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Abstract—High-accuracy optimization is the key component 
of time-sensitive applications in computer sciences such as 
machine learning, and we develop single-GPU Iterative 
Discrete Approximation Monte Carlo Optimization (IDA-
MCS) and multi-GPU IDA-MCS in our previous research. 
However, because of the memory capability constrain of 
GPUs in a workstation, single-GPU IDA-MCS and multi-
GPU IDA-MCS may be in low performance or even 
functionless for optimization problems with complicated 
shapes such as large number of peaks. In this paper, by the 
novel idea of parallelizing Iterative Discrete Approximation 
with CUDA-MPI programming, we develop the GPU cluster 
version (GPU-cluster) of IDA-MCS with two different 
parallelization strategies: Domain Decomposition and Local 
Search, under the style of Single Instruction Multiple Data 
by CUDA 5.5 and MPICH2, and we exhibit the performance 
of GPU-cluster IDA-MCS by optimizing complicated cost 
functions. Computational results show that, by the same 
number of iterations, for the cost function with millions of 
peaks, the accuracy of GPU-cluster IDA-MCS is 
approximately thousands of times higher than that of the 
conventional method Monte Carlo Search. Computational 
results also show that, the optimization accuracy from 
Domain Decomposition IDA-MCS is much higher than that 
of Local Search IDA-MCS. 
 
Index Terms—GPU Cluster Computing; CUDA-MPI 
Programming; Iterative Discrete Approximation; High-
accuracy Optimization; Domain Decomposition; Local 
Search 
 

I. INTRODUCTION 

Numerical optimization is computer based algorithms 
to calculate the value of optimum, which typically solves 
one-dimensional (1D) or high-dimensional cost function 
with the form such as the two-dimensional (2D) cost 
function: 

 
( )yxf ,max

Ω
, (1) 

where Ω is search space, a finite area for optimization, 
and the two variables (x, y) � Ω. The GPU based 
approaches with the style of Single Instruction Multiple 
Data (SIMD) to solve high-dimensional optimization 

problems include Particle Swarm Optimization, Brute-
force Search, Monte Carlo Search, etc. 
Particle Swarm Optimization is a method of optimization 
with scanning the search space by a group of candidate 
solutions named particle, and these particles are suitable 
for parallelization. Particle Swarm Optimization is well 
parallelized by GPU computing [1-6] with application to 
computer sciences [7-14], finance [15, 16], physics [17], 
biology [18], etc. 

Brute-force Search is an optimization method to 
exhaustively search all possibility in the search space on 
uniform grids, and the accuracy of optimum almost 
depends on the coverage of search space. Brute-force 
Search successfully optimize the problems from 
computer sciences [19-26], finance [27, 28], physics [29], 
chemistry [30], biology [31-35], etc. 

Brute-force Search is suitable for solving the low-
dimension problem, and this algorithm has nice property 
of parallelization, which leads to high-performance in 
GPU computing. However, for the high-dimensional cost 
function, the computational cost of Brute-force Search 
dramatically increases because of curse of dimensionality. 
To solve this problem, methods such as Monte Carlo 
Search are developed. 

Different from uniform grid in Brute-force Search, 
Monte Carlo Search calculates optimization by random 
numbers of different distribution, especially for high-
dimensional optimization. By Monte Carlo Search, the 
cost function equation (1) can be calculated by sampling 
a set of random numbers with total number of I: 

 
( ) ( )iiIi

yxfyxf ,max,max
∈Ω

= , (2) 

where 0 < i < I and (x, y) � Ω. If the distribution of the 
cost function is not estimated, the distribution for 
sampling random numbers is usually uniform distribution, 
and proper estimation of the distribution of the cost 
function increases the efficiency of mixing. As a 
conventional method, Monte Carlo Search is successfully 
applied to optimize the problems from fields such as 
computer sciences [8, 36], biology and medical 
healthcare [2, 7, 37], physics [38], economics [3, 39], etc. 
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Monte Carlo Search covers the whole search space by 
sampling large number of random points. However, it is 
computational challenging for the conventional Monte 
Carlo Search to high-accuracy optimize a cost function 
f(x, y) with a complicated shape such as thousands to 
millions of peaks in real-time. 

In this paper, by the novel idea of parallelizing 
Iterative Discrete Approximation by CUDA-MPI 
programming, we develop GPU-cluster versions of 
Iterative Discrete Approximation Monte Carlo 
Optimization (IDA-MCS) with two different 
parallelization strategies: Domain Decomposition and 
Local Search, with the style of SIMD by CUDA 5.5 and 
MPICH2, and we exhibit the performance of GPU-cluster 
IDA-MCS by optimizing complicated functions with 
millions of peaks. 

Additionally, for the convenience of later description, 
we clearly define the terms of single-GPU, multi-GPU 
and GPU-cluster. In this paper, single-GPU means a GPU 
in a GPU workstation, multi-GPU means multiple GPUs 
in a GPU workstation, and GPU-cluster means multiple 
GPUs in a GPU cluster of multiple nodes. 

II.  METHODS 

A.  2D Iterative Discrete Approximation 
For a continuous 2D cost function f(x, y), how to 

produce a set of random numbers whose distribution 
obeys the given 2D cost function f(x, y)? Discrete 
Approximation is a method to answer this question, and 
Discrete Approximation is a method to generate the 
approximation of 2D discrete function f(x, y) by a set of 
random samples, and the distribution of random numbers 
obeys the 2D function f(x, y) directly or indirectly, and 
the total number of random samples is usually preset. 
Setting total number of random samples results in the 
style of SIMD and then advantages in high-efficient 
applications, and this is the first reason why the high-
accuracy of GPU-cluster IDA-MCS comes from. 

To discretely approximate a 2D function f(x, y), for a 
given set of random numbers A = (xi, yi), the set f(A) 
returns implicit information about the 2D function. 
Applying the weighting function w to the set f(A), the 
function 

 w(f(A)) (3) 

returns amplified implicit information about the cost 
function. To transform the implicit information to the 
explicit form, a Monte Carlo Simulation is applied to 
w(f(A)), and with current design a new set B is generated 
by 

B ~ cumsum(w(f(A))), 
where cumsum means cumulative sum, and ~ means 
Monte Carlo Simulation. By some transform function t, a 
set Anew is produced by 

Anew = t(B), 
where Anew is Discrete Approximation of the cost function 
f(x, y). 

In some applications, since the shape of the function 
f(x, y) is sometimes too complicated, Discrete 
Approximation is not powerful enough to approximate 

the cost function under such circumstance. To solve this 
problem, we bring the novel idea of introducing iteration 
into Discrete Approximation in our previous research, 
which leads to Iterative Discrete Approximation. After 
iterations, the points become more and more 
concentrating on the peak area, which significantly 
improves the accuracy of optimizing the cost function f(x, 
y). 

Let us explain how Iterative Discrete Approximation 
works by an example in the language of GPU computing, 
as shown in Figure 1. For a given 2D optimization 
function f(x, y) with the search space, suppose we draw 
four samples (x1, y1), (x2, y2), (x3, y3) and (x4, y4) from a 
cost function in Figure 1 (i), and the cost function is: 

( ) 228, yxyxf −−=  

 22,22 ≤≤−≤≤− yx , (4) 

pass these four values through the cost function f(x, y) 
with the style of SIMD, we obtain four values: f(x1, y1), 
f(x2, y2), f(x3, y3) and f(x4, y4) in Figure 1 (i), and the 
values of f(x1, y1), f(x2, y2), f(x3, y3) and f(x4, y4) contain 
the information of the shape and the locations of the cost 
function f(x, y). 

To take advantages of the implicit information, 
Iterative Discrete Approximation constructs bins. In 
Figure 1 (ii), there are four bins are constructed since 
there are four available estimation of the cost function, 
and the length of each bin is decided by the values of f(x1, 
y1), f(x2, y2), f(x3, y3) and f(x4, y4). Since the values of f(x1, 
y1), f(x2, y2), f(x3, y3) and f(x4, y4) are decided by the shape 
of the peak and the weighting function, the length of the 
bins are decided by the shape of the cost function 
indirectly. 

Then a procedure of Monte Carlo Simulation is 
followed. Generate a set of random numbers of standard 
uniform distribution, for example four random numbers, 
and “throw” these numbers to these bins. Since the 
lengths of these bins are different, the possibility of 
“receiving” a random number is different, which is 
shown in Figure 1 (ii). After all iterations, the difference 
of bin lengths make the random numbers gradually gather 
in the peak area. 
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(ii) 

Figure 1.  Example of Iterative Discrete Approximation: (i) the 
Sampling Points from the Cost Function and (ii) the Constructed Bins 

by the Sampling Points 
 

In real implementation of Iterative Discrete 
Approximation, the number of bins is typically large, 
although there may be no individual bin receiving large 
number of samples, bins locating the peak area receive 
most random numbers. This concentration brings 
tremendous advantages of operating f(x, y) such as 
optimization and integration. 
 

 
(i)                                   (ii) 

 
(iii)                                 (iv) 

Figure 2.  Demonstration of Iterative Discrete Approximation with (i) 
the Input, (ii) the Output with β = 2, (iii) the Output with β = 5 and (iv) 

the Output with β = 10 
 

To illustrate the performance of Iterative Discrete 
Approximation for 2D cost functions, we discretely 
approximate the cost function equation (4) with 1000 
points in Figure 2, and the weighting function is: 

( )yxf
wf ,β=  

with different values of base β = 2, β = 5 and β = 10. The 
contour of equation (4) in Figure 1 (i) is also plotted in 
Figure 2. From Figure 2 we can clearly see, while the 
input points locate uniformly in Figure 2 (i), these points 
concentrate on the peak in Figure 2 (ii), and these points 
concentrate more on the peak in Figure 2 (iii) and Figure 
2 (iv). 

B.  Single-GPU IDA-MCS for 1D Cost Function 
We developed single-GPU IDA-MCS for the 1D cost 

function in our previous research, and single-GPU IDA-
MCS aims at optimizing a function with relatively small-
scale problems such as hundreds of peaks for high 
accuracy and efficiency, and we make a short 
introduction of single-GPU IDA-MCS for 1D cost 
function in this section.  

Monte Carlo Search is the conventional method to 
optimize a cost function with the style of SIMD, and 
Monte Carlo Search can be summaries in Algorithm 1: 

 
Algorithm 1.  Monte Carlo Search for 1D Cost Function 

• Generate a sample set A1 with the bandwidth N, 
pass the set A1 through f(x, y) to the set B1; 

• Pass the set B1 through the cost function f(x, y) 
to the set C1; 

• In single GPU, calculate the optimum from the 
set C1; 

 
In Algorithm 1, we name the value of N as bandwidth, 

because the number of points in all sets keeps the value N 
to satisfy the requirements of SIMD. In our previous 
research, Algorithm 1 is accelerated by Discrete 
Approximation. To further increase the performance of 
Discrete Approximation, Iterative Discrete 
Approximation is developed, and finally arrives at single-
GPU IDA-MCS of Algorithm 2: 
 
Algorithm 2.  Single-GPU IDA-MCS for 1D Cost 
Function 

• Iteration 1: generate a set A2
1 with the number of 

N elements, pass the set A2
1 through the cost 

function f(x, y) to the set B2
1; 

• Iteration k: discretely approximate the set B2
k to 

the set C2
k, pass the set C2

k through equation (3) 
to the set D2

k, and substitute D2
k back to B2

k for 
next iteration k+1; 

• In single GPU, calculate the optimum from the 
set D2; 

 
In single-GPU IDA-MCS for 1D cost function, 

because of the limited memory capacity in single GPU, 
the value of N cannot be too big. For example, to 
approximate a discrete distribution with 104 points by 104 
random numbers, CUDA array arrives at the size of 108, 
which usually reaches the maximum array size of GPUs. 
To solve this problem, multi-GPU IDA-MCS for 1D cost 
function is developed, which takes advantages of parallel 
versions of Iterative Discrete Approximation and multi-
GPU programming to improve the accuracy of IDA-MCS. 

C.  Multi-GPU IDA-MCS for 1D Cost Function 
How to make Iterative Discrete Approximation work 

with multi-GPU for 1D cost function with thousands of 
peaks? In our previous research, we apply two 
approaches to parallelize IDA-MCS by multi-GPU in a 
workstation: Domain Decomposition and Local Search 
for 1D optimization function. 

Let’s firstly make a short description of Domain 
Decomposition multi-GPU IDA-MCS for 1D function. 
By Domain Decomposition multi-GPU IDA-MCS, the 
search space is divided into domains with the total 
number of M, the total number of GPU is also M, and 
each GPU m is responsible for a domain m, where m is 
the counter for both GPU and the domain. In every 
iteration of IDA-MCS for 1D cost function, the 
computation of Iterative Discrete Approximation is 
equally distributed to multiple GPUs by Domain 
Decomposition, and the details are described in 
Algorithm 3: 
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Algorithm 3.  Domain Decomposition multi-GPU IDA-
MCS for 1D Cost Function 

• In domain m, generate a set A3m
1 in GPU m of 

the multi-GPU workstation; 
• In domain m, pass the set A3m

1 through f(x, y) to 
the set B3m

1; 
• In domain m and iteration k: discrete 

approximate the set B3m
k to the set C3m

k; 
• In domain m and iteration k: pass the set C3m

k 
through equation (3) to the set D3m

k; 
• In domain m and iteration k: substitute D3m

k back 
to B3m

k for next iteration k+1; 
• Calculate the local optima from the set D3m, 

finally calculate the global optimum from the 
local optima; 

 
For 1D cost function, Local Search is the other strategy 

to parallelize IDA-MCS by multi-GPU in a workstation. 
While Domain Decomposition IDA-MCS separates the 
whole 1D search space across multiple GPUs, Local 
Search IDA-MCS runs multiple copies of Iterative 
Discrete Approximation simultaneously to calculate local 
optima, and the global optimum is calculated from these 
local optima. Each Local Search is called a “particle”. 
The details of Local Search IDA-MCS for 1D cost 
function are described in Algorithm 4: 
 
Algorithm 4.  Local Search Multi-GPU IDA-MCS for 1D 
Cost Function 

• In particle m, generate a set A4m
1 in GPU m of 

multi-GPU workstation; 
• In particle m, pass the set A4m

1 through f(x, y) to 
generate the set B4m

1; 
• In particle m and iteration k, discretely 

approximate the set B4m
k to the set C4m

k, pass the 
set C4m

k through equation (3) to the set D4m
k, 

substitute D4m
k back to B4m

k for next iteration 
k+1; 

• In particle m, calculate the local optima from the 
set D4m, calculate the global optimum from the 
local optima; 

 
Domain Decomposition and Local Search for multi-

GPU workstation in this section are for 1D search space, 
and the idea of Domain Decomposition and Local Search 
for high-dimensional cost function is relatively the same, 
but different implementation. 

D.  Parallelization Strategy for 2D Iterative Discrete 
Approximation 

From this section, based on previous research, Iterative 
Discrete Approximation is applied to 2D optimization 
problem with millions of peaks on GPU cluster, and the 
parallel algorithms are designed on these two 
characteristics. Two parallelization strategies for GPU 
cluster, Domain Decomposition and Local Search, are 
developed. Therefore, we develop two strategies to 
parallelize Iterative Discrete Approximation to GPU 
clusters: Domain Decomposition. 

Let’s firstly discuss Domain Decomposition for 2D 
Iterative Discrete Approximation. In the M-by-N GPU 
cluster system, therefore each GPU is counted as GPU m 
in the node n. Based on this topology, the search space is 
divided into M domains, each node is responsible for a 
domain; each domain is further divided into N 
subdomains, and each GPU is responsible for a 
subdomain. All subdomain is continuously counted as l, 
and they can be exchanged by: 

 mMnl +×= , (5) 

where 0 ≤ l ≤ M×N. 
Domain Decomposition IDA-MCS to 2D search space 

can by illustrated by 4-by-4 GPU system. Since the total 
number of GPUs in 4-by-4 system is 16, by Domain 
Decomposition with a grid size of 4-by-4 decomposition, 
the search space is equally divided into 16 subdomains to 
keep the load balance of the GPU cluster, and each GPU 
is responsible for a subdomain. In each subdomain, the 
set of random numbers is independently generated, the 
distribution is discretely approximated with no 
communication among the subdomains. 

Local Search is the other strategy to parallelize 
Iterative Discrete Approximation for 2D cost function on 
GPU clusters. By Local Search, the search space is not 
divided, but multiple Iterative Discrete Approximation 
work independently in the search space to produce local 
optima, then calculate the global optimum. Each GPU is 
responsible for a particle l. 

Same to Domain Decomposition, supposing that we 
solve the problem by a GPU cluster with four nodes and 
four GPUs per node, and total 16 random sets are 
sampled. Each particle works with a random set, and each 
particle covers the whole search space. Each particle 
produces a local optimum, and the global optimum is 
calculated from these local optima. 

E.  Domain Decomposition GPU-cluster IDA-MCS for 
2D Cost Function 

Based on the parallel strategy Domain Decomposition 
discussed in the previous section, equation (2) can be 
rewritten as the following: 

 
( ) ( )yxfyxf

l

,max,max
21 Ω++Ω+ΩΩ

=
 
(6.1) 

( ) ( ) ( )⎟
⎠
⎞⎜

⎝
⎛=

ΩΩΩ
yxfyxfyxf

l

,max,,,max,,maxmax
21

(6.2) 

In equation (6.1), the computation of each subdomain
( )yxf

l

,max
Ω

 covers the whole search space Ω. In 

equation (6.2), the search space Ω is divided into l 
subdomains, the computation of each subdomain

( )yxf
l

,max
Ω

 can be distributed to each GPU, and the 

computation is done simultaneously by CUDA kernel 
concurrency and MPI. Comparing between equation (6.1) 
and equation (6.2), because of reduction of search space 
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and GPU parallel computing, equation (6.2) is much 
computationally efficient than equation (6.1). 

Based on the equations above, Domain Decomposition 
can be applied to IDA-MCS, and the example of Domain 
Decomposition IDA-MCS by 2-by-2 GPU cluster is 
illustrated in Figure 3. The key idea of Domain 
Decomposition GPU-cluster IDA-MCS is to divide and 
distribute the whole IDA-MCS by domain decomposition 
across multiple nodes then multiple GPU to search the 
whole space. 
 

 
Figure 3.  The Framework of Domain Decomposition GPU-cluster 

IDA-MCS (Algorithm 5) on 2-by-2 GPU Cluster 
 

In Figure 3, searching each subdomain of GPU-cluster 
IDA-MCS is done in a GPU, which includes three parts: 
Monte Carlo Simulation, Iterative Discrete 
Approximation and calculating local optima, and the 
global optimum is calculated in the server CPU. The 
details of Domain Decomposition GPU-cluster IDA-
MCS are described in Algorithm 5: 
 
Algorithm 5.  Domain Decomposition GPU-cluster IDA-
MCS 

• By the definition of subdomain l, generate a set 
A5l in GPU m of node n; 

• Pass the set A5l through f(x, y) to the set B5l; 
• In subdomain l and iteration k: discretely 

approximate the set B5l
k to the set C5l

k; 
• In subdomain l and iteration k: pass the set C5l

k 
through equation (3) to the set D5l

k; 
• In subdomain l and iteration k: substitute D5l

k 
back to B5l

k for discrete approximation of next 
iteration k+1; 

• In subdomain l, calculate the local optima from 
the set D5l, and calculate the global optimum 
from these local optima; 

 
Algorithm 5 begins from the set A5l in each subdomain 

by GPU m of node n, and passing this set through f(x, y) 

obtains the set B5l, and this is the step of Monte Carlo 
Search in subdomain l. Iteratively Discrete 
Approximating the set B5l

k to the set C5l
k with equation 

(3), and passing the set C5l
k to the set D5l

k. After all 
iterations finish, the set D5l

k is the candidates for 
calculating the local optima in GPUl, and finally the 
global optimum is calculated in the server CPU. 

F.  Local Search GPU-cluster IDA-MCS for 2D Cost 
Function 

Local Search is the other strategy to parallelize IDA-
MCS. Local Search means the search space is sampled 
independently by multiple Iterative Discrete 
Approximation, and each Iterative Discrete 
Approximation is also named “particle”. Since equation 
(2) can be rewritten to the formats: 

 
( ) ( )iiI

yxfyxf ,max,max =
Ω  

(7.1) 

( ) ( ) ( )( ))()2()1( ,max,,,max,,maxmax l
iiIiiIiiI

yxfyxfyxf=

(7.2) 

each particle calculates a local optimum 
( ) )(,max l

iiI
yxf  in a GPU, and the global optimum is 

calculated from the set of local optima. 
Based on the equations above, we develop Local 

Search GPU-cluster IDA-MCS of Algorithm 6, and 
Algorithm 6 performs Local Search of the whole search 
space in each particle, and the efficiency of this algorithm 
increases by IDA-MCS in each particle, and an example 
of Local Search GPU-cluster IDA-MCS (Algorithm 6) on 
2-by-2 GPU cluster is shown in Figure 4: 
 

 
Figure 4.  The Framework of Local Search GPU-cluster IDA-MCS 

(Algorithm 6) on 2-by-2 GPU Cluster 
 

From Figure 4 we can see, in Local Search GPU-
cluster IDA-MCS (Algorithm 6), each particle aims at the 
whole search space, and a local optimum is produced by 
this particle. Each particle residents in a GPU, and there 
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is no communication among particles to increase the 
performance of the algorithm. In each particle of Local 
Search GPU-cluster IDA-MCS (Algorithm 6), the 
activities of one iteration include Monte Carlo Simulation, 
discretely approximating and calculating local optimum, 
and the global optimum is calculated in the server after 
all iterations are finished. The details of Local Search 
GPU-cluster IDA-MCS are in Algorithm 6: 
 
Algorithm 6.  Local Search GPU-cluster IDA-MCS 

• In particle l, generate a set A6l from the whole 
search space; 

• In particle l, pass the set A6l through f(x, y) to 
generate the set B6l; 

• In particle l and iteration k: discretely 
approximate the set B6l

k leading to the set C6l
k; 

• In particle l and iteration k: pass the set C6l
k 

through equation (3) to generate the set D6l
k; 

• In particle l and iteration k: substitute D6l
k back 

to B6l
k for discrete approximation of next 

iteration k+1; 
• In particle l, calculate the local optimum from 

the set D6l, and calculate the global optimum 
from these local optima; 

 
From Algorithm 6 we can see, Local Search GPU-

cluster IDA-MCS (Algorithm 6) begins from generating 
the set A6l, and pass this set through the cost function f(x, 
y) to the set B6l, which is the implementation of Monte 
Carlo Simulation, though there is no local optimum is 
selected. The set C6l is discretely approximated through 
equation (3) to the set D6l

k, and substitute back to B6l
k for 

next iteration k+1, which is the implementation of 
Iterative Discrete Approximation. Finally, the global 
optimum is calculated from the set D6l in the server CPU. 

G.  Programming Model for M-by-N GPU Cluster System 
For a parallel system with M nodes and N GPUs in 

each node, multiple parallelization strategies can be 
applied to this system, and we use the CPU-GPU thread 
based strategy in this paper, and the programming 
implementation for this system is MPI-CUDA. 
In more details, we illustrate CPU-GPU tread based 
parallelization for M-by-N GPU cluster in Figure 5. As 
shown in Figure 5, the GPU cluster system consists of a 
server CPU, multiple node CPUs and multiple GPUs in 
each node. There is a CPU thread in the server CPU, a 
CPU thread in node CPU, and a GPU thread in each node 
GPU. 

 
Figure 5.  CPU-GPU Thread based Parallelization for M-by-N GPU 

Cluster System 

In more details, the thread of server CPU is responsible 
for collecting the local optima from each node and 
calculating the global optimum. The thread of client CPU 
is responsible for collecting local optima, and managing 
multiple GPU threads in the node. In the node, each GPU 
is managed by a GPU thread, and real computation is 
done in kernels of these GPU threads. In this paper, both 
Domain Decomposition IDA-MCS (Algorithm 5) and 
Local Search IDA-MCS (Algorithm 6) are implemented 
in this parallelization strategy. 
 

 
Figure 6.  Communication Pattern on 2-by-2 GPU Cluster System 

 
Another problem about GPU cluster is how data is 

transported? To answer this question, Figure 6 shows the 
communication pattern on a 2-by-2 GPU cluster. In each 
node, CPU and GPU are linked by PCI express Intel X79 
SandyBridgeE, and GPU and GPU are communicated 
through PCI expression. CPU in different nodes 
communicates through 1G switch. GPUs in different 
nodes cannot be directly communicated except through 
node CPU. 

III.  COMPUTATIONAL RESULTS 

In this section, to test the performance of GPU-cluster 
IDA-MCS, we code GPU-cluster IDA-MCS by GCC on 
Fedora 18, CUDA 5.5 and MPICH2, and we test the code 
of GPU-cluster IDA-MCS on our GPU cluster, which 
includes four nodes, and each node consists of Intel Core 
i7-3820 Quad-Core Processor, 8GB memory, four nVidia 
GTX 660 GPU in each node and Intel X79 SandyBridgeE. 

A.  The Problem 
To test the performance of our methods, we apply the 

algorithms to an optimization problem with complicated 
shapes: 

 
( ) ( )⎟

⎠
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⎜
⎝
⎛ +××= yx

b
y

a
xabsyxf sin,

 
(8) 

ubyubx ≤≤≤≤ 0,0  
where ub are the up-bound of optimization variables x 
and y. The plot of equation (8) with different values of 
up-bound ub is shown in Figure 7. 
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(i)                                   (ii) 

 
(iii)                                 (iv) 

Figure 7.  The Plot of the Cost Function of Equation (8) with (i) 0 ≤ x ≤ 
1, 0 ≤ y ≤ 1 (ii) 0 ≤ x ≤ 10, 0 ≤ y ≤ 10 (iii) 0 ≤ x ≤ 100, 0 ≤ y ≤ 100 and 

(iv) 0 ≤ x ≤ 1000, 0 ≤ y ≤ 1000 
 

To find the optima as the “gold standard” for our 
computational experiments, we optimize equation (8) 
with different values of up-bound ub by Monte Carlo 
Search (Algorithm 1) with the bandwidth N = 108 in a 
CPU server with 64G memory. We estimate the number 
of peaks in each plot, and the results are listed in Table 1. 

 
TABLE 1. 

THE RESULTS OF MONTE CARLO SIMULATION (ALGORITHM 1) FOR THE 
COST FUNCTION EQUATION (8) 

Search Space Maximum Value Number 
of Peaks 

0 ≤ x ≤ 1 0 ≤ y ≤ 1 0.909294203757878 1 
0 ≤ x ≤ 10 0 ≤ y ≤ 10 0.912912611660599 22 
0 ≤ x ≤ 100 0 ≤ y ≤ 100 0.963878552508647 3058 

0 ≤ x ≤ 
1000 0 ≤ y ≤ 1000 0.999624257749903 317038 

 
As listed in Table 1, increasing the up-bounds ub leads 

to much larger numbers of peaks, the optimum of the cost 
function equation (8) approaches the value of one, and 
the computational time becomes longer and longer. 
Actually, to approximate the maximum value of equation 
(8) with ub = 1000, Monte Carlo Search (Algorithm 1) 
with the bandwidth N = 108 spends hours in the CPU 
server with 64G memory. The maximum values obtained 
by this method are treated as the “gold standard” of our 
evaluating algorithms of ICA-MCS. 

B.  The Performance of Domain Decomposition GPU-
cluster IDA-MCS 

To test the performance of Domain Decomposition 
GPU-cluster IDA-MCS (Algorithm 5), we apply this 
method with the bandwidth N = 104 to optimize the cost 
function of equation (8) with ub =1000 by the 
discretization of 4-by-4 (4 domain then 4 subdomain). 
Domain Decomposition IDA-MCS (Algorithm 5) 
independently runs for three times with ten iterations, the 
global optimum is plotted against the “gold standard” 
from Table 1, and the results are plotted in Figure 8. 

 

 
Figure 8.  The Global Optimum of Domain Decomposition IDA-MCS 

(Algorithm 5) against Monte Carlo Search (Algorithm 1) 
 

From Figure 8 we can see, the global optimum from 
Domain Decomposition IDA-MCS (Algorithm 5) closely 
approaches the “gold standard” from Monte Carlo Search 
(Algorithm 1) in Table 1, which is the situation of the last 
iteration of Domain Decomposition IDA-MCS 
(Algorithm 5). To illustrate the situation of each iteration, 
we run three repeats of Domain Decomposition IDA-
MCS (Algorithm 5), and plot the values against the “gold 
standard” from Monte Carlo Search (Algorithm 1) in 
Figure 9. 

 

 
Figure 9.  The Performance of Domain Decomposition IDA-MCS 

(Algorithm 5) in each Iteration against Monte Carlo Search (Algorithm 
1) 
 

In Figure 9, while the “gold standard” is plotted with 
the line of cross, the first repeat of Domain 
Decomposition IDA-MCS (Algorithm 5) is plotted with 
the line of diamond, the second repeat of IDA-MCS 
(Algorithm 5) is plotted with line of square, and the third 
repeat of IDA-MCS (Algorithm 5) is plotted with the line 
of triangle. From iteration 4, the diamond line, the square 
line and the triangle line closely approach the cross line, 
that is to say, GPU-cluster IDA-MCS (Algorithm 5) with 
bandwidth N = 104 is as competitive as Monte Carlo 
Search (Algorithm 1) with bandwidth N = 108. 

C.  The Performance of Local Search GPU-cluster IDA-
MCS 

To study the performance of Local Search GPU-cluster 
IDA-MCS (Algorithm 6) against Monte Carlo Search 
(Algorithm 1), same to Domain Decomposition GPU-
cluster IDA-MCS (Algorithm 5), we run three repeats of 
Local Search IDA-MCS (Algorithm 6), and calculated 
global optima are plotted in Figure 10. 
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Figure 10.  The Performance of Local Search GPU-cluster IDA-MCS 

(Algorithm 6) in each Iteration against Monte Carlo Search (Algorithm 
1) 

From Figure 10 we can see, the global optimum from 
each repeat of Local Search IDA-MCS (Algorithm 6) 
approaches the “gold standard” along with the iterations. 
However, there is still obvious difference between the 
global optimum from Local Search IDA-MCS 
(Algorithm 6) and the “gold standard” from Monte Carlo 
Search (Algorithm 1). 

D.  Presentation of Accuracy 
Computational results above present the performance 

of IDA-MCS algorithms by plots. To quantitative 
measure the performance of these IDA-MCS algorithms, 
based on the “gold standard” from Monte Carlo Search 
(Algorithm 1), we develop accumulative accuracy in 
Table 2. 
 

TABLE 2. 
ACCUMULATIVE ACCURACY OF MULTIPLE REPEAT OF GLOBAL 

OPTIMIZATION FROM ICA-MCS ALGORITHMS 
Accuracy -8 -7 -6 -5 -4 -3 -2 -1

1 0 0 0 0 1 1 1 1
2 0 0 0 0 1 1 1 1
3 0 0 0 1 1 1 1 1
4 0 0 0 1 1 1 1 1
5 0 0 0 0 1 1 1 1

Total 0 0 0 3 5 5 5 5
 

How accumulative accuracy work? In Figure 8, we 
plot the results from five repeats of Domain 
Decomposition IDA-MCS (Algorithm 5) with 4-by-4 
discretization against the “gold standard” from Monte 
Carlo Search (Algorithm 1). To quantitatively represent 
these results against the “gold standard” from Monte 
Carlo Simulation (Algorithm 1), we take following steps: 
Step 1: Write down the results and the “gold standard”: 
0.99961340 (Repeat 1), 0.99960899 (Repeat 2), 
0.99962229 (Repeat 3), 0.99962276 (Repeat 4), 
0.99961102 (Repeat 5) and 0.99962426 (the “gold 
standard”); 

Step 2: From the last digital of a result from Domain 
Decomposition IDA-MCS (Algorithm 5), compare 
against the corresponding digital of the “gold standard”. 
If the digital of a result is bigger than the corresponding 
digital of the “gold standard”, then write 1 in Table 2, 
else write 0; 

Step 3: After all results is compared against the “gold 
standard”, summarize the “1” in each digital as the 
accumulative accuracy of IDA-MCS algorithms. 

Table 2 shows that, comparing with the “gold standard” 
from Monte Carlo Search (Algorithm 1), five repeats of 
Domain Decomposition IDA-MCS (Algorithm 5) with 4-
by-4 discretization shown in Figure 8 obtain three times 
of 10-5, five times of 10-4, 10-3, 10-2 and 10-1. 

E.  Domain Decomposition v.s. Local Search for GPU-
cluster IDA-MCS 

Since we apply two different parallelization strategies, 
Domain Decomposition and Local Search, to IDA-MCS, 
a natural question may be: which one is better? To 
answer this question, we run Domain Decomposition 
GPU-cluster IDA-MCS (Algorithm 5) for ten repeats 
with a 16-by-16 decomposition, and Local Search GPU-
cluster IDA-MCS (Algorithm 6) for ten times, measure 
their performance by the method described in the section 
of 3.4, and the results are plotted in Figure 11. 
In Figure 11, both Domain Decomposition IDA-MCS 
(Algorithm 5) and Local Search IDA-MCS (Algorithm 6) 
are applied to optimize the cost function of equation (8) 
with ub = 1000, which consists of 317038 peaks with 
such setting. 
 

 
(i)                               (ii) 

 
(iii)                             (iv) 

Figure 11.  The Accumulative Accuracy of Domain Decomposition 
GPU-cluster IDA-MCS (Algorithm 5) with (i) N =10000 and ub = 1000 
(ii) N = 1000 and ub = 1000 (iii) N = 100 and ub = 1000 (iv) N = 10 and 

ub = 1000 
 

In Figure 11, both methods are measured by four levels 
of accumulative accuracy: 10-4, 10-3, 10-2 and 10-1 on x-
axis. In each level of accumulative accuracy, Domain 
Decomposition IDA-MCS (Algorithm 5) is plotted on the 
left bar and Local Search IDA-MCS (Algorithm 6) is 
plotted on the right bar. To bandwidth of each method is: 
N = 10000 in Figure 11 (i), N = 1000 in Figure 11 (ii), N 
= 100 in Figure 11 (iii) and N = 10 in Figure 11 (iv). 
From Figure 11 we can see, the performance of Domain 
Decomposition ICA-MCS (Algorithm 5) is significantly 
better than Local Search ICA-MCS (Algorithm 6). 

To further compare the performance between Domain 
Decomposition IDA-MCS (Algorithm 5) and Local 
Search IDA-MCS (Algorithm 6), we apply these two 
methods to optimize the cost function of equation (8) 
with ub = 100, which consists of 3058 peaks with such 
setting. Since the number of peaks is much smaller, both 
methods are measured by four levels of accumulative 
accuracy from 10-8 to 10-1 on x-axis, and the results are 
plotted in Figure 12. 
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(i)                                       (ii) 

 
(iii)                                   (iv) 

Figure 12.  The Accumulative Accuracy of Domain Decomposition 
GPU-cluster IDA-MCS (Algorithm 5) with (i) N = 10000 and ub = 100 
(ii) N =1000 and ub = 100 (iii) N = 100 and ub = 100 (iv) N = 10 and ub 

= 100 
 

From Figure 12 we can see, the performance of 
Domain Decomposition ICA-MCS (Algorithm 5) is again 
significantly better than Local Search ICA-MCS 
(Algorithm 6) with the up-bound of 100. The 
accumulative accuracy of both methods decreases from 
Figure 12 (i) to Figure 12 (iv), because the bandwidth of 
both methods decreases. 

F.  The Scalability of Domain Decomposition GPU-
cluster IDA-MCS 

Since Domain Decomposition IDA-MCS (Algorithm 5) 
is built on GPU cluster, the accumulative accuracy of 
Domain Decomposition IDA-MCS (Algorithm 5) should 
be scalable to the number of GPUs. To test the scalability 
of Domain Decomposition IDA-MCS (Algorithm 5) with 
respect to the accumulative accuracy, we apply Domain 
Decomposition IDA-MCS (Algorithm 5) to the cost 
function equation (8) with the number of GPUs 16 (4 
nodes, Algorithm 5), 12 (3 nodes, Algorithm 5), 8 (2 
nodes, Algorithm 5), 4 (1 node, Algorithm 3) and 1 
(Algorithm 2), and the results are plotted in Figure 13. 

 

 
(i)                                     (ii) 

 
(iii)                                   (iv) 

Figure 13.  The Scalability of Domain Decomposition IDA-MCS 
(Algorithm 5) with (i) N = 10000 and ub = 1000 (ii) N = 1000 and ub = 

1000 (iii) N = 100 and ub = 1000 (iv) N = 10 and ub = 1000 
 

From Figure 13 we can see, larger number of GPUs 
leads to higher accumulative accuracy of IDA-MCS than 
smaller number of GPUs. In Figure 13 (i), Domain 
Decomposition IDA-MCS (Algorithm 5) of 16 GPU 
delivers the best performance as high as 10-4, while that 
of 4 GPU (Algorithm 3) performs much poor in the 
accumulative accuracy of 10-4. Similar situation happens 
in Figure 13 (ii), Figure 13 (iii) and Figure 13 (iv). 

 

 
(i)                                    (ii) 

 
(iii)                                    (iv) 

Figure 14.  The Scalability of Domain Decomposition GPU-cluster 
IDA-MCS (Algorithm 5) with (i) N = 10000 and ub = 100 (ii) N = 1000 

and ub = 100 (iii) N = 100 and ub = 100 (iv) N =10 and ub = 100 
 

We also test the scalability of Domain Decomposition 
IDA-MCS (Algorithm 5) for the cost function equation (8) 
with up-bound ub = 100, and the results are plotted in 
Figure 14. For Figure 14 we can see, for the cost function 
equation (8) with ub = 100, increasing the number of 
GPUs significantly increase the accumulative accuracy of 
IDA-MCS (Algorithm 5). 

G.  The Scalability of Local Search GPU-cluster IDA-
MCS 

Since Local Search IDA-MCS (Algorithm 6) is built 
on GPU cluster, the accumulative accuracy of Local 
Search IDA-MCS (Algorithm 6) should be scalable to the 
size of GPU cluster. To test the scalability of Local 
Search IDA-MCS (Algorithm 6) with respect to the 
accumulative accuracy, we apply Local Search IDA-
MCS (Algorithm 6) to the cost function equation (8) with 
the number of GPUs 16 (4 nodes, Algorithm 6), 12 (3 
nodes, Algorithm 6), 8 (2 nodes, Algorithm 6), 4 (1 node, 
Algorithm 4) and 1 (Algorithm 2), and the results are 
plotted in Figure 15. 

 

 
(i)                                        (ii) 

 
(iii)                                    (iv) 

Figure 15.  The Scalability of Local Search GPU-cluster IDA-MCS 
(Algorithm 6) with (i) N = 10000 and ub = 1000 (ii) N = 1000 and ub = 

1000 (iii) N = 100 and ub = 1000 (iv) N = 10 and ub = 1000 
 

From Figure 15 we can see, larger number of GPUs 
leads to higher accumulative accuracy of Local Search 
IDA-MCS (Algorithm 6) than smaller number of GPUs. 
In Figure 15 (i), Local Search IDA-MCS (Algorithm 6) 
of 16 GPU delivers the best performance as high as 10-4, 
while that of 4 GPU (Algorithm 4) performs much poor 
in the accuracy of 10-4. Similar situation happens in 
Figure 15 (ii), Figure 15 (iii) and Figure 15 (iv). 
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(i)                                         (ii) 

 
(iii)                                      (iv) 

Figure 16.  The Scalability of Local Search GPU-cluster IDA-MCS with 
(i) N = 10000 and ub = 100 (ii) N = 1000 and ub = 100 (iii) N = 100 and 

ub = 100 (iv) N = 10 and ub = 100 
 

We also test the scalability of Local Search IDA-MCS 
(Algorithm 6) for the cost function equation (8) with up-
bound ub = 100, and the results are plotted in Figure 16. 
For Figure 16 we can see, for the cost function equation 
(8) with ub = 100, increasing number of GPUs 
significantly increases the accumulative accuracy of 
Local Search IDA-MCS (Algorithm 6). 

H.  Effects of Grid Size on Domain Decomposition IDA-
MCS 

In previous computational experiments of Domain 
Decomposition IDA-MCS (Algorithm 5), we use the grid 
size of 4-by-4 discretization (4 domain then 4 subdomain). 
How the selection of grid size affects the performance of 
Domain Decomposition IDA-MCS (Algorithm 5)? To 
answer this question, we test Domain Decomposition 
IDA-MCS (Algorithm 5) by the grid size of 4-by-4, 8-by-
8, 12-by-12 and 16-by-16 discretization, and the results 
are plotted in Figure 17. 

 

 
Figure 17.  Effects of The Accumulative Accuracy from Domain 

Decomposition IDA-MCS (Algorithm 5) on the Selection of Grid Sizes 
 

From Figure 17 we can see, increasing the grid size 
significantly increases the performance of Domain 
Decomposition IDA-MCS (Algorithm 5). While Domain 
Decomposition with the grid size 4-by-4 discretization 
approaches the “gold standard” from Monte Carlo 
Simulation (Algorithm 1) in Table 1, the Domain 
Decomposition IDA-MCS (Algorithm 5) with the grid 
size 16-by-16 discretization almost exactly matches the 
“gold standard” from Monte Carlo Simulation (Algorithm 
1). 

IV.  DISCUSSION 

In this paper, we develop two-dimensional IDA-MCS, 
we parallelize this algorithm by Domain Decomposition 
and Local Search, and we implement this algorithm on a 
GPU cluster. Computational results show a higher 
accuracy and efficiency of IDA-MCS than the 
conventional Monte Carlo Search. 
Since the algorithm IDA-MCS is built on Monte Carlo 
Simulation, the efficiency of IDA-MCS may be improved 
by better samplers such as Markov Chain Monte Carlo 
and Sequential Monte Carlo with multiple Markov chains, 
and better approximation of the cost function may be 
provided. 

We design a weighting mechanism equation (3) to 
increase the performance of IDA-MCS, and we use 
equation (5) in this paper. However, the power function 
equation (5) is not the only design for equation (3), and 
other approaches such as the exponentiation function can 
also be choosed for this purpose. 

In this paper, we construct Iterative Discrete 
Approximation by measuring the value of the cost 
function. However, the value of the cost function can be 
replaced by quantities which represent the changes of the 
cost function such as integration of a finite area in the 
search space, and then constructing bins by these 
quantities. 

To parallelize IDA-MCS, we employ two different 
parallel schemes: Domain Decomposition and Local 
Search, and computational results show that Domain 
Decomposition is much better than Local Search. 
However, new parallel schemes can be designed to 
parallel algorithms of IDA-MCS. For example, instead of 
current design of limiting IDA-MCS in each GPU, we are 
working on expanding IDA-MCS across the GPU cluster. 
In this paper, two parallel schemes Domain 
Decomposition and Local Search are coded by MPICH2, 
and there is no direction communication between GPUs 
in different nodes, which decreases the performance of 
IDA-MCS. By CUDA-Aware MPI such as MVAPICH2 
[40-44], Remote Direct GPU Memory Access is possible 
to improve the performance of data communication in 
IDA-MCS. 

We developed one-dimensional IDA-MCS in our 
previous research, and we develop two-dimensional IDA-
MCS in this paper. Can IDA-MCS be applied to higher 
dimensional problem such as three-dimension? To realize 
this goal, the theory and the implementation methods of 
IDA-MCS should be developed. 
In our previous research and this paper, IDA-MCS is 
applied to a traditional problem of applied mathematics 
optimization. In future research, we may expand IDA-
MCS to more problems such as integration and mesh 
generation. For example, since IDA-MCS can 
concentrate samples on the peak area, triangulation of 
these points produces mesh with high density in peak 
area which needs more computation, and low density in 
flat area which needs less computation. 
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