
High-accuracy Optimization by Parallel Iterative
Discrete Approximation and GPU Cluster

Computing

Di Zhao1,2
1Center for Cognitive and Brain Science, The Ohio State University

2College of Medicine, The Ohio State University
Columbus, OH 43210

Email: zhao.1029@osu.edu
Web: https://cog.osu.edu/people/zhao

Abstract—High-accuracy optimization is the key component
of time-sensitive applications in computer sciences such as
machine learning, and we develop single-GPU Iterative
Discrete Approximation Monte Carlo Optimization (IDA-
MCS) and multi-GPU IDA-MCS in our previous research.
However, because of the memory capability constrain of
GPUs in a workstation, single-GPU IDA-MCS and multi-
GPU IDA-MCS may be in low performance or even
functionless for optimization problems with complicated
shapes such as large number of peaks. In this paper, by the
novel idea of parallelizing Iterative Discrete Approximation
with CUDA-MPI programming, we develop the GPU cluster
version (GPU-cluster) of IDA-MCS with two different
parallelization strategies: Domain Decomposition and Local
Search, under the style of Single Instruction Multiple Data
by CUDA 5.5 and MPICH2, and we exhibit the performance
of GPU-cluster IDA-MCS by optimizing complicated cost
functions. Computational results show that, by the same
number of iterations, for the cost function with millions of
peaks, the accuracy of GPU-cluster IDA-MCS is
approximately thousands of times higher than that of the
conventional method Monte Carlo Search. Computational
results also show that, the optimization accuracy from
Domain Decomposition IDA-MCS is much higher than that
of Local Search IDA-MCS.

Index Terms—GPU Cluster Computing; CUDA-MPI
Programming; Iterative Discrete Approximation; High-
accuracy Optimization; Domain Decomposition; Local
Search

I. INTRODUCTION

Numerical optimization is computer based algorithms
to calculate the value of optimum, which typically solves
one-dimensional (1D) or high-dimensional cost function
with the form such as the two-dimensional (2D) cost
function:

()yxf ,max

Ω
, (1)

where Ω is search space, a finite area for optimization,
and the two variables (x, y) � Ω. The GPU based
approaches with the style of Single Instruction Multiple
Data (SIMD) to solve high-dimensional optimization

problems include Particle Swarm Optimization, Brute-
force Search, Monte Carlo Search, etc.
Particle Swarm Optimization is a method of optimization
with scanning the search space by a group of candidate
solutions named particle, and these particles are suitable
for parallelization. Particle Swarm Optimization is well
parallelized by GPU computing [1-6] with application to
computer sciences [7-14], finance [15, 16], physics [17],
biology [18], etc.

Brute-force Search is an optimization method to
exhaustively search all possibility in the search space on
uniform grids, and the accuracy of optimum almost
depends on the coverage of search space. Brute-force
Search successfully optimize the problems from
computer sciences [19-26], finance [27, 28], physics [29],
chemistry [30], biology [31-35], etc.

Brute-force Search is suitable for solving the low-
dimension problem, and this algorithm has nice property
of parallelization, which leads to high-performance in
GPU computing. However, for the high-dimensional cost
function, the computational cost of Brute-force Search
dramatically increases because of curse of dimensionality.
To solve this problem, methods such as Monte Carlo
Search are developed.

Different from uniform grid in Brute-force Search,
Monte Carlo Search calculates optimization by random
numbers of different distribution, especially for high-
dimensional optimization. By Monte Carlo Search, the
cost function equation (1) can be calculated by sampling
a set of random numbers with total number of I:

() ()iiIi

yxfyxf ,max,max
∈Ω

= , (2)

where 0 < i < I and (x, y) � Ω. If the distribution of the
cost function is not estimated, the distribution for
sampling random numbers is usually uniform distribution,
and proper estimation of the distribution of the cost
function increases the efficiency of mixing. As a
conventional method, Monte Carlo Search is successfully
applied to optimize the problems from fields such as
computer sciences [8, 36], biology and medical
healthcare [2, 7, 37], physics [38], economics [3, 39], etc.

2366 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2366-2377

Monte Carlo Search covers the whole search space by
sampling large number of random points. However, it is
computational challenging for the conventional Monte
Carlo Search to high-accuracy optimize a cost function
f(x, y) with a complicated shape such as thousands to
millions of peaks in real-time.

In this paper, by the novel idea of parallelizing
Iterative Discrete Approximation by CUDA-MPI
programming, we develop GPU-cluster versions of
Iterative Discrete Approximation Monte Carlo
Optimization (IDA-MCS) with two different
parallelization strategies: Domain Decomposition and
Local Search, with the style of SIMD by CUDA 5.5 and
MPICH2, and we exhibit the performance of GPU-cluster
IDA-MCS by optimizing complicated functions with
millions of peaks.

Additionally, for the convenience of later description,
we clearly define the terms of single-GPU, multi-GPU
and GPU-cluster. In this paper, single-GPU means a GPU
in a GPU workstation, multi-GPU means multiple GPUs
in a GPU workstation, and GPU-cluster means multiple
GPUs in a GPU cluster of multiple nodes.

II. METHODS

A. 2D Iterative Discrete Approximation
For a continuous 2D cost function f(x, y), how to

produce a set of random numbers whose distribution
obeys the given 2D cost function f(x, y)? Discrete
Approximation is a method to answer this question, and
Discrete Approximation is a method to generate the
approximation of 2D discrete function f(x, y) by a set of
random samples, and the distribution of random numbers
obeys the 2D function f(x, y) directly or indirectly, and
the total number of random samples is usually preset.
Setting total number of random samples results in the
style of SIMD and then advantages in high-efficient
applications, and this is the first reason why the high-
accuracy of GPU-cluster IDA-MCS comes from.

To discretely approximate a 2D function f(x, y), for a
given set of random numbers A = (xi, yi), the set f(A)
returns implicit information about the 2D function.
Applying the weighting function w to the set f(A), the
function

 w(f(A)) (3)

returns amplified implicit information about the cost
function. To transform the implicit information to the
explicit form, a Monte Carlo Simulation is applied to
w(f(A)), and with current design a new set B is generated
by

B ~ cumsum(w(f(A))),
where cumsum means cumulative sum, and ~ means
Monte Carlo Simulation. By some transform function t, a
set Anew is produced by

Anew = t(B),
where Anew is Discrete Approximation of the cost function
f(x, y).

In some applications, since the shape of the function
f(x, y) is sometimes too complicated, Discrete
Approximation is not powerful enough to approximate

the cost function under such circumstance. To solve this
problem, we bring the novel idea of introducing iteration
into Discrete Approximation in our previous research,
which leads to Iterative Discrete Approximation. After
iterations, the points become more and more
concentrating on the peak area, which significantly
improves the accuracy of optimizing the cost function f(x,
y).

Let us explain how Iterative Discrete Approximation
works by an example in the language of GPU computing,
as shown in Figure 1. For a given 2D optimization
function f(x, y) with the search space, suppose we draw
four samples (x1, y1), (x2, y2), (x3, y3) and (x4, y4) from a
cost function in Figure 1 (i), and the cost function is:

() 228, yxyxf −−=

 22,22 ≤≤−≤≤− yx , (4)

pass these four values through the cost function f(x, y)
with the style of SIMD, we obtain four values: f(x1, y1),
f(x2, y2), f(x3, y3) and f(x4, y4) in Figure 1 (i), and the
values of f(x1, y1), f(x2, y2), f(x3, y3) and f(x4, y4) contain
the information of the shape and the locations of the cost
function f(x, y).

To take advantages of the implicit information,
Iterative Discrete Approximation constructs bins. In
Figure 1 (ii), there are four bins are constructed since
there are four available estimation of the cost function,
and the length of each bin is decided by the values of f(x1,
y1), f(x2, y2), f(x3, y3) and f(x4, y4). Since the values of f(x1,
y1), f(x2, y2), f(x3, y3) and f(x4, y4) are decided by the shape
of the peak and the weighting function, the length of the
bins are decided by the shape of the cost function
indirectly.

Then a procedure of Monte Carlo Simulation is
followed. Generate a set of random numbers of standard
uniform distribution, for example four random numbers,
and “throw” these numbers to these bins. Since the
lengths of these bins are different, the possibility of
“receiving” a random number is different, which is
shown in Figure 1 (ii). After all iterations, the difference
of bin lengths make the random numbers gradually gather
in the peak area.

(i)

-2
-1

0
1

2

-2
-1

0

1
2
0

2

4

6

8

(x1, y1) (x2, y2)
(x4, y4)

(x3, y3)

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2367

© 2014 ACADEMY PUBLISHER

(ii)

Figure 1. Example of Iterative Discrete Approximation: (i) the
Sampling Points from the Cost Function and (ii) the Constructed Bins

by the Sampling Points

In real implementation of Iterative Discrete
Approximation, the number of bins is typically large,
although there may be no individual bin receiving large
number of samples, bins locating the peak area receive
most random numbers. This concentration brings
tremendous advantages of operating f(x, y) such as
optimization and integration.

(i) (ii)

(iii) (iv)

Figure 2. Demonstration of Iterative Discrete Approximation with (i)
the Input, (ii) the Output with β = 2, (iii) the Output with β = 5 and (iv)

the Output with β = 10

To illustrate the performance of Iterative Discrete
Approximation for 2D cost functions, we discretely
approximate the cost function equation (4) with 1000
points in Figure 2, and the weighting function is:

()yxf
wf ,β=

with different values of base β = 2, β = 5 and β = 10. The
contour of equation (4) in Figure 1 (i) is also plotted in
Figure 2. From Figure 2 we can clearly see, while the
input points locate uniformly in Figure 2 (i), these points
concentrate on the peak in Figure 2 (ii), and these points
concentrate more on the peak in Figure 2 (iii) and Figure
2 (iv).

B. Single-GPU IDA-MCS for 1D Cost Function
We developed single-GPU IDA-MCS for the 1D cost

function in our previous research, and single-GPU IDA-
MCS aims at optimizing a function with relatively small-
scale problems such as hundreds of peaks for high
accuracy and efficiency, and we make a short
introduction of single-GPU IDA-MCS for 1D cost
function in this section.

Monte Carlo Search is the conventional method to
optimize a cost function with the style of SIMD, and
Monte Carlo Search can be summaries in Algorithm 1:

Algorithm 1. Monte Carlo Search for 1D Cost Function

• Generate a sample set A1 with the bandwidth N,
pass the set A1 through f(x, y) to the set B1;

• Pass the set B1 through the cost function f(x, y)
to the set C1;

• In single GPU, calculate the optimum from the
set C1;

In Algorithm 1, we name the value of N as bandwidth,

because the number of points in all sets keeps the value N
to satisfy the requirements of SIMD. In our previous
research, Algorithm 1 is accelerated by Discrete
Approximation. To further increase the performance of
Discrete Approximation, Iterative Discrete
Approximation is developed, and finally arrives at single-
GPU IDA-MCS of Algorithm 2:

Algorithm 2. Single-GPU IDA-MCS for 1D Cost
Function

• Iteration 1: generate a set A2
1 with the number of

N elements, pass the set A2
1 through the cost

function f(x, y) to the set B2
1;

• Iteration k: discretely approximate the set B2
k to

the set C2
k, pass the set C2

k through equation (3)
to the set D2

k, and substitute D2
k back to B2

k for
next iteration k+1;

• In single GPU, calculate the optimum from the
set D2;

In single-GPU IDA-MCS for 1D cost function,

because of the limited memory capacity in single GPU,
the value of N cannot be too big. For example, to
approximate a discrete distribution with 104 points by 104
random numbers, CUDA array arrives at the size of 108,
which usually reaches the maximum array size of GPUs.
To solve this problem, multi-GPU IDA-MCS for 1D cost
function is developed, which takes advantages of parallel
versions of Iterative Discrete Approximation and multi-
GPU programming to improve the accuracy of IDA-MCS.

C. Multi-GPU IDA-MCS for 1D Cost Function
How to make Iterative Discrete Approximation work

with multi-GPU for 1D cost function with thousands of
peaks? In our previous research, we apply two
approaches to parallelize IDA-MCS by multi-GPU in a
workstation: Domain Decomposition and Local Search
for 1D optimization function.

Let’s firstly make a short description of Domain
Decomposition multi-GPU IDA-MCS for 1D function.
By Domain Decomposition multi-GPU IDA-MCS, the
search space is divided into domains with the total
number of M, the total number of GPU is also M, and
each GPU m is responsible for a domain m, where m is
the counter for both GPU and the domain. In every
iteration of IDA-MCS for 1D cost function, the
computation of Iterative Discrete Approximation is
equally distributed to multiple GPUs by Domain
Decomposition, and the details are described in
Algorithm 3:

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Bin 1 = f(x1, y1)

Bin 2 = f(x2, y2)

Bin 3 = f(x3, y3) Bin 4 = f(x4, y4)

1 2 3 4

2368 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

Algorithm 3. Domain Decomposition multi-GPU IDA-
MCS for 1D Cost Function

• In domain m, generate a set A3m
1 in GPU m of

the multi-GPU workstation;
• In domain m, pass the set A3m

1 through f(x, y) to
the set B3m

1;
• In domain m and iteration k: discrete

approximate the set B3m
k to the set C3m

k;
• In domain m and iteration k: pass the set C3m

k
through equation (3) to the set D3m

k;
• In domain m and iteration k: substitute D3m

k back
to B3m

k for next iteration k+1;
• Calculate the local optima from the set D3m,

finally calculate the global optimum from the
local optima;

For 1D cost function, Local Search is the other strategy

to parallelize IDA-MCS by multi-GPU in a workstation.
While Domain Decomposition IDA-MCS separates the
whole 1D search space across multiple GPUs, Local
Search IDA-MCS runs multiple copies of Iterative
Discrete Approximation simultaneously to calculate local
optima, and the global optimum is calculated from these
local optima. Each Local Search is called a “particle”.
The details of Local Search IDA-MCS for 1D cost
function are described in Algorithm 4:

Algorithm 4. Local Search Multi-GPU IDA-MCS for 1D
Cost Function

• In particle m, generate a set A4m
1 in GPU m of

multi-GPU workstation;
• In particle m, pass the set A4m

1 through f(x, y) to
generate the set B4m

1;
• In particle m and iteration k, discretely

approximate the set B4m
k to the set C4m

k, pass the
set C4m

k through equation (3) to the set D4m
k,

substitute D4m
k back to B4m

k for next iteration
k+1;

• In particle m, calculate the local optima from the
set D4m, calculate the global optimum from the
local optima;

Domain Decomposition and Local Search for multi-

GPU workstation in this section are for 1D search space,
and the idea of Domain Decomposition and Local Search
for high-dimensional cost function is relatively the same,
but different implementation.

D. Parallelization Strategy for 2D Iterative Discrete
Approximation

From this section, based on previous research, Iterative
Discrete Approximation is applied to 2D optimization
problem with millions of peaks on GPU cluster, and the
parallel algorithms are designed on these two
characteristics. Two parallelization strategies for GPU
cluster, Domain Decomposition and Local Search, are
developed. Therefore, we develop two strategies to
parallelize Iterative Discrete Approximation to GPU
clusters: Domain Decomposition.

Let’s firstly discuss Domain Decomposition for 2D
Iterative Discrete Approximation. In the M-by-N GPU
cluster system, therefore each GPU is counted as GPU m
in the node n. Based on this topology, the search space is
divided into M domains, each node is responsible for a
domain; each domain is further divided into N
subdomains, and each GPU is responsible for a
subdomain. All subdomain is continuously counted as l,
and they can be exchanged by:

 mMnl +×= , (5)

where 0 ≤ l ≤ M×N.
Domain Decomposition IDA-MCS to 2D search space

can by illustrated by 4-by-4 GPU system. Since the total
number of GPUs in 4-by-4 system is 16, by Domain
Decomposition with a grid size of 4-by-4 decomposition,
the search space is equally divided into 16 subdomains to
keep the load balance of the GPU cluster, and each GPU
is responsible for a subdomain. In each subdomain, the
set of random numbers is independently generated, the
distribution is discretely approximated with no
communication among the subdomains.

Local Search is the other strategy to parallelize
Iterative Discrete Approximation for 2D cost function on
GPU clusters. By Local Search, the search space is not
divided, but multiple Iterative Discrete Approximation
work independently in the search space to produce local
optima, then calculate the global optimum. Each GPU is
responsible for a particle l.

Same to Domain Decomposition, supposing that we
solve the problem by a GPU cluster with four nodes and
four GPUs per node, and total 16 random sets are
sampled. Each particle works with a random set, and each
particle covers the whole search space. Each particle
produces a local optimum, and the global optimum is
calculated from these local optima.

E. Domain Decomposition GPU-cluster IDA-MCS for
2D Cost Function

Based on the parallel strategy Domain Decomposition
discussed in the previous section, equation (2) can be
rewritten as the following:

() ()yxfyxf

l

,max,max
21 Ω++Ω+ΩΩ

=

(6.1)

() () ()⎟
⎠
⎞⎜

⎝
⎛=

ΩΩΩ
yxfyxfyxf

l

,max,,,max,,maxmax
21

(6.2)

In equation (6.1), the computation of each subdomain
()yxf

l

,max
Ω

 covers the whole search space Ω. In

equation (6.2), the search space Ω is divided into l
subdomains, the computation of each subdomain

()yxf
l

,max
Ω

 can be distributed to each GPU, and the

computation is done simultaneously by CUDA kernel
concurrency and MPI. Comparing between equation (6.1)
and equation (6.2), because of reduction of search space

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2369

© 2014 ACADEMY PUBLISHER

and GPU parallel computing, equation (6.2) is much
computationally efficient than equation (6.1).

Based on the equations above, Domain Decomposition
can be applied to IDA-MCS, and the example of Domain
Decomposition IDA-MCS by 2-by-2 GPU cluster is
illustrated in Figure 3. The key idea of Domain
Decomposition GPU-cluster IDA-MCS is to divide and
distribute the whole IDA-MCS by domain decomposition
across multiple nodes then multiple GPU to search the
whole space.

Figure 3. The Framework of Domain Decomposition GPU-cluster

IDA-MCS (Algorithm 5) on 2-by-2 GPU Cluster

In Figure 3, searching each subdomain of GPU-cluster
IDA-MCS is done in a GPU, which includes three parts:
Monte Carlo Simulation, Iterative Discrete
Approximation and calculating local optima, and the
global optimum is calculated in the server CPU. The
details of Domain Decomposition GPU-cluster IDA-
MCS are described in Algorithm 5:

Algorithm 5. Domain Decomposition GPU-cluster IDA-
MCS

• By the definition of subdomain l, generate a set
A5l in GPU m of node n;

• Pass the set A5l through f(x, y) to the set B5l;
• In subdomain l and iteration k: discretely

approximate the set B5l
k to the set C5l

k;
• In subdomain l and iteration k: pass the set C5l

k
through equation (3) to the set D5l

k;
• In subdomain l and iteration k: substitute D5l

k
back to B5l

k for discrete approximation of next
iteration k+1;

• In subdomain l, calculate the local optima from
the set D5l, and calculate the global optimum
from these local optima;

Algorithm 5 begins from the set A5l in each subdomain

by GPU m of node n, and passing this set through f(x, y)

obtains the set B5l, and this is the step of Monte Carlo
Search in subdomain l. Iteratively Discrete
Approximating the set B5l

k to the set C5l
k with equation

(3), and passing the set C5l
k to the set D5l

k. After all
iterations finish, the set D5l

k is the candidates for
calculating the local optima in GPUl, and finally the
global optimum is calculated in the server CPU.

F. Local Search GPU-cluster IDA-MCS for 2D Cost
Function

Local Search is the other strategy to parallelize IDA-
MCS. Local Search means the search space is sampled
independently by multiple Iterative Discrete
Approximation, and each Iterative Discrete
Approximation is also named “particle”. Since equation
(2) can be rewritten to the formats:

() ()iiI

yxfyxf ,max,max =
Ω

(7.1)

() () ()())()2()1(,max,,,max,,maxmax l
iiIiiIiiI

yxfyxfyxf=

(7.2)

each particle calculates a local optimum
())(,max l

iiI
yxf in a GPU, and the global optimum is

calculated from the set of local optima.
Based on the equations above, we develop Local

Search GPU-cluster IDA-MCS of Algorithm 6, and
Algorithm 6 performs Local Search of the whole search
space in each particle, and the efficiency of this algorithm
increases by IDA-MCS in each particle, and an example
of Local Search GPU-cluster IDA-MCS (Algorithm 6) on
2-by-2 GPU cluster is shown in Figure 4:

Figure 4. The Framework of Local Search GPU-cluster IDA-MCS

(Algorithm 6) on 2-by-2 GPU Cluster

From Figure 4 we can see, in Local Search GPU-
cluster IDA-MCS (Algorithm 6), each particle aims at the
whole search space, and a local optimum is produced by
this particle. Each particle residents in a GPU, and there

Calculating Global
Optimum in the Server

Monte Carlo
Simulation in

GPU 1 of
Node 1

Iterative
Discrete

Approximati
on in Particle

1

Calculating
Local

Optimum and
Send to CPU

of Node 1

Monte Carlo
Simulation in

GPU 2 of
Node 1

Iterative
Discrete

Approximatio
n in Particle 2

Calculating
Local

Optimum and
Send to CPU

of Node 1

Monte Carlo
Simulation in

GPU 1 of
Node 2

Iterative
Discrete

Approximatio
n in Particle 3

Calculating
Local

Optimum and
Send to CPU

of Node 2

Monte Carlo
Simulation in

GPU 2 of
Node 2

Iterative
Discrete

Approximatio
n in Particle 4

Calculating
Local

Optimum and
Send to CPU

of Node 2

Calculating Global
Optimum in the Server

Monte Carlo
Simulation
in GPU 1 of

Node 1

Iterative
Discrete

Approximati
on in

Subdomain 1

Calculating
Local

Optimum
and Send to

CPU of
Node 1

Monte Carlo
Simulation in

GPU 2 of
Node 1

Iterative
Discrete

Approximati
on in

Subdomain 2

Calculating
Local

Optimum and
Send to CPU

of Node 1

Monte Carlo
Simulation in

GPU 1 of
Node 2

Iterative
Discrete

Approximati
on in

Subdomain 3

Calculating
Local

Optimum
and Send to

CPU of Node
2

Monte Carlo
Simulation in

GPU 2 of
Node 2

Iterative
Discrete

Approximati
on in

Subdomain 4

Calculating
Local

Optimum
and Send to

CPU of Node
2

2370 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

is no communication among particles to increase the
performance of the algorithm. In each particle of Local
Search GPU-cluster IDA-MCS (Algorithm 6), the
activities of one iteration include Monte Carlo Simulation,
discretely approximating and calculating local optimum,
and the global optimum is calculated in the server after
all iterations are finished. The details of Local Search
GPU-cluster IDA-MCS are in Algorithm 6:

Algorithm 6. Local Search GPU-cluster IDA-MCS

• In particle l, generate a set A6l from the whole
search space;

• In particle l, pass the set A6l through f(x, y) to
generate the set B6l;

• In particle l and iteration k: discretely
approximate the set B6l

k leading to the set C6l
k;

• In particle l and iteration k: pass the set C6l
k

through equation (3) to generate the set D6l
k;

• In particle l and iteration k: substitute D6l
k back

to B6l
k for discrete approximation of next

iteration k+1;
• In particle l, calculate the local optimum from

the set D6l, and calculate the global optimum
from these local optima;

From Algorithm 6 we can see, Local Search GPU-

cluster IDA-MCS (Algorithm 6) begins from generating
the set A6l, and pass this set through the cost function f(x,
y) to the set B6l, which is the implementation of Monte
Carlo Simulation, though there is no local optimum is
selected. The set C6l is discretely approximated through
equation (3) to the set D6l

k, and substitute back to B6l
k for

next iteration k+1, which is the implementation of
Iterative Discrete Approximation. Finally, the global
optimum is calculated from the set D6l in the server CPU.

G. Programming Model for M-by-N GPU Cluster System
For a parallel system with M nodes and N GPUs in

each node, multiple parallelization strategies can be
applied to this system, and we use the CPU-GPU thread
based strategy in this paper, and the programming
implementation for this system is MPI-CUDA.
In more details, we illustrate CPU-GPU tread based
parallelization for M-by-N GPU cluster in Figure 5. As
shown in Figure 5, the GPU cluster system consists of a
server CPU, multiple node CPUs and multiple GPUs in
each node. There is a CPU thread in the server CPU, a
CPU thread in node CPU, and a GPU thread in each node
GPU.

Figure 5. CPU-GPU Thread based Parallelization for M-by-N GPU

Cluster System

In more details, the thread of server CPU is responsible
for collecting the local optima from each node and
calculating the global optimum. The thread of client CPU
is responsible for collecting local optima, and managing
multiple GPU threads in the node. In the node, each GPU
is managed by a GPU thread, and real computation is
done in kernels of these GPU threads. In this paper, both
Domain Decomposition IDA-MCS (Algorithm 5) and
Local Search IDA-MCS (Algorithm 6) are implemented
in this parallelization strategy.

Figure 6. Communication Pattern on 2-by-2 GPU Cluster System

Another problem about GPU cluster is how data is

transported? To answer this question, Figure 6 shows the
communication pattern on a 2-by-2 GPU cluster. In each
node, CPU and GPU are linked by PCI express Intel X79
SandyBridgeE, and GPU and GPU are communicated
through PCI expression. CPU in different nodes
communicates through 1G switch. GPUs in different
nodes cannot be directly communicated except through
node CPU.

III. COMPUTATIONAL RESULTS

In this section, to test the performance of GPU-cluster
IDA-MCS, we code GPU-cluster IDA-MCS by GCC on
Fedora 18, CUDA 5.5 and MPICH2, and we test the code
of GPU-cluster IDA-MCS on our GPU cluster, which
includes four nodes, and each node consists of Intel Core
i7-3820 Quad-Core Processor, 8GB memory, four nVidia
GTX 660 GPU in each node and Intel X79 SandyBridgeE.

A. The Problem
To test the performance of our methods, we apply the

algorithms to an optimization problem with complicated
shapes:

() ()⎟

⎠
⎞

⎜
⎝
⎛ +××= yx

b
y

a
xabsyxf sin,

(8)

ubyubx ≤≤≤≤ 0,0
where ub are the up-bound of optimization variables x
and y. The plot of equation (8) with different values of
up-bound ub is shown in Figure 7.

CPU CPU

GPU 1
of

Node 1

GPU
2 of

Node
1

GPU 1
of

Node 2

GPU 2
of

Node 2

CUDA Thread
in GPU

CPU
Thread

in
Server

CPU
Thread

in
Node

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2371

© 2014 ACADEMY PUBLISHER

(i) (ii)

(iii) (iv)

Figure 7. The Plot of the Cost Function of Equation (8) with (i) 0 ≤ x ≤
1, 0 ≤ y ≤ 1 (ii) 0 ≤ x ≤ 10, 0 ≤ y ≤ 10 (iii) 0 ≤ x ≤ 100, 0 ≤ y ≤ 100 and

(iv) 0 ≤ x ≤ 1000, 0 ≤ y ≤ 1000

To find the optima as the “gold standard” for our
computational experiments, we optimize equation (8)
with different values of up-bound ub by Monte Carlo
Search (Algorithm 1) with the bandwidth N = 108 in a
CPU server with 64G memory. We estimate the number
of peaks in each plot, and the results are listed in Table 1.

TABLE 1.

THE RESULTS OF MONTE CARLO SIMULATION (ALGORITHM 1) FOR THE
COST FUNCTION EQUATION (8)

Search Space Maximum Value Number
of Peaks

0 ≤ x ≤ 1 0 ≤ y ≤ 1 0.909294203757878 1
0 ≤ x ≤ 10 0 ≤ y ≤ 10 0.912912611660599 22
0 ≤ x ≤ 100 0 ≤ y ≤ 100 0.963878552508647 3058

0 ≤ x ≤
1000 0 ≤ y ≤ 1000 0.999624257749903 317038

As listed in Table 1, increasing the up-bounds ub leads

to much larger numbers of peaks, the optimum of the cost
function equation (8) approaches the value of one, and
the computational time becomes longer and longer.
Actually, to approximate the maximum value of equation
(8) with ub = 1000, Monte Carlo Search (Algorithm 1)
with the bandwidth N = 108 spends hours in the CPU
server with 64G memory. The maximum values obtained
by this method are treated as the “gold standard” of our
evaluating algorithms of ICA-MCS.

B. The Performance of Domain Decomposition GPU-
cluster IDA-MCS

To test the performance of Domain Decomposition
GPU-cluster IDA-MCS (Algorithm 5), we apply this
method with the bandwidth N = 104 to optimize the cost
function of equation (8) with ub =1000 by the
discretization of 4-by-4 (4 domain then 4 subdomain).
Domain Decomposition IDA-MCS (Algorithm 5)
independently runs for three times with ten iterations, the
global optimum is plotted against the “gold standard”
from Table 1, and the results are plotted in Figure 8.

Figure 8. The Global Optimum of Domain Decomposition IDA-MCS

(Algorithm 5) against Monte Carlo Search (Algorithm 1)

From Figure 8 we can see, the global optimum from
Domain Decomposition IDA-MCS (Algorithm 5) closely
approaches the “gold standard” from Monte Carlo Search
(Algorithm 1) in Table 1, which is the situation of the last
iteration of Domain Decomposition IDA-MCS
(Algorithm 5). To illustrate the situation of each iteration,
we run three repeats of Domain Decomposition IDA-
MCS (Algorithm 5), and plot the values against the “gold
standard” from Monte Carlo Search (Algorithm 1) in
Figure 9.

Figure 9. The Performance of Domain Decomposition IDA-MCS

(Algorithm 5) in each Iteration against Monte Carlo Search (Algorithm
1)

In Figure 9, while the “gold standard” is plotted with
the line of cross, the first repeat of Domain
Decomposition IDA-MCS (Algorithm 5) is plotted with
the line of diamond, the second repeat of IDA-MCS
(Algorithm 5) is plotted with line of square, and the third
repeat of IDA-MCS (Algorithm 5) is plotted with the line
of triangle. From iteration 4, the diamond line, the square
line and the triangle line closely approach the cross line,
that is to say, GPU-cluster IDA-MCS (Algorithm 5) with
bandwidth N = 104 is as competitive as Monte Carlo
Search (Algorithm 1) with bandwidth N = 108.

C. The Performance of Local Search GPU-cluster IDA-
MCS

To study the performance of Local Search GPU-cluster
IDA-MCS (Algorithm 6) against Monte Carlo Search
(Algorithm 1), same to Domain Decomposition GPU-
cluster IDA-MCS (Algorithm 5), we run three repeats of
Local Search IDA-MCS (Algorithm 6), and calculated
global optima are plotted in Figure 10.

0.999606

0.99961

0.999614

0.999618

0.999622

0.999626

Repeat

G
lo

ba
l O

pt
im

um

0.9984

0.9986

0.9988

0.999

0.9992

0.9994

0.9996

0.9998

1 2 3 4 5 6 7 8 9 10
Iteration

G
lo

ba
l O

pt
im

um

Repeat 1
Repeat 2
Repeat 3
"Gold Standard"

2372 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 10. The Performance of Local Search GPU-cluster IDA-MCS

(Algorithm 6) in each Iteration against Monte Carlo Search (Algorithm
1)

From Figure 10 we can see, the global optimum from
each repeat of Local Search IDA-MCS (Algorithm 6)
approaches the “gold standard” along with the iterations.
However, there is still obvious difference between the
global optimum from Local Search IDA-MCS
(Algorithm 6) and the “gold standard” from Monte Carlo
Search (Algorithm 1).

D. Presentation of Accuracy
Computational results above present the performance

of IDA-MCS algorithms by plots. To quantitative
measure the performance of these IDA-MCS algorithms,
based on the “gold standard” from Monte Carlo Search
(Algorithm 1), we develop accumulative accuracy in
Table 2.

TABLE 2.
ACCUMULATIVE ACCURACY OF MULTIPLE REPEAT OF GLOBAL

OPTIMIZATION FROM ICA-MCS ALGORITHMS
Accuracy -8 -7 -6 -5 -4 -3 -2 -1

1 0 0 0 0 1 1 1 1
2 0 0 0 0 1 1 1 1
3 0 0 0 1 1 1 1 1
4 0 0 0 1 1 1 1 1
5 0 0 0 0 1 1 1 1

Total 0 0 0 3 5 5 5 5

How accumulative accuracy work? In Figure 8, we
plot the results from five repeats of Domain
Decomposition IDA-MCS (Algorithm 5) with 4-by-4
discretization against the “gold standard” from Monte
Carlo Search (Algorithm 1). To quantitatively represent
these results against the “gold standard” from Monte
Carlo Simulation (Algorithm 1), we take following steps:
Step 1: Write down the results and the “gold standard”:
0.99961340 (Repeat 1), 0.99960899 (Repeat 2),
0.99962229 (Repeat 3), 0.99962276 (Repeat 4),
0.99961102 (Repeat 5) and 0.99962426 (the “gold
standard”);

Step 2: From the last digital of a result from Domain
Decomposition IDA-MCS (Algorithm 5), compare
against the corresponding digital of the “gold standard”.
If the digital of a result is bigger than the corresponding
digital of the “gold standard”, then write 1 in Table 2,
else write 0;

Step 3: After all results is compared against the “gold
standard”, summarize the “1” in each digital as the
accumulative accuracy of IDA-MCS algorithms.

Table 2 shows that, comparing with the “gold standard”
from Monte Carlo Search (Algorithm 1), five repeats of
Domain Decomposition IDA-MCS (Algorithm 5) with 4-
by-4 discretization shown in Figure 8 obtain three times
of 10-5, five times of 10-4, 10-3, 10-2 and 10-1.

E. Domain Decomposition v.s. Local Search for GPU-
cluster IDA-MCS

Since we apply two different parallelization strategies,
Domain Decomposition and Local Search, to IDA-MCS,
a natural question may be: which one is better? To
answer this question, we run Domain Decomposition
GPU-cluster IDA-MCS (Algorithm 5) for ten repeats
with a 16-by-16 decomposition, and Local Search GPU-
cluster IDA-MCS (Algorithm 6) for ten times, measure
their performance by the method described in the section
of 3.4, and the results are plotted in Figure 11.
In Figure 11, both Domain Decomposition IDA-MCS
(Algorithm 5) and Local Search IDA-MCS (Algorithm 6)
are applied to optimize the cost function of equation (8)
with ub = 1000, which consists of 317038 peaks with
such setting.

(i) (ii)

(iii) (iv)

Figure 11. The Accumulative Accuracy of Domain Decomposition
GPU-cluster IDA-MCS (Algorithm 5) with (i) N =10000 and ub = 1000
(ii) N = 1000 and ub = 1000 (iii) N = 100 and ub = 1000 (iv) N = 10 and

ub = 1000

In Figure 11, both methods are measured by four levels
of accumulative accuracy: 10-4, 10-3, 10-2 and 10-1 on x-
axis. In each level of accumulative accuracy, Domain
Decomposition IDA-MCS (Algorithm 5) is plotted on the
left bar and Local Search IDA-MCS (Algorithm 6) is
plotted on the right bar. To bandwidth of each method is:
N = 10000 in Figure 11 (i), N = 1000 in Figure 11 (ii), N
= 100 in Figure 11 (iii) and N = 10 in Figure 11 (iv).
From Figure 11 we can see, the performance of Domain
Decomposition ICA-MCS (Algorithm 5) is significantly
better than Local Search ICA-MCS (Algorithm 6).

To further compare the performance between Domain
Decomposition IDA-MCS (Algorithm 5) and Local
Search IDA-MCS (Algorithm 6), we apply these two
methods to optimize the cost function of equation (8)
with ub = 100, which consists of 3058 peaks with such
setting. Since the number of peaks is much smaller, both
methods are measured by four levels of accumulative
accuracy from 10-8 to 10-1 on x-axis, and the results are
plotted in Figure 12.

0.9749

0.9799

0.9849

0.9899

0.9949

0.9999

1 2 3 4 5 6 7 8 9 10
Iteration

G
lo

ba
l O

pt
im

um

Repeat 1
Repeat 2
Repeat 3
"Gold Standard"

DD

DD DD DD

LS LS

LS LS

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

DD

DD

DD DD

LS LS

LS

LS

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

DD DD

DD DD

LS LS

LS

LS

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

DD
DD

DD DD

LS LS

LS

LS

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2373

© 2014 ACADEMY PUBLISHER

(i) (ii)

(iii) (iv)

Figure 12. The Accumulative Accuracy of Domain Decomposition
GPU-cluster IDA-MCS (Algorithm 5) with (i) N = 10000 and ub = 100
(ii) N =1000 and ub = 100 (iii) N = 100 and ub = 100 (iv) N = 10 and ub

= 100

From Figure 12 we can see, the performance of
Domain Decomposition ICA-MCS (Algorithm 5) is again
significantly better than Local Search ICA-MCS
(Algorithm 6) with the up-bound of 100. The
accumulative accuracy of both methods decreases from
Figure 12 (i) to Figure 12 (iv), because the bandwidth of
both methods decreases.

F. The Scalability of Domain Decomposition GPU-
cluster IDA-MCS

Since Domain Decomposition IDA-MCS (Algorithm 5)
is built on GPU cluster, the accumulative accuracy of
Domain Decomposition IDA-MCS (Algorithm 5) should
be scalable to the number of GPUs. To test the scalability
of Domain Decomposition IDA-MCS (Algorithm 5) with
respect to the accumulative accuracy, we apply Domain
Decomposition IDA-MCS (Algorithm 5) to the cost
function equation (8) with the number of GPUs 16 (4
nodes, Algorithm 5), 12 (3 nodes, Algorithm 5), 8 (2
nodes, Algorithm 5), 4 (1 node, Algorithm 3) and 1
(Algorithm 2), and the results are plotted in Figure 13.

(i) (ii)

(iii) (iv)

Figure 13. The Scalability of Domain Decomposition IDA-MCS
(Algorithm 5) with (i) N = 10000 and ub = 1000 (ii) N = 1000 and ub =

1000 (iii) N = 100 and ub = 1000 (iv) N = 10 and ub = 1000

From Figure 13 we can see, larger number of GPUs
leads to higher accumulative accuracy of IDA-MCS than
smaller number of GPUs. In Figure 13 (i), Domain
Decomposition IDA-MCS (Algorithm 5) of 16 GPU
delivers the best performance as high as 10-4, while that
of 4 GPU (Algorithm 3) performs much poor in the
accumulative accuracy of 10-4. Similar situation happens
in Figure 13 (ii), Figure 13 (iii) and Figure 13 (iv).

(i) (ii)

(iii) (iv)

Figure 14. The Scalability of Domain Decomposition GPU-cluster
IDA-MCS (Algorithm 5) with (i) N = 10000 and ub = 100 (ii) N = 1000

and ub = 100 (iii) N = 100 and ub = 100 (iv) N =10 and ub = 100

We also test the scalability of Domain Decomposition
IDA-MCS (Algorithm 5) for the cost function equation (8)
with up-bound ub = 100, and the results are plotted in
Figure 14. For Figure 14 we can see, for the cost function
equation (8) with ub = 100, increasing the number of
GPUs significantly increase the accumulative accuracy of
IDA-MCS (Algorithm 5).

G. The Scalability of Local Search GPU-cluster IDA-
MCS

Since Local Search IDA-MCS (Algorithm 6) is built
on GPU cluster, the accumulative accuracy of Local
Search IDA-MCS (Algorithm 6) should be scalable to the
size of GPU cluster. To test the scalability of Local
Search IDA-MCS (Algorithm 6) with respect to the
accumulative accuracy, we apply Local Search IDA-
MCS (Algorithm 6) to the cost function equation (8) with
the number of GPUs 16 (4 nodes, Algorithm 6), 12 (3
nodes, Algorithm 6), 8 (2 nodes, Algorithm 6), 4 (1 node,
Algorithm 4) and 1 (Algorithm 2), and the results are
plotted in Figure 15.

(i) (ii)

(iii) (iv)

Figure 15. The Scalability of Local Search GPU-cluster IDA-MCS
(Algorithm 6) with (i) N = 10000 and ub = 1000 (ii) N = 1000 and ub =

1000 (iii) N = 100 and ub = 1000 (iv) N = 10 and ub = 1000

From Figure 15 we can see, larger number of GPUs
leads to higher accumulative accuracy of Local Search
IDA-MCS (Algorithm 6) than smaller number of GPUs.
In Figure 15 (i), Local Search IDA-MCS (Algorithm 6)
of 16 GPU delivers the best performance as high as 10-4,
while that of 4 GPU (Algorithm 4) performs much poor
in the accuracy of 10-4. Similar situation happens in
Figure 15 (ii), Figure 15 (iii) and Figure 15 (iv).

DD DD

DD DD

LS LS LS

LS

0

5

10

15

-8 -7 -6 -5
Accuracy (log10)

C
ou

nt

DD

DD DD DD

LS

LS LS

LS

0

5

10

15

-6 -5 -4 -3
Accuracy (log10)

C
ou

nt

DD

DD

DD DD

LS LS

LS
LS

0

5

10

15

-6 -5 -4 -3
Accuracy (log10)

C
ou

nt

DD

DD

DD DD

LS LS

LS

LS

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

16 16 16 16
12

12 12 12

8

8 8 8

4

4
4 4

1 1

1 1

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

16

16
16 16

12

12

12 12

8
8

8 8

4

4

4 4

1 1

1

1

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

16 16

16 16

12
12

12 12

8 8

8
8

4 4

4

4

1 1 1

1

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

16
16

16 16

12 12

12 12

8 8

8 8

4 4

4

4

1 1 1

1

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

16 16

16 16

12 12

12 12

8 8

8

8

4 4

4

4

1 1 1 1
0

5

10

15

-8 -7 -6 -5
Accuracy (log10)

C
ou

nt

16

16 16 16

12

12 12 12

8

8
8 8

4

4
4 4

1 1 1 1
0

5

10

15

-6 -5 -4 -3
Accuracy (log10)

C
ou

nt

16

16

16 16

12

12

12 12

8 8

8

8

4 4

4

4

1 1 1 1
0

5

10

15

-6 -5 -4 -3
Accuracy (log10)

C
ou

nt

16

16

16 16

12 12

12
12

8 8

8

8

4 4 4

4

1 1 1 1
0

5

10

15

-6 -5 -4 -3
Accuracy (log10)

C
ou

nt

16 16

16 16

12 12

12 12

8 8

8 8

4 4

4

4

1 1

1

1

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

16 16

16

16

12 12

12

12

8 8

8

8

4 4

4

4

1 1

1

1

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

16 16

16

16

12 12

12

12

8 8

8

8

4 4

4

4

1 1
1

1

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

16 16

16

16

12 12

12

12

8 8

8

8

4 4
4

4

1 1 1

1

0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

2374 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

(i) (ii)

(iii) (iv)

Figure 16. The Scalability of Local Search GPU-cluster IDA-MCS with
(i) N = 10000 and ub = 100 (ii) N = 1000 and ub = 100 (iii) N = 100 and

ub = 100 (iv) N = 10 and ub = 100

We also test the scalability of Local Search IDA-MCS
(Algorithm 6) for the cost function equation (8) with up-
bound ub = 100, and the results are plotted in Figure 16.
For Figure 16 we can see, for the cost function equation
(8) with ub = 100, increasing number of GPUs
significantly increases the accumulative accuracy of
Local Search IDA-MCS (Algorithm 6).

H. Effects of Grid Size on Domain Decomposition IDA-
MCS

In previous computational experiments of Domain
Decomposition IDA-MCS (Algorithm 5), we use the grid
size of 4-by-4 discretization (4 domain then 4 subdomain).
How the selection of grid size affects the performance of
Domain Decomposition IDA-MCS (Algorithm 5)? To
answer this question, we test Domain Decomposition
IDA-MCS (Algorithm 5) by the grid size of 4-by-4, 8-by-
8, 12-by-12 and 16-by-16 discretization, and the results
are plotted in Figure 17.

Figure 17. Effects of The Accumulative Accuracy from Domain

Decomposition IDA-MCS (Algorithm 5) on the Selection of Grid Sizes

From Figure 17 we can see, increasing the grid size
significantly increases the performance of Domain
Decomposition IDA-MCS (Algorithm 5). While Domain
Decomposition with the grid size 4-by-4 discretization
approaches the “gold standard” from Monte Carlo
Simulation (Algorithm 1) in Table 1, the Domain
Decomposition IDA-MCS (Algorithm 5) with the grid
size 16-by-16 discretization almost exactly matches the
“gold standard” from Monte Carlo Simulation (Algorithm
1).

IV. DISCUSSION

In this paper, we develop two-dimensional IDA-MCS,
we parallelize this algorithm by Domain Decomposition
and Local Search, and we implement this algorithm on a
GPU cluster. Computational results show a higher
accuracy and efficiency of IDA-MCS than the
conventional Monte Carlo Search.
Since the algorithm IDA-MCS is built on Monte Carlo
Simulation, the efficiency of IDA-MCS may be improved
by better samplers such as Markov Chain Monte Carlo
and Sequential Monte Carlo with multiple Markov chains,
and better approximation of the cost function may be
provided.

We design a weighting mechanism equation (3) to
increase the performance of IDA-MCS, and we use
equation (5) in this paper. However, the power function
equation (5) is not the only design for equation (3), and
other approaches such as the exponentiation function can
also be choosed for this purpose.

In this paper, we construct Iterative Discrete
Approximation by measuring the value of the cost
function. However, the value of the cost function can be
replaced by quantities which represent the changes of the
cost function such as integration of a finite area in the
search space, and then constructing bins by these
quantities.

To parallelize IDA-MCS, we employ two different
parallel schemes: Domain Decomposition and Local
Search, and computational results show that Domain
Decomposition is much better than Local Search.
However, new parallel schemes can be designed to
parallel algorithms of IDA-MCS. For example, instead of
current design of limiting IDA-MCS in each GPU, we are
working on expanding IDA-MCS across the GPU cluster.
In this paper, two parallel schemes Domain
Decomposition and Local Search are coded by MPICH2,
and there is no direction communication between GPUs
in different nodes, which decreases the performance of
IDA-MCS. By CUDA-Aware MPI such as MVAPICH2
[40-44], Remote Direct GPU Memory Access is possible
to improve the performance of data communication in
IDA-MCS.

We developed one-dimensional IDA-MCS in our
previous research, and we develop two-dimensional IDA-
MCS in this paper. Can IDA-MCS be applied to higher
dimensional problem such as three-dimension? To realize
this goal, the theory and the implementation methods of
IDA-MCS should be developed.
In our previous research and this paper, IDA-MCS is
applied to a traditional problem of applied mathematics
optimization. In future research, we may expand IDA-
MCS to more problems such as integration and mesh
generation. For example, since IDA-MCS can
concentrate samples on the peak area, triangulation of
these points produces mesh with high density in peak
area which needs more computation, and low density in
flat area which needs less computation.

REFERENCES

[1] You, Z. and Ying, T. GPU-based parallel particle swarm
optimization. City, 2009.

16

16 16 16

12

12 12 12

8

8

8 8

4

4 4

4

1 1 1

1

0

5

10

15

-5 -4 -3 -2
Accuracy (log10)

C
ou

nt

16

16

16 16

12

12

12 12

8

8

8
8

4 4
4

4

1 1 1

1

0

5

10

15

-5 -4 -3 -2
Accuracy (log10)

C
ou

nt
16

16
16

16

12
12 12

12

8 8
8

8

4 4

4

4

1 1 1 1
0

5

10

15

-5 -4 -3 -2
Accuracy (log10)

C
ou

nt

16

16

16 16

12

12
12 12

8

8

8 8

4 4
4

4

1 1 1 1
0

5

10

15

-4 -3 -2 -1
Accuracy (log10)

C
ou

nt

0.99955

0.99956

0.99957

0.99958

0.99959

0.9996

0.99961

0.99962

0.99963

1 2 3 4 5 6 7 8 9 10
Iteration

G
lo

ba
l O

pt
im

um

4-by-4
8-by-8
12-by-12
16-by-16
Gold Standard

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2375

© 2014 ACADEMY PUBLISHER

[2] Mussi, L., Nashed, Y. S. G. and Cagnoni, S. GPU-based
asynchronous particle swarm optimization. In Proceedings
of the Proceedings of the 13th annual conference on
Genetic and evolutionary computation (Dublin, Ireland,
2011). ACM, [insert City of Publication],[insert 2011 of
Publication].

[3] Mussi, L., Daolio, F. and Cagnoni, S. Evaluation of
parallel particle swarm optimization algorithms within the
CUDA™ architecture. Information Sciences, 181, 20
2011), 4642-4657.

[4] Rabinovich, M., Kainga, P., Johnson, D., Shafer, B., Lee, J.
J. and Eberhart, R. Particle Swarm Optimization on a GPU.
City, 2012.

[5] Hung, Y. and Wang, W. Accelerating parallel particle
swarm optimization via GPU. Optimization Methods and
Software, 27, 1 (2012/02/01 2010), 33-51.

[6] Cagnoni, S., Bacchini, A. and Mussi, L. OpenCL
Implementation of Particle Swarm Optimization: A
Comparison between Multi-core CPU and GPU
Performances. Springer Berlin Heidelberg, City, 2012.

[7] Calazan, R. M., Nedjah, N. and de Macedo Mourelle, L.
Parallel GPU-based implementation of high dimension
Particle Swarm Optimizations. City, 2013.

[8] Calazan, R., Nedjah, N. and Macedo Mourelle, L. Three
Alternatives for Parallel GPU-Based Implementations of
High Performance Particle Swarm Optimization. Springer
Berlin Heidelberg, City, 2013.

[9] Souza, D., Teixeira, O., Monteiro, D. and Oliveira, R. A
New Cooperative Evolutionary Multi-Swarm Optimizer
Algorithm Based on CUDA Architecture Applied to
Engineering Optimization. Springer Berlin Heidelberg,
City, 2013.

[10] Mehmood, S., Cagnoni, S., Mordonini, M. and Khan, S.
An embedded architecture for real-time object detection in
digital images based on niching particle swarm
optimization. J Real-Time Image Proc(2012/06/06 2012),
1-15.

[11] Ugolotti, R., Nashed, Y. S. G., Mesejo, P., Ivekovič, Š.,
Mussi, L. and Cagnoni, S. Particle Swarm Optimization
and Differential Evolution for model-based object
detection. Applied Soft Computing, 13, 6 2013), 3092-3105.

[12] Calazan, R., Nedjah, N. and Macedo Mourelle, L. Swarm
Grid: A Proposal for High Performance of Parallel
Particle Swarm Optimization Using GPGPU. Springer
Berlin Heidelberg, City, 2012.

[13] Hsieh, T.-J., Yang, Y.-S., Wang, J.-H. and Shen, W.-J.
Feature extraction using bionic particle swarm tracing for
transfer function design in direct volume rendering. Vis
Comput(2013/02/12 2013), 1-12.

[14] Mussi, L., Cagnoni, S. and Daolio, F. GPU-Based Road
Sign Detection Using Particle Swarm Optimization. City,
2009.

[15] Sharma, B., Thulasiram, R. and Thulasiraman, P.
Normalized particle swarm optimization for complex
chooser option pricing on graphics processing unit. J
Supercomput(2013/02/28 2013), 1-23.

[16] Sharma, B., Thulasiram, R. K. and Thulasiraman, P.
Portfolio Management Using Particle Swarm Optimization
on GPU. City, 2012.

[17] Bo, Z., Zheng-hui, X., Wei-ming, L., Wu, R. and Xin-qing,
S. Particle Swarm Optimization of frequency selective
surface. City, 2012.

[18] Nobile, M. S., Besozzi, D., Cazzaniga, P., Mauri, G. and
Pescini, D. Estimating reaction constants in stochastic
biological systems with a multi-swarm PSO running on
GPUs. In Proceedings of the Proceedings of the fourteenth
international conference on Genetic and evolutionary

computation conference companion (Philadelphia,
Pennsylvania, USA, 2012). ACM, [insert City of
Publication],[insert 2012 of Publication].

[19] Nakagawa, T., Iwahori, Y. and Bhuyan, M. K. Defect
Classification of Electronic Board Using Multiple
Classifiers and Grid Search of SVM Parameters. Springer
International Publishing, City, 2013.

[20] Tian, W., Xiufen, Y., Lei, W. and Heyi, L. Grid Search
Optimized SVM Method for Dish-like Underwater Robot
Attitude Prediction. City, 2012.

[21] Zhou, L., Lai, K. and Yu, L. Credit scoring using support
vector machines with direct search for parameters selection.
Soft Comput, 13, 2 (2009/01/01 2009), 149-155.

[22] Jinghua, L., Congying, Z. and Zhenning, L. Battlefield
Target Identification Based on Improved Grid-Search SVM
Classifier. City, 2009.

[23] Hongtao, Z., Shuping, Y. and Yuxia, H. SVM Classifier of
Stored-Grain Insects Based on Grid Search. Springer
Berlin Heidelberg, City, 2011.

[24] Bao, Y. and Liu, Z. A Fast Grid Search Method in Support
Vector Regression Forecasting Time Series. Springer
Berlin Heidelberg, City, 2006.

[25] Jiménez, Á., Lázaro, J. and Dorronsoro, J. Finding Optimal
Model Parameters by Discrete Grid Search. Springer
Berlin Heidelberg, City, 2007.

[26] Barbero Jiménez, Á., López Lázaro, J. and Dorronsoro, J.
R. Finding optimal model parameters by deterministic and
annealed focused grid search. Neurocomputing, 72, 13–15
2009), 2824-2832.

[27] Chen, W., Ma, C. and Ma, L. Mining the customer credit
using hybrid support vector machine technique. Expert
Systems with Applications, 36, 4 2009), 7611-7616.

[28] Min, J. H. and Lee, Y.-C. Bankruptcy prediction using
support vector machine with optimal choice of kernel
function parameters. Expert Systems with Applications, 28,
4 2005), 603-614.

[29] Dipama, J., Teyssedou, A., Aubé, F. and Lizon-A-Lugrin,
L. A grid based multi-objective evolutionary algorithm for
the optimization of power plants. Applied Thermal
Engineering, 30, 8–9 2010), 807-816.

[30] Omata, K., Hashimoto, M., Sutarto and Yamada, M.
Artificial Neural Network and Grid Search Aided
Optimization of Temperature Profile of Temperature
Gradient Reactor for Dimethyl Ether Synthesis from
Syngas. Industrial & Engineering Chemistry Research, 48,
2 (2009/01/21 2008), 844-849.

[31] Piehowski, P. D., Petyuk, V. A., Sandoval, J. D., Burnum,
K. E., Kiebel, G. R., Monroe, M. E., Anderson, G. A.,
Camp, D. G. and Smith, R. D. STEPS: A grid search
methodology for optimized peptide identification filtering
of MS/MS database search results. PROTEOMICS, 13, 5
2013), 766-770.

[32] Azar, A. and El-Said, S. Performance analysis of support
vector machines classifiers in breast cancer mammography
recognition. Neural Comput & Applic(2013/01/24 2013),
1-15.

[33] Chen, H.-L., Yang, B., Wang, G., Wang, S.-J., Liu, J. and
Liu, D.-Y. Support Vector Machine Based Diagnostic
System for Breast Cancer Using Swarm Intelligence. J
Med Syst, 36, 4 (2012/08/01 2012), 2505-2519.

[34] Donahue, M. M., Buzzard, G. T. and Rundell, A. E. Robust
parameter identification with adaptive sparse grid-based
optimization for nonlinear systems biology models. City,
2009.

[35] Wang, J., Du, H., Yao, X. and Hu, Z. Using classification
structure pharmacokinetic relationship (SCPR) method to
predict drug bioavailability based on grid-search support

2376 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

vector machine. Analytica Chimica Acta, 601, 2 2007),
156-163.

[36] Wei-Chang, Y., Yi-Cheng, L., Chung, Y. Y. and
Mingchang, C. A Particle Swarm Optimization Approach
Based on Monte Carlo Simulation for Solving the
Complex Network Reliability Problem. Reliability, IEEE
Transactions on, 59, 1 2010), 212-221.

[37] Widder, J., Hollander, M., Ubbels, J. F., Bolt, R. A. and
Langendijk, J. A. Optimizing dose prescription in
stereotactic body radiotherapy for lung tumours using
Monte Carlo dose calculation. Radiotherapy and Oncology,
94, 1 2010), 42-46.

[38] Yu, C., Li, R., He, Q., Yu, L. and Tan, J. Fault Diagnosis
of Nodes in WSN Based on Particle Swarm Optimization.
Springer Berlin Heidelberg, City, 2013.

[39] Mukhopadhyay, A. and Mandal, M. A Hybrid
Multiobjective Particle Swarm Optimization Approach for
Non-redundant Gene Marker Selection. Springer India,
City, 2013.

[40] Bureddy, D., Wang, H., Venkatesh, A., Potluri, S. and
Panda, D. K. OMB-GPU: A Micro-Benchmark Suite for
Evaluating MPI Libraries on GPU Clusters. Springer
Berlin Heidelberg, City, 2012.

[41] Potluri, S., Wang, H., Bureddy, D., Singh, A. K., Rosales,
C. and Panda, D. K. Optimizing MPI Communication on
Multi-GPU Systems Using CUDA Inter-Process
Communication. City, 2012.

[42] Wang, H., Potluri, S., Luo, M., Singh, A., Sur, S. and
Panda, D. MVAPICH2-GPU: optimized GPU to GPU
communication for InfiniBand clusters. Comput Sci Res
Dev, 26, 3-4 (2011/06/01 2011), 257-266.

[43] Hao, W., Potluri, S., Miao, L., Singh, A. K., Xiangyong, O.,
Sur, S. and Panda, D. K. Optimized Non-contiguous MPI
Datatype Communication for GPU Clusters: Design,
Implementation and Evaluation with MVAPICH2. City,
2011.

[44] Singh, A. K., Potluri, S., Hao, W., Kandalla, K., Sur, S.
and Panda, D. K. MPI Alltoall Personalized Exchange on
GPGPU Clusters: Design Alternatives and Benefit. City,
2011.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2377

© 2014 ACADEMY PUBLISHER

