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Abstract— Existing top-k high utility itemset (HUI) mining 
algorithms generate candidate itemsets in the mining 
process; their time & space performance might be severely 
affected when the dataset is large or contains many long 
transactions; and when applied to data streams, the 
performance of corresponding mining algorithm is 
especially crucial. To address this issue, propose a sliding 
window based top-k HUIs mining algorithm TOPK-SW; it 
first stores each batch data of current window as well as the 
items’ utility information to a tree called HUI-Tree, which 
ensures effective retrieval of utility values without re-scan 
the dataset, so as to efficiently improve the mining 
performance. TOPK-SW was tested on 4 classical datasets; 
results show that TOPK-SW outperforms existing 
algorithms significantly in both time and space efficiency, 
especially the time performance improves over 1 order of 
magnitude. 
 
Index Terms—data stream, high utility itemset, frequent 
itemset, data mining, top-k 

I. INTRODUCTION 

High utility itemsets (patterns) mining is an extension 
of frequent pattern mining, and is becoming a hot topic in 
data mining [1-11]; its main research focus is on 
improvement of the space and time efficiency of 
corresponding algorithms. The algorithm Two-Phase [5] 
utilizes hierarchical method to generate candidate 
itemsets; it may generate too many candidates, and needs 
multiple scans on dataset. The algorithm CTU-Mine[11] 
utilizes tree structure to improve the mining efficiency, 
but it only outperforms Two-Phase on dense datasets. The 
algorithm IHUP[3] scans dataset twice and utilizes 
pattern growth approach to generate candidate itemsets; 
the number of candidates is reduced comparing existing 
algorithms and the mining performance is improved 
significantly. UP-Growth[1, 2] is an improvement of 
IHUP to further reduce the number of candidates. 

In spite of these research achievements, choosing an 
appropriate minimum utility threshold is a difficult task 

for application users: if the threshold is high, there might 
be no HUI; if the threshold is low, there might result too 
many HUIs, and the mining performance might be 
severely affected, even leading to memory overflow. It 
would also be a time-consuming task if one tries to 
determine the threshold value through various testing 
calculations. To address this issue, Wu [10] proposes top-
k algorithm, mining the top k itemsets with the highest 
utility values without presetting the minimum threshold. 
But this algorithm needs to scan the dataset one more 
time to calculate the utility values of candidates; and in 
the case of large dataset or there are too many long-dense 
transaction itemsets, the performance of Wu’s approach is 
not satisfactory. 

Because of the massive, real-timing and dynamic 
property of data streams, mining algorithms over data 
streams needs to be more efficient on both running time 
and memory usage. For the problem of mining top-k 
HUIs, we propose a sliding window based algorithm 
TOPK-SW (Top-k HUIs Mining based on Sliding 
Window) for mining HUIs without generating candidate 
itemsets. In this approach, transaction itemsets and their 
effective information are stored to a tree structure; the 
utility value of each itemset can be retrieved from the tree 
without generating candidate itemsets or additional scan 
of the dataset, so as to improve the time and space 
efficiency of the algorithm significantly. 

The contributions of this paper are summarized as 
follows: 

(1) We propose a new tree structure named HUI-Tree 
(High Utility Itemsets Tree) for maintaining a 
dataset; 

(2) We also give an algorithm named TOPK-SW 
(Top-K high utility itemsets mining based on 
Sliding-Window) for mining high utility itemsets 
over data streams; 

(3) Both sparse and dense datasets are used in our 
experiments to compare the performance of the 
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proposed algorithm against the state-of-the-art 
algorithms. 

The rest of this paper is organized as follows: Section 
2 is the description of the problem and definitions; 
Section 3 describes our algorithm TOPK-SW; Section 4 
shows the experimental results; and Section 5 gives the 
conclusion and discussion. 

II. PROBLEM DESCRIPTION AND RELATED DEFINITIONS 

Given a dataset DB = {t1, t2, …, tn} which contains m 
distinct items I = {x1, x2, …, xm} and n transaction 
itemsets. An itemset X containing k distinct items is 
called a k-itemset and k is its length. Each transaction 
itemset tj is represented as {(x1, c1)(x2, c2)…(xv, cv)} (v is 
the length of tj), where {x1, x2, …, xv} is a subset of I, and 
cu (1≤u≤v) is an internal utility of item xu in tj (denoted 
as q(xu, tj)). Each item x in itemset I has a unit profit p(x) 
and this profit value is denoted as external utility of this 
item. For example, Table 1 is an example of dataset and 
table 2 shows the profit of each item in Table 1. |DB| 
represents the number of transaction in dataset DB. 

 
Definition 1.  The utility of item x in transaction t is 
denoted as u(x,t) and defined by 

( , ) ( ) ( , )u x t p x q x t= ⋅                              (1) 

Definition 2.  The utility of itemset X in transaction t is 
denoted as u(X, t) and defined by 

( , ) ( , )
x X X t

u X t u x t
∈ ∧ ⊆

=∑                            (2) 

Definition 3.  The utility of itemset X in transaction 
database DB is denoted as u(X) and defined by 

( ) ( , )
t DB t X

u X u X t
∈ ∧ ⊇

=∑                            (3) 

Definition 4.  The transaction utility of transaction t is 
denoted as tu(t) and defined by 

( ) ( , )
x t

tu t u x t
∈

=∑                                (4) 

Definition 5.  The transaction-weighted-utilization of an 
itemset X is denoted as twu(X), and is defined by  

( ) ( )
t DB t X

twu X tu t
∈ ∧ ⊇

=∑                           (5) 

Definition 6.  An itemset/item X is called a candidate 
itemset/item for the high utility itemsets/item if 

( )twu X minUti≥ , and it is also called a promising 
itemset/item, otherwise it is an unpromising itemset/ item.  
Definition 7.  The support number (sn) of itemset X is the 
number of transaction containing X in dataset DB. 
Theorem 1: Transaction-weighted downward closure 
property: any subset of a promising itemset is a 
promising itemset and any superset of an unpromising 
itemset is an unpromising itemset[5]. 

The window in sliding-window model slides one 
batch each time, and it only contains a fixed number of 
batches of the latest data. The problem of mining top-k 
HUIs over data stream based on sliding window model is 
in fact a problem of mining top-k HUIs from the current 
window; it can be divided into the following two tasks: (1) 
maintain window data and corresponding utility 
information, including deleting the oldest batch data and 
maintain new coming data; (2) mining top-k HUIs for the 
window. For these tasks, we propose algorithm TOPK-
SW (Top-k HUIs Mining based on Sliding Window); it 
utilizes a tree structure HUI-Tree to maintain data batches 
and their corresponding utility information without losing 
any utility value of the items in the batch, so as to 
discover top-k HUIs without generating candidates 
itemsets; the tree structure also ensures efficient removal 
of obsolete batches. 

III. ALGORITHM TOPK-SW 

There are two tasks in algorithm TOPK-SW: (1) 
maintaining data of the current window; (2) mining top-k 
HUIs on a window. 

A.  Maintaining Window Data 
Algorithm TOPK-SW maintains each batch of data to a 

tree structure called HUI-Tree. Each HUI-tree 
corresponds to one header table, maintaining the 
following information of each item on the tree: support 
number (sn), utility value (utililty), transaction weighted 
utilization (twu) and links to nodes with the same item 
name (link). 

Taking the data in Table 1 and Table 2 for example, we 
now illustrate the process of maintaining window data of 
algorithm TOPK-SW. The batch size is set to 2 (p=2), 
window size (number of batches in a window) is 3 (w=3), 
and K=3. 

Transaction itemsets and their utility information are 
stored in a certain order (without loss of generality, we 
use lexicographic order in our example) to an HUI-tree; 
as shown in Fig. 1(a), the items of the first batch are 
stored in the tree in lexicographic order. The last node of 
an itemset is called tail-node, in which all information 

TABLE I.   
AN EXAMPLE OF DATA STREAM 

TID Transaction  tu 
1 (B,4)(C,3)(D,3)(E,1) 28 
2 (B,2)(C,2)(E,1)(G,3) 16 
3 (B,3)(C,4)(F,1) 17 
4 (A,1)(C,6)(D,2) 20 
5 (A,2)(C,2)(D,2)(B,2)(E,1)) 33 
6 (C,3)(D,1)(E,1)(G,2) 10 

7 (A,2)(C,6)(D,10) 46 
8 (B,2)(C,6)(D,10) 34 

… … … 

TABLE II.   
PROFIT TABLE (EXTERNAL UTILITY)  

Item Profit 
A 10 
B 4 
C 1 
D 2 
E 3 
F 1 
G 1 
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about the same transaction itemset are stored; as an 
example, for path “root-B-C-D-E” in Fig. 1(a), “E” is a 
tail-node, and sn is the number of transaction itemset 
{BCDE}, bu is the utility value of base-itemset (here 
base-itemset is null, so this value is 0; base-itemset will 
be discussed in more detail later in the mining algorithm), 
piu is the utility values of items in the transaction itemset, 
su is the sum of piu (that is, the total utility value of the 

same transaction itemset); we call the above data itemset 
information (abbreviated as itemset-info hereafter). The 
utility value of each item in the transaction itemset 
(utility), their transaction weighted utilization (twu), 
support number (sn), as well as link to nodes with same 
name (link) are also stored in a header table, see Fig. 1, 
where the header table corresponds to each tree are 
illustrated to the left. 

 
root

B

C

D

E: 
sn=1;bu=0;

piu ={16,3,6,3}
su=28

(a) an HUI-Tree of the first batch data

item utility twu sn link 

A    

B 24 44 2
C 5 44 2
D 6 28 1

E 6 44 2

F    
G 3 16 1

 

E

G: 
sn=1;bu=0;

piu ={8,2,3,3}
su=16

root

B

C

F: 
sn=1;bu=0;

piu ={12,4,1}
su=17

(b) an HUI-Tree of the second batch data

item utility twu sn link

A 10 20 1

B 12 17 1
C 10 37 2
D 4 20 1

E   

F 1 17 1
G   

 

C

D: 
sn=1;bu=0;

piu ={10,6,4}
su=20

A

root

C

D

E: 
sn=1;bu=0;

piu ={20,4,2,4,3}
su=33

(c) an HUI-Tree of the third batch data

item utility twu sn link 

A 20 33 1 

B 4 33 1 
C 5 43 2 
D 6 43 2 

E 6 43 2 

F    
G 2 10 1 

 

E

G: 
sn=1;bu=0;

piu ={3,2,3,2}
su=10

D

A C

B

root

A

C

D: 
sn=1;bu=0;

piu ={20,6,20}
su=46

(d) an HUI-Tree of the 4th batch data

item utility twu sn link

A 20 46 1

B 8 34 1
C 12 80 2
D 40 80 2

E   

F   
G   

 

C

D: 
sn=1;bu=0;

piu ={8,6,20}
su=34

B

 
Figure 1.  The HUI-Tree corresponding to each batch 

 
Figure 2.  The algorithm of Mining top-k High Utility itemsets from a 

window 

When a new batch of data comes, delete the tree and 
header table of the oldest batch and create a new tree for 
this batch. For example, when the 4th batch in Table 1 
comes, delete the tree and header table (Fig. 1(a)) of the 
first batch, and build a new tree and header table as 

shown in Fig. 1(d). 
When a window is filled with data, a mining for top-k 

HUIs can be performed on this window if requested by 
the user. 

B.  Mining top-k High utility Itemsets from a Window 
Fig. 2 is the main steps of algorithm TOPK-SW for 

mining top-k HUIs from the HUI-Tree corresponding to 
the current window.  

Line 1 is the initialization of TKHUIs and TKValueList: 
if the number of items in the header table is not less than 
K, then store the top k items with the biggest utility 
values to TKHUIs, their utility values to TKValueList, 
and assign the smallest value in TKValueList to minUti; if 
the number of items in header table is less than K, store 
all items in the header table and their utility values to 
TKHUIs and TKValueList, and initialize minUti as 0.  

Line 2 attaches a backup field bac-info for field 
itemset-info to each leaf node, in order to keep valid 
utility information for the next window in case of any 
changes made to itemset-info. 

Line 3-19 process each item in the header table 
beginning from the last one: (1) re-calculate each item’s 
twu value (BU+SU); this twu value does not include the 
utility of those items that have already been processed, so 
its value might be less than the original twu. (2) if the 
new twu value is not less than minUti, add this item to a 
base-itemset base-itemset (which is initialized as null), 
and create sub-tree and sub-header table for base-itemset, 
then continue processing the sub-tree and sub-header 
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table (Fig. 3 is the subroutine of this process); (3) modify 
the bak-info field of the corresponding node: subtract or 
remove the node’s utility value from piu and su in bak-
info, and pass it to the parent node: if the parent node 
contains the itemset-info field, then accumulate the 
corresponding values of itemset-info to bak-info. 

 

 
Figure 3.  The Procedure MTKHUIWsub 

Line 15 of procedure Mining (Fig. 2) creates the sub-
header table and sub-tree by scanning the path from the 
corresponding node to root and bak-info of that node; 
line 11 in procedure sub-Mining (Fig. 3) create a sub-
header table and sub-tree by scanning the path from the 
corresponding node to root and itemset-info of the node. 
Here the paths (and the itemset it represents) and the 
itemset-info of the node is equivalent to a sub-dataset that 
corresponds to current base-itemset (that is, all 
transaction itemsets in the global dataset that contain this 
base-itemset are mapped to this sub-dataset), so the 
creation of the sub-header table needs only one pass of 
scanning of the sub-dataset; the sub-header table only 
contains those items whose twu values are not less than 
the current minUti, and all items are sorted by descending 
order of their support number. Steps of sub-tree creation: 
(1) for each transaction itemset in sub-dataset, delete 
those items that are included in the header table; (2) sort 
transaction itemsets in the order of the sub-header table; 
(3) add the processed transaction itemsets to a newly 
created sub HUI-Tree and store the itemset-info to the 
tail node (in the same manner as adding transaction 
itemsets of a global dataset to an HUI-tree). 

IV. EXPERIMENTAL RESULTS 

The core task of sliding window based top-k HUIs 
mining algorithm over data streams is the mining on the 
data of the current window; and for each window, its data 
can be viewed as a static dataset; also the proposed 
algorithm is the first one dealing with data streams, so we 
can evaluate its efficiency by testing its performance on 
static dataset (which is equivalent to one window’s data). 
Because the time and space efficiency of algorithm TKU 
cannot beat UP(Optimal) [10], we only need to compare 
our proposed algorithm against UP(Optimal). All 
programs used in this section are coded with Java 
language. 

 
Classical datasets are used in our experiments, 

including real and synthetic datasets, see Table 3. Chain-
store [12] is a real dataset of a chain supermarket in 
California; T10.I6.D100K is created by IBM Quest Data 
Generator [13]; the other 2 datasets can be downloaded 
from FIMI website. 

Dataset T10.I6.D100K, Mushroom and Connect do not 
contain internal & external utility values. Adopting the 
approaches in reference [3, 5, 11, 14], the number of a 
certain item in a transaction (internal utility) is generated 
as a random integer between 10 and 0; item’s profit 
(external utility) is also generated randomly as a value 
between 0.0100 and 10.0000; and because in the real 
world, the number of items with high profit is relatively 
fewer, we apply a logarithm normal distribution on the 
generated external utility values. Table 3 is the 
characteristics of the datasets, where “I” is number of 
unique items in the dataset, “AS” is the average length of 
transaction itemsets, “T” is the number of transaction 
itemsets in the dataset, and “DS” is the density of data 
(larger value means denser, and smaller value means 
sparser). A dataset with density less the 10% is called a 
sparse dataset, otherwise it is a dense dataset [15]. 

Fig. 4-7 is the experimental result on 4 datasets 
respectively; in these figures, part (a) is the running time, 
part (b) is the number of generated patterns. TOPK-SW 
can obtain the patterns’ utility value when they are 
generated, while UP(Optimal) needs an additional scan of 
dataset to calculate the utility values and to confirm the 
top K patterns; so the more patterns UP(Optimal) 
generates, the less time- & space-efficient it will be; as 
show in Fig. 4-7(a), the bigger the K value is, the more 
itemsets need to be generated, and the less efficient 
UP(Optimal) will be. On Connect, UP (Optimal) 
overflows when K is greater than 100. 

 

TABLE III.   
DATASET CHARACTERISTICS 

Dataset I AS T DS Type
Chain-store 46,086 7.2 1,112,949 0.0156% sparse

T10.I6.D100K 1,000 10 100,000 1% sparse
Mushroom 119 23 8,124 19.33% dense

Connect 129 43 67,557 33.33% dense
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Figure 4.  The dataset Chain-store 
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Figure 5.  The dataset T10.I6.D100k 
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Figure 6.  The dataset Mushroom 
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Figure 7.  The dataset Connect
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Because TOPK-SW maintains utility information of 
transaction itemsets to trees and ensures their efficient 
retrieval, and the newly calculated twu values are smaller 
than that in UP (Optimal), there might be cases when 
TOPK-SW does not need to create more sub-trees and 
generate new patterns for base-itemset while UP (Optimal) 
must, UP (Optimal) will generate more patterns, as 
shown in Fig. 4-7(b); because dataset Connect is a dense 
dataset with long transaction itemsets, UP (Optimal) 
overflows when K is greater than 100. 

We can see from the above experimental results and 
analysis, the performance of the proposed algorithm 
TOPK-SW is improved significantly, especially its time 
efficiency improves over 1 order of magnitude; on dense 
& long transaction dataset, TOPK-SW performs well 
while UP (Optimal) overflows easily; the time 
performance of TOPK-SW is also stable along with the 
variance of the K value. 

V. CONCLUSION AND DISCUSSION 

We propose a top-k HUIs mining algorithm TOPK-SW 
for data streams based on sliding window model; 
transaction itemsets in a batch and their utility 
information are maintained to a tree, and in the mining 
process the utility of an itemset can be efficiently 
retrieved from this tree without additional scan of the 
dataset, so as to improve the mining efficiency 
significantly. 4 classical datasets are used in our 
experiments, including real and synthetic datasets. The 
results show that not only the time performance of 
TOPK-SW is improved significantly (over 1 order of 
magnitude), its space performance is also remarkable, 
especially for dense & long-transaction dataset, our 
algorithm discovers resulting patterns efficiently while 
the existing algorithm overflows. 
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