

An Algorithm of Top-k High Utility Itemsets
Mining over Data Stream

Tianjun Lu

School of Software, Nanyang Institute of Technology, Nanyang, Henan 473000, China
Email: lvtianjun@163.com

Yang Liu

School of Innovation and Experiment, Dalian University of Technology, Liaoning, China 116024.
Email: Dovebaby@mail.dlut.edu.cn

Le Wang

School of Information Engineering, Ningbo Dahongying University, Ningbo, Zhejiang, China 315175.
Email: lelewater@gmail.com

Abstract— Existing top-k high utility itemset (HUI) mining
algorithms generate candidate itemsets in the mining
process; their time & space performance might be severely
affected when the dataset is large or contains many long
transactions; and when applied to data streams, the
performance of corresponding mining algorithm is
especially crucial. To address this issue, propose a sliding
window based top-k HUIs mining algorithm TOPK-SW; it
first stores each batch data of current window as well as the
items’ utility information to a tree called HUI-Tree, which
ensures effective retrieval of utility values without re-scan
the dataset, so as to efficiently improve the mining
performance. TOPK-SW was tested on 4 classical datasets;
results show that TOPK-SW outperforms existing
algorithms significantly in both time and space efficiency,
especially the time performance improves over 1 order of
magnitude.

Index Terms—data stream, high utility itemset, frequent
itemset, data mining, top-k

I. INTRODUCTION

High utility itemsets (patterns) mining is an extension
of frequent pattern mining, and is becoming a hot topic in
data mining [1-11]; its main research focus is on
improvement of the space and time efficiency of
corresponding algorithms. The algorithm Two-Phase [5]
utilizes hierarchical method to generate candidate
itemsets; it may generate too many candidates, and needs
multiple scans on dataset. The algorithm CTU-Mine[11]
utilizes tree structure to improve the mining efficiency,
but it only outperforms Two-Phase on dense datasets. The
algorithm IHUP[3] scans dataset twice and utilizes
pattern growth approach to generate candidate itemsets;
the number of candidates is reduced comparing existing
algorithms and the mining performance is improved
significantly. UP-Growth[1, 2] is an improvement of
IHUP to further reduce the number of candidates.

In spite of these research achievements, choosing an
appropriate minimum utility threshold is a difficult task

for application users: if the threshold is high, there might
be no HUI; if the threshold is low, there might result too
many HUIs, and the mining performance might be
severely affected, even leading to memory overflow. It
would also be a time-consuming task if one tries to
determine the threshold value through various testing
calculations. To address this issue, Wu [10] proposes top-
k algorithm, mining the top k itemsets with the highest
utility values without presetting the minimum threshold.
But this algorithm needs to scan the dataset one more
time to calculate the utility values of candidates; and in
the case of large dataset or there are too many long-dense
transaction itemsets, the performance of Wu’s approach is
not satisfactory.

Because of the massive, real-timing and dynamic
property of data streams, mining algorithms over data
streams needs to be more efficient on both running time
and memory usage. For the problem of mining top-k
HUIs, we propose a sliding window based algorithm
TOPK-SW (Top-k HUIs Mining based on Sliding
Window) for mining HUIs without generating candidate
itemsets. In this approach, transaction itemsets and their
effective information are stored to a tree structure; the
utility value of each itemset can be retrieved from the tree
without generating candidate itemsets or additional scan
of the dataset, so as to improve the time and space
efficiency of the algorithm significantly.

The contributions of this paper are summarized as
follows:

(1) We propose a new tree structure named HUI-Tree
(High Utility Itemsets Tree) for maintaining a
dataset;

(2) We also give an algorithm named TOPK-SW
(Top-K high utility itemsets mining based on
Sliding-Window) for mining high utility itemsets
over data streams;

(3) Both sparse and dense datasets are used in our
experiments to compare the performance of the

2342 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2342-2347

proposed algorithm against the state-of-the-art
algorithms.

The rest of this paper is organized as follows: Section
2 is the description of the problem and definitions;
Section 3 describes our algorithm TOPK-SW; Section 4
shows the experimental results; and Section 5 gives the
conclusion and discussion.

II. PROBLEM DESCRIPTION AND RELATED DEFINITIONS

Given a dataset DB = {t1, t2, …, tn} which contains m
distinct items I = {x1, x2, …, xm} and n transaction
itemsets. An itemset X containing k distinct items is
called a k-itemset and k is its length. Each transaction
itemset tj is represented as {(x1, c1)(x2, c2)…(xv, cv)} (v is
the length of tj), where {x1, x2, …, xv} is a subset of I, and
cu (1≤u≤v) is an internal utility of item xu in tj (denoted
as q(xu, tj)). Each item x in itemset I has a unit profit p(x)
and this profit value is denoted as external utility of this
item. For example, Table 1 is an example of dataset and
table 2 shows the profit of each item in Table 1. |DB|
represents the number of transaction in dataset DB.

Definition 1. The utility of item x in transaction t is
denoted as u(x,t) and defined by

(,) () (,)u x t p x q x t= ⋅ (1)

Definition 2. The utility of itemset X in transaction t is
denoted as u(X, t) and defined by

(,) (,)
x X X t

u X t u x t
∈ ∧ ⊆

=∑ (2)

Definition 3. The utility of itemset X in transaction
database DB is denoted as u(X) and defined by

() (,)
t DB t X

u X u X t
∈ ∧ ⊇

=∑ (3)

Definition 4. The transaction utility of transaction t is
denoted as tu(t) and defined by

() (,)
x t

tu t u x t
∈

=∑ (4)

Definition 5. The transaction-weighted-utilization of an
itemset X is denoted as twu(X), and is defined by

() ()
t DB t X

twu X tu t
∈ ∧ ⊇

=∑ (5)

Definition 6. An itemset/item X is called a candidate
itemset/item for the high utility itemsets/item if

()twu X minUti≥ , and it is also called a promising
itemset/item, otherwise it is an unpromising itemset/ item.
Definition 7. The support number (sn) of itemset X is the
number of transaction containing X in dataset DB.
Theorem 1: Transaction-weighted downward closure
property: any subset of a promising itemset is a
promising itemset and any superset of an unpromising
itemset is an unpromising itemset[5].

The window in sliding-window model slides one
batch each time, and it only contains a fixed number of
batches of the latest data. The problem of mining top-k
HUIs over data stream based on sliding window model is
in fact a problem of mining top-k HUIs from the current
window; it can be divided into the following two tasks: (1)
maintain window data and corresponding utility
information, including deleting the oldest batch data and
maintain new coming data; (2) mining top-k HUIs for the
window. For these tasks, we propose algorithm TOPK-
SW (Top-k HUIs Mining based on Sliding Window); it
utilizes a tree structure HUI-Tree to maintain data batches
and their corresponding utility information without losing
any utility value of the items in the batch, so as to
discover top-k HUIs without generating candidates
itemsets; the tree structure also ensures efficient removal
of obsolete batches.

III. ALGORITHM TOPK-SW

There are two tasks in algorithm TOPK-SW: (1)
maintaining data of the current window; (2) mining top-k
HUIs on a window.

A. Maintaining Window Data
Algorithm TOPK-SW maintains each batch of data to a

tree structure called HUI-Tree. Each HUI-tree
corresponds to one header table, maintaining the
following information of each item on the tree: support
number (sn), utility value (utililty), transaction weighted
utilization (twu) and links to nodes with the same item
name (link).

Taking the data in Table 1 and Table 2 for example, we
now illustrate the process of maintaining window data of
algorithm TOPK-SW. The batch size is set to 2 (p=2),
window size (number of batches in a window) is 3 (w=3),
and K=3.

Transaction itemsets and their utility information are
stored in a certain order (without loss of generality, we
use lexicographic order in our example) to an HUI-tree;
as shown in Fig. 1(a), the items of the first batch are
stored in the tree in lexicographic order. The last node of
an itemset is called tail-node, in which all information

TABLE I.
AN EXAMPLE OF DATA STREAM

TID Transaction tu
1 (B,4)(C,3)(D,3)(E,1) 28
2 (B,2)(C,2)(E,1)(G,3) 16
3 (B,3)(C,4)(F,1) 17
4 (A,1)(C,6)(D,2) 20
5 (A,2)(C,2)(D,2)(B,2)(E,1)) 33
6 (C,3)(D,1)(E,1)(G,2) 10

7 (A,2)(C,6)(D,10) 46
8 (B,2)(C,6)(D,10) 34

… … …

TABLE II.
PROFIT TABLE (EXTERNAL UTILITY)

Item Profit
A 10
B 4
C 1
D 2
E 3
F 1
G 1

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2343

© 2014 ACADEMY PUBLISHER

about the same transaction itemset are stored; as an
example, for path “root-B-C-D-E” in Fig. 1(a), “E” is a
tail-node, and sn is the number of transaction itemset
{BCDE}, bu is the utility value of base-itemset (here
base-itemset is null, so this value is 0; base-itemset will
be discussed in more detail later in the mining algorithm),
piu is the utility values of items in the transaction itemset,
su is the sum of piu (that is, the total utility value of the

same transaction itemset); we call the above data itemset
information (abbreviated as itemset-info hereafter). The
utility value of each item in the transaction itemset
(utility), their transaction weighted utilization (twu),
support number (sn), as well as link to nodes with same
name (link) are also stored in a header table, see Fig. 1,
where the header table corresponds to each tree are
illustrated to the left.

root

B

C

D

E:
sn=1;bu=0;

piu ={16,3,6,3}
su=28

(a) an HUI-Tree of the first batch data

item utility twu sn link

A

B 24 44 2
C 5 44 2
D 6 28 1

E 6 44 2

F
G 3 16 1

E

G:
sn=1;bu=0;

piu ={8,2,3,3}
su=16

root

B

C

F:
sn=1;bu=0;

piu ={12,4,1}
su=17

(b) an HUI-Tree of the second batch data

item utility twu sn link

A 10 20 1

B 12 17 1
C 10 37 2
D 4 20 1

E

F 1 17 1
G

C

D:
sn=1;bu=0;

piu ={10,6,4}
su=20

A

root

C

D

E:
sn=1;bu=0;

piu ={20,4,2,4,3}
su=33

(c) an HUI-Tree of the third batch data

item utility twu sn link

A 20 33 1

B 4 33 1
C 5 43 2
D 6 43 2

E 6 43 2

F
G 2 10 1

E

G:
sn=1;bu=0;

piu ={3,2,3,2}
su=10

D

A C

B

root

A

C

D:
sn=1;bu=0;

piu ={20,6,20}
su=46

(d) an HUI-Tree of the 4th batch data

item utility twu sn link

A 20 46 1

B 8 34 1
C 12 80 2
D 40 80 2

E

F
G

C

D:
sn=1;bu=0;

piu ={8,6,20}
su=34

B

Figure 1. The HUI-Tree corresponding to each batch

Figure 2. The algorithm of Mining top-k High Utility itemsets from a

window

When a new batch of data comes, delete the tree and
header table of the oldest batch and create a new tree for
this batch. For example, when the 4th batch in Table 1
comes, delete the tree and header table (Fig. 1(a)) of the
first batch, and build a new tree and header table as

shown in Fig. 1(d).
When a window is filled with data, a mining for top-k

HUIs can be performed on this window if requested by
the user.

B. Mining top-k High utility Itemsets from a Window
Fig. 2 is the main steps of algorithm TOPK-SW for

mining top-k HUIs from the HUI-Tree corresponding to
the current window.

Line 1 is the initialization of TKHUIs and TKValueList:
if the number of items in the header table is not less than
K, then store the top k items with the biggest utility
values to TKHUIs, their utility values to TKValueList,
and assign the smallest value in TKValueList to minUti; if
the number of items in header table is less than K, store
all items in the header table and their utility values to
TKHUIs and TKValueList, and initialize minUti as 0.

Line 2 attaches a backup field bac-info for field
itemset-info to each leaf node, in order to keep valid
utility information for the next window in case of any
changes made to itemset-info.

Line 3-19 process each item in the header table
beginning from the last one: (1) re-calculate each item’s
twu value (BU+SU); this twu value does not include the
utility of those items that have already been processed, so
its value might be less than the original twu. (2) if the
new twu value is not less than minUti, add this item to a
base-itemset base-itemset (which is initialized as null),
and create sub-tree and sub-header table for base-itemset,
then continue processing the sub-tree and sub-header

2344 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

table (Fig. 3 is the subroutine of this process); (3) modify
the bak-info field of the corresponding node: subtract or
remove the node’s utility value from piu and su in bak-
info, and pass it to the parent node: if the parent node
contains the itemset-info field, then accumulate the
corresponding values of itemset-info to bak-info.

Figure 3. The Procedure MTKHUIWsub

Line 15 of procedure Mining (Fig. 2) creates the sub-
header table and sub-tree by scanning the path from the
corresponding node to root and bak-info of that node;
line 11 in procedure sub-Mining (Fig. 3) create a sub-
header table and sub-tree by scanning the path from the
corresponding node to root and itemset-info of the node.
Here the paths (and the itemset it represents) and the
itemset-info of the node is equivalent to a sub-dataset that
corresponds to current base-itemset (that is, all
transaction itemsets in the global dataset that contain this
base-itemset are mapped to this sub-dataset), so the
creation of the sub-header table needs only one pass of
scanning of the sub-dataset; the sub-header table only
contains those items whose twu values are not less than
the current minUti, and all items are sorted by descending
order of their support number. Steps of sub-tree creation:
(1) for each transaction itemset in sub-dataset, delete
those items that are included in the header table; (2) sort
transaction itemsets in the order of the sub-header table;
(3) add the processed transaction itemsets to a newly
created sub HUI-Tree and store the itemset-info to the
tail node (in the same manner as adding transaction
itemsets of a global dataset to an HUI-tree).

IV. EXPERIMENTAL RESULTS

The core task of sliding window based top-k HUIs
mining algorithm over data streams is the mining on the
data of the current window; and for each window, its data
can be viewed as a static dataset; also the proposed
algorithm is the first one dealing with data streams, so we
can evaluate its efficiency by testing its performance on
static dataset (which is equivalent to one window’s data).
Because the time and space efficiency of algorithm TKU
cannot beat UP(Optimal) [10], we only need to compare
our proposed algorithm against UP(Optimal). All
programs used in this section are coded with Java
language.

Classical datasets are used in our experiments,

including real and synthetic datasets, see Table 3. Chain-
store [12] is a real dataset of a chain supermarket in
California; T10.I6.D100K is created by IBM Quest Data
Generator [13]; the other 2 datasets can be downloaded
from FIMI website.

Dataset T10.I6.D100K, Mushroom and Connect do not
contain internal & external utility values. Adopting the
approaches in reference [3, 5, 11, 14], the number of a
certain item in a transaction (internal utility) is generated
as a random integer between 10 and 0; item’s profit
(external utility) is also generated randomly as a value
between 0.0100 and 10.0000; and because in the real
world, the number of items with high profit is relatively
fewer, we apply a logarithm normal distribution on the
generated external utility values. Table 3 is the
characteristics of the datasets, where “I” is number of
unique items in the dataset, “AS” is the average length of
transaction itemsets, “T” is the number of transaction
itemsets in the dataset, and “DS” is the density of data
(larger value means denser, and smaller value means
sparser). A dataset with density less the 10% is called a
sparse dataset, otherwise it is a dense dataset [15].

Fig. 4-7 is the experimental result on 4 datasets
respectively; in these figures, part (a) is the running time,
part (b) is the number of generated patterns. TOPK-SW
can obtain the patterns’ utility value when they are
generated, while UP(Optimal) needs an additional scan of
dataset to calculate the utility values and to confirm the
top K patterns; so the more patterns UP(Optimal)
generates, the less time- & space-efficient it will be; as
show in Fig. 4-7(a), the bigger the K value is, the more
itemsets need to be generated, and the less efficient
UP(Optimal) will be. On Connect, UP (Optimal)
overflows when K is greater than 100.

TABLE III.
DATASET CHARACTERISTICS

Dataset I AS T DS Type
Chain-store 46,086 7.2 1,112,949 0.0156% sparse

T10.I6.D100K 1,000 10 100,000 1% sparse
Mushroom 119 23 8,124 19.33% dense

Connect 129 43 67,557 33.33% dense

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2345

© 2014 ACADEMY PUBLISHER

100 300 500 700 900

10

100

1000
R

un
ni

ng
 T

im
e

(S
) TOPK-SW

 UP(Optimal)

(a) Running Time
K

100 300 500 700 900
0

5000

10000

15000

20000

N
um

be
r o

f I
te

m
se

ts

 TOPK-SW
 UP(Optimal)

(b) Number of Itemsets
K

Figure 4. The dataset Chain-store

100 300 500 700 900
1

10

100

R
un

ni
ng

 T
im

e
(S

) TOPK-SW
 UP(Optimal)

(a) Running Time
K

100 300 500 700 900
0

5000

10000

15000

20000

25000

30000

(b) Number of Itemsets

N
um

be
r o

f I
te

m
se

ts

K

 TOPK-SW
 UP(Optimal)

Figure 5. The dataset T10.I6.D100k

100 300 500 700 900
0

5000

10000

15000

20000

25000

N
um

be
r o

f I
te

m
se

ts

 TOPK-SW
 UP(Optimal)

(b) Number of Itemsets
K

100 300 500 700 900
1

10

100

R
un

ni
ng

 T
im

e
(S

)

 TOPK-SW
 UP(Optimal)

(a) Running Time
K

Figure 6. The dataset Mushroom

100 300 500 700 900
80

90

100

110

120

R
un

ni
ng

 T
im

e
(S

)

 TOPK-SW
 UP(Optimal): Out Of Memory

(a) Running Time
K

100 300 500 700 900
0

10000

20000

30000

40000

50000

60000

N
um

be
r o

f I
te

m
se

ts

 TOPK-SW
 UP(Optimal): Out Of Memory

(b) Number of itemsets
K

Figure 7. The dataset Connect

2346 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

Because TOPK-SW maintains utility information of
transaction itemsets to trees and ensures their efficient
retrieval, and the newly calculated twu values are smaller
than that in UP (Optimal), there might be cases when
TOPK-SW does not need to create more sub-trees and
generate new patterns for base-itemset while UP (Optimal)
must, UP (Optimal) will generate more patterns, as
shown in Fig. 4-7(b); because dataset Connect is a dense
dataset with long transaction itemsets, UP (Optimal)
overflows when K is greater than 100.

We can see from the above experimental results and
analysis, the performance of the proposed algorithm
TOPK-SW is improved significantly, especially its time
efficiency improves over 1 order of magnitude; on dense
& long transaction dataset, TOPK-SW performs well
while UP (Optimal) overflows easily; the time
performance of TOPK-SW is also stable along with the
variance of the K value.

V. CONCLUSION AND DISCUSSION

We propose a top-k HUIs mining algorithm TOPK-SW
for data streams based on sliding window model;
transaction itemsets in a batch and their utility
information are maintained to a tree, and in the mining
process the utility of an itemset can be efficiently
retrieved from this tree without additional scan of the
dataset, so as to improve the mining efficiency
significantly. 4 classical datasets are used in our
experiments, including real and synthetic datasets. The
results show that not only the time performance of
TOPK-SW is improved significantly (over 1 order of
magnitude), its space performance is also remarkable,
especially for dense & long-transaction dataset, our
algorithm discovers resulting patterns efficiently while
the existing algorithm overflows.

REFERENCES

[1] V.S. Tseng, B. Shie, C. Wu, and P.S. Yu, "Efficient
Algorithms for Mining High Utility Itemsets from
Transactional Databases," IEEE Transactions on
Knowledge and Data Engineering, 2012(PrePrint).

[2] V.S. Tseng, C.W. Wu, B.E. Shie, and P.S. Yu. "UP-
Growth: An efficient algorithm for high utility itemset
mining," ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2010,
Washington, DC, United states.

[3] C.F. Ahmed, S.K. Tanbeer, B.S. Jeong, and Y.K. Lee,
"Efficient Tree Structures for High Utility Pattern Mining

in Incremental Databases," IEEE Transactions on
Knowledge and Data Engineering, 2009, 21(12), pp.
1708-1721.

[4] H. Yao and H.J. Hamilton, "Mining itemset utilities from
transaction databases," Data and Knowledge Engineering,
2006, 59(3), pp. 603-626.

[5] Y. Liu, W.K. Liao and A. Choudhary, eds. A two-phase
algorithm for fast discovery of high utility itemsets.
Advances in Knowledge Discovery and Data Mining. Vol.
9th Pacific-Asia conference on Advances in Knowledge
Discovery and Data Mining. 2005, Berlin: Springer:
Hanoi, Viet nam. 689-695.

[6] H. Li, H. Huang, Y. Chen, Y. Liu, and S. Lee. "Fast and
memory efficient mining of high utility itemsets in data
streams," 8th IEEE International Conference on Data
Mining, 2008.

[7] J. Liu, K. Wang and B. Fung. "Direct Discovery of High
Utility Itemsets without Candidate Generation," 2012
IEEE 12th International Conference on Data Mining,
2012.

[8] C.W. Lin, T.P. Hong, G.C. Lan, J.W. Wong, and W.Y.
Lin, Mining High Utility Itemsets Based on the Pre-large
Concept, in Advances in Intelligent Systems and
Applications-Volume 1. 2013, Springer. pp. 243-250.

[9] M. Liu and J. Qu. "Mining high utility itemsets without
candidate generation," 21st ACM International
Conference on Information and Knowledge Management,
2012, Maui, HI, United states.

[10] C.W. Wu, B. Shie, V.S. Tseng, and P.S. Yu. "Mining top-
K high utility itemsets," 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
2012.

[11] A. Erwin, R.P. Gopalan and N.R. Achuthan. "CTU-mine:
An efficient high utility itemset mining algorithm using
the pattern growth approach," 7th IEEE International
Conference on Computer and Information Technology,
2007.

[12] J. Pisharath, et al. NU-MineBench Version 2.0 Scorce
Code and Datasets,
http://cucis.ece.northwestern.edu/projects/DMS
/MineBench.html. Accessed July 2011.

[13] IBM Data Generator,
http://www.almaden.ibm.com/software
/quest/Resources/index.shtml. Accessed Dec. 2010.

[14] Y.C. Li, J.S. Yeh and C.C. Chang, "Isolated items
discarding strategy for discovering high utility itemsets,"
Data and Knowledge Engineering, 2008, 64(1), pp. 198-
217.

[15] F.Y. Ye, J.D. Wang and B.L. Shao. "New algorithm for
mining frequent itemsets in sparse database," International
Conference on Machine Learning and Cybernetics, 2005,
Guangzhou, China.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2347

© 2014 ACADEMY PUBLISHER

