently 
extended dissatisfies threshold requirement users define, 
extension of current association rule will stop.  

Pruning strategy 2: when association rules are in 
accordance with “forward merging” strategy, if the 
support of the association rule currently extended 
dissatisfies threshold requirement users define, extension 
of current association rule will stop. 

Pruning strategy 3: assuming that P is the strong 
association rule currently extended, M is candidate 
association rule set of P, and N is precursor candidate 
association rule set of P, if a precursor candidate 
association rule Nj (Nj∈N) making frequent sample set of 
PMi is the subset of frequent sample set of PNj exists for 
candidate association rule Mi (Mi∈M), PMi will be 
pruned. 

Pruning strategy 4: assuming that P is the strong 
association rule currently extended, M is candidate 
association rule set of P, and N is precursor candidate 
association rule set of P, if a precursor candidate 
association rule Nj (Nj∈N) making frequent sample set of 
PMi is the subset of frequent sample set of PNj exists for 
candidate association rule Mi (Mi∈M), and precursor 
frequent sample set of PMi is the subset of precursor 
frequent sample set of PNj, PMi will be pruned. 

D.  Algorithm Procedure and Example 
Based on the previous descriptions, CSRule algorithm 

uses association rule merging to directly mine all closed 
association rules without storing the candidate association 
rules. The following algorithm description provides 
specific mining process. Figures 1-4 illustrate the mining 
process of CSRule algorithm: Fig.1 describes precursor 
resource as the normal resource and adopts “backward 
merging” extension way; Fig.2 describes precursor 
resource as the failure resource and adopts “backward 
merging” extension way; Fig.3 describes successor 
resource as the normal resource and adopts “forward 
merging” extension way; Fig.4 describes successor 
resource as the failure resource and adopts “forward 
merging” extension way, in the example, the data are 
shown in Table 1; the support threshold is 0.4; the 
confidence threshold is 70%.  
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Algorithm: CSRule algorithm 
Input: support threshold: rmin’ confidence threshold: 

confmin’ resource effectiveness data: D 
Output: all closed strong association rules meeting the 

threshold 
Initial value: association rule pair: G =Null, association 

rules to be extended currently: Q =Null, Gi=Null, Gj=Null 
Algorithm description: CSRule(rmin,confmin, D, Q, Gi, 

Gj) 
 (1) If G is null, scan data set D to mine all strong 

association rule pairs meeting support and confidence 
thresholds and save in G and Gi as the first association 
rule in G;  

 (2) If Q is null, Q=Gi 
 (3) For every association rule Gj in G 
 (4)   If QGj is forward merging and satisfies 

pruning conditions of forward merging 
 (5)        continue; 
 (6)      else if QGj is backward merging and satisfies 

pruning conditions of backward merging  
 (7)        Continue; 
 (8)      else 

 (9)         Q=QGj 
 (10)        if QGj is backward merging, then calculate 

the intersection of frequent sample set of Q and frequent 
sample set of Gj as frequent sample set of QGj; 

 (11)       if QGj is forward merging, then calculate the 
intersection of frequent sample set of Q and frequent 
sample set of Gj as frequent sample set of QGj, and 
calculate the intersection of precursor frequent sample set 
of Q and precursor frequent sample set of Gj as precursor 
frequent sample set of QGj; 

 (12)       CSRule (rmin，confmin，D，Q，Gi，Gj-
>next);  

 (13)   endif 
 (14) endfor 
 (15) If Q meets the definition of closed association 

rule, then 
 (16)  Output Q 
 (17) endif; 
 (18) Gi = Gi->next; 
 (19) return 
 
 

 

Figure 2. Example for mining precursor of CSRule algorithm as normal resource with “backward merging” extension  

 

Figure 3. Example for mining precursor of CSRule algorithm as failure resource with “backward merging” extension 
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Pruning 

4

 

Figure 4. Example for mining successor of CSRule algorithm as normal resource with “forward merging” extension 

 

Figure 5. Example for mining successor of CSRule algorithm as failure resource with “forward merging” extension 

 

 

 

IV.  EXPERIMENTAL RESULTS 

In this section, we will make an experimental 
comparison on the mining efficiency and result of the 
algorithm above and existing algorithms. The hardware 
environment of the experiment is Intel(R) Core(TM)2 
Duo 2.53GHz CPU and 4G internal memory; the 
software environment is Microsoft Windows 7 SP1 
operating system; the algorithm programming and 
operating environment is Microsoft Visual C++ 6.0 SP6. 
Experimental data used in this paper are simulation data. 
To fully test the performance of the algorithm, we 

produce six data sets randomly, each of which contains 
20 sampling sites and 800 resources. Table 2 describes 
proportions of 1, 0 and -1 in each row in each data set. 

TABLE II.   
PROPORTIONAL DISTRIBUTION OF NUMERICAL VALUES IN SIX 

DATA SETS 

 1 0  -1  
D1 0.4 0.2 0.4 
D2 0.4 0.3 0.3 
D3 0.5 0.2 0.3 
D4 0.4 0.4 0.2 
D5 0.5 0.3 0.2 
D6 0.5 0.25 0.25 
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In this section, mining efficiency of CSRule algorithm 
and SAW algorithm is compared. SAW algorithm adopts 
the mining algorithm described in [20] for mining. 
Similar to CSRule algorithm, SAW algorithm also adopts 
association rule extension to mine all closed strong 
association rules. Different from CSRule algorithm, SAW 
algorithm does not adopt any pruning strategy for mining. 
To fully compare the extendibility of the algorithms, we 
produce multiple groups of data sets with different 
resources quantities. The selection of recourses is subject 
to resource sequence in the data sets. 

Figures 6(a)-6(c) provide the comparison of 
performance duration of the above two algorithms under 
different data sets when the number of resources is 200 
with the support of 0.25 and the confidence of 0.8, 0.7 
and 0.6 respectively. It can be seen from these figures 
that with the decrease in the confidence, the mining 
efficiency of the two algorithms also decreases; but under 
almost all data sets with different scales, the mining 
efficiency of CSRule algorithm is higher than that of SAW 
algorithm. However, under D4 data set in Fig. 5(c), the 
efficiency of CSRule algorithm is slightly lower than that 
of SAW algorithm. This is because under low confidence, 
the algorithm will produce many association rule pairs 
with the length of 2. So, in the mining process, it is 

necessary to make frequent closure judgment for 
association rules generated through merging. If the 
judgment shows the rule will not be pruned, this will 
seriously influence the pruning efficiency of the 
algorithm. Since the proportion of “1” in D3, D4 and D6 is 
high, the data set is dense. Thus, more association rule 
pairs will be produced. Therefore, under the condition 
where association rule pairs initially merged are many, 
the mining efficiency of the two algorithms is not high. 
When the confidence is 0.7 and 0.6, the above mining 
process under three data sets cannot be completed in 
limited internal storage restraint.  

In order to further compare the extendibility of the two 
algorithms, figures 7(a)-7(c) provide the comparison of 
performance duration of the above two algorithms under 
different data sets when the number of resources is 500 
with the support of 0.45 and the confidence of 0.8, 0.7 
and 0.6 respectively. Figures 8(a)-8(c) provide the 
comparison of performance duration of the above two 
algorithms under different data sets when the number of 
resources is 800 with the support of 0.45 and the 
confidence of 0.8, 0.7 and 0.6 respectively. It can be seen 
from the figures that under almost all data sets, the 
mining efficiency of is higher than that of SAW algorithm. 

 

 
Figure 6. Comparison of performance duration of two algorithms under different data sets when the number of resources is 200: (a) confidence: 0.8; 

(b) confidence: 0.7; (c) confidence: 0.6 

 
Figure 7. Comparison of performance duration of two algorithms under different data sets when the number of resources is 500: (a) confidence: 0.8; 

(b) confidence: 0.7; (c) confidence: 0.6 

 
Figure 8. Comparison of performance duration of two algorithms under different data sets when the number of resources is 800: (a) confidence: 0.8; 

(b) confidence: 0.7; (c) confidence: 0.6 
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V.  CONCLUSION 

This paper proposed an efficient algorithm for mining 
closed strong association rules based on association rule 
merging strategies: CSRule. This algorithm adopts 
multiple pruning strategies to mine closed strong 
association rules without storing the candidate set. To 
improve the mining efficiency of the algorithm, CSRule 
algorithm adopts effective pruning strategies to mine 
closed strong association rules in real time, instead of 
secondary mining only through the definition. However, 
original data information will be lost if the mining 
process is conducted in the discrete data. Our future 
research object is to mine closed strong association rules 
related to resource health from true resource effectiveness 
data. 
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