
A Statistical Analysis and Temporary Cluster
based Routing Algorithm for Delay Tolerant

Networks

Jixing Xu
Information Engineering College of Qingdao University, Ningxia Road 308, Qingdao, China

 E-mail: ytxujixing@gmail.com

*Jianbo Li, Lei You and Chenqu Dai
 Information Engineering College of Qingdao University, Ningxia Road 308, Qingdao, China

 E-mail: {lijianboqdu, youleiqdu, daichenqu}@gmail.com

Abstract—Delay Tolerant Networks are characterized by

frequent network topology partition, limited resource,

extremely high latency, etc. Consequently successful

deliveries of messages in such networks face great

challenges. In this paper, by capturing the temporary

clusters, we timely use the temporary end-to-end paths to

directly and successfully deliver messages. Besides, by

collecting a large number of encounter history information

as the samples, we use the methods of statistical analysis to

objectively and accurately evaluate encountered nodes, thus

selecting fewer but better relay nodes to spread messages.

Finally based on the above schemes, a Statistical Analysis

and Temporary Cluster based routing algorithm (SATC) is

proposed to improve the routing performance. Extensive

simulations have been conducted and the results show that

SATC can achieve a higher delivery ratio and a fewer hop

count compared to Epidemic and PRoPHET. Furthermore,

its overhead ratio is 70% and 65% less than Epidemic and

PRoPHET respectively.

Index Terms—Delay Tolerant Networks; network topology

partition; temporary cluster; encounter history; statistical

analysis

I. INTRODUCTION

Delay Tolerant Network [1-3] as a new end to end
store and forward network architecture, which originates
from the Interplanetary Internet [4] and features frequent
network topology partition [5], node mobility, limited
device capability and extremely high latency, has become
a hot research interest and a great challenge in the field
of wireless network. In 2003, Kevin Fall first proposed
the concept of DTN. Soon afterwards, the Internet
Research Task Force (IRTF) specially set up the DTN
Research Group (DTNRG) to study it. Finally in 2007,
DTNRG put forward the DTN network architecture [6],

which introduced a bundle layer between the application
layer and the transport layer (as shown in Fig. 1) to
communicate across multiple regions that have different
types of networks and different protocols. Now DTN as a
emerging concept has been widely studied and applied.

Initially, DTN is mainly used in the military battlefield
networks and some special application scenarios (e.g.
disaster relief, etc). Now, DTN is widely applied to
various civilian areas, such as wildlife tracking networks
[7], pocket switched networks [8], habitat monitoring
networks [9], underwater sensor networks [10], vehicular
ad hoc networks [11-13], etc. These special networks
deployed in challenging environment may never have a
complete end-to-end path between the sender and the
receiver [14]. So the traditional routing protocols based
on TCP/IP are difficult to get efficient achievements
because that they need to first find a complete path to the
destination node before starting the transmission. In
order to cope with this problem and finish end-to-end
communication, DTN routing adopts store-carry and
forward strategy to relay messages hop by hop. But in
most DTNs, it may be very difficult to capture the global
network topology knowledge and the route information
about the final receiver, so how to select optimal next
hop relay nodes to move closer to the final destination
node is the key issue.

A simple solution is to add the number of message
copies by using flooding strategy and relay these
message copies to different encountered neighbors,
which can greatly increase the opportunity to encounter
the final destination node. Reference [15] has proven that
source node can enhance network capacity by replicating
more message copies to different relay nodes. In case of
sufficient network resources and enough network load
capacity, it may be the best way to improve message
delivery ratio. But in most DTNs, the network resource
and device capability are limited. The more message
copies mean more consumption of resources and more
serious message redundancy. In this case, uncontrolled
flooding strategy is still difficult to get good routing
performance. Consequently, the key issue of efficient

Manuscript received November 14, 2013; revised February 7, 2014;

accepted March 5, 2014.

*Corresponding Author

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2291

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2291-2301

routing strategy is to select fewer but better neighbors as
next hop relay nodes to spread message copies, thus
implementing controlled infection and getting a good
balance between higher message delivery ratio and less
resource consumption. For this purpose, we need to
accurately estimate whether a neighbor should be
selected as the next hop relay node. Many scholars have
tried to capture the global network topology and
additional information (e.g. geographical location
information, etc), but the reliability of those information
is greatly reduced due to node’s mobility and the

extremely high end-to-end latency. On the contrary, the
basic history information which can be captured in the
meeting time of node pairs has a more practical value.

Based on the above considerations, we propose two
approaches to estimate whether a neighbor is a good next
hop relay node. Firstly, if there is a temporary path to the
final destination node among a current temporary cluster,
all of these nodes which exist in the path are the optimal
relay nodes. This is because that these nodes can quickly
and successfully finish this transmission. Secondly, when
there is no temporary path to the destination node, by
collecting a large number of encounter history
information as the samples, we use the methods of
statistical analysis to compute several statistics which can
be used to objectively and accurately evaluate every
encountered node. Then we only select the neighbors
which can help to improve routing performance as the
next hop relay nodes. Finally, a Statistical Analysis and
Temporary Cluster based routing algorithm (SATC) is
proposed to improve routing performance.

The rest of this paper is organized as follows. In
section 2, we discuss some related works. Section 3 gives
a detailed description of SATC scheme. The performance
evaluations and comparisons among SATC, Epidemic
and PRoPHET are presented in Section 4. Finally, section
5 summarizes this paper and gives future research
directions.

II. RELATED WORKS

Combining with the research achievements of DTNRG,
scholars have proposed a lot of typical DTN routing
schemes. A simple taxonomy of DTN unicast routing
techniques is illustrated in Fig. 2.

By introducing position fixed throw boxes [16] [17],

scholars have proposed some fixed infrastructures
assistant routing schemes. Analogously, with the help of
mobility pattern fixed ferry nodes, references [18-20]
propose some mobile infrastructures assistant routing
algorithms. Those DTN routing techniques based on
infrastructures can greatly improve message delivery
ratio, but they also inevitably increase the complexity of
entire network.

Epidemic [21] is a typical multi-copy based routing

algorithm, which makes attempts to replicate all carried
messages to all encountered neighbors by using flooding
strategy. The biggest advantage is that Epidemic does not
need to capture global network topology knowledge, so
its routing complexity is low. But in order to get a high
message delivery ratio, it does need a large number of
resources and a strong network load capacity. In other
words, it is difficult to get a good routing performance in
case of insufficient resource. Spray and Wait [22] and
Spray and Focus [23] are both based on multi-copy
scheme, but they greatly limit the number of message
copies. Only in Spray period can they replicate L
message copies to L different relay nodes. So they can
effectively control the consumption of network resource.
However, because that they do not take any measures to
evaluate encountered neighbors when selecting next hop
relay nodes, their improvements on message delivery
ratio are not satisfying.

Relying on knowledge oracles, reference [24]
proposes six different forwarding based routing schemes:
FC, MED, ED, EDLQ, EDAQ and LP. According to the
amount of available knowledge—zero knowledge, partial
knowledge and complete knowledge, these algorithms
can get different routing performance. Besides,
respectively based on ED and MED, AED [25] and
MEED [26] make some improvements, thus achieving
better routing performance.

PRoPHET [27] is a typical routing scheme based on
history utility, which uses the encounter history
information and transitivity to predict the delivery
possibility between two nodes. Then PRoPHET only
selects the neighbors with bigger delivery possibilities
than current node as the next hop relay nodes. So

Figure 1. DTN network architecture

Figure 2. A taxonomy of DTN unicast routing schemes

2292 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

compared with the Epidemic, PRoPHET can greatly
improve the routing performance. But when two nodes
encounter, PEoPHET only subjectively updates the
delivery possibility according to some pre-set parameter
values. It can’t predict the actual delivery possibility, so
there may be some errors relative to the actual delivery
possibility.

Some coding based routing algorithms are presented in
[28-30], which effectively reduce the consumption of
network resource and improve the routing performance
to some extent, but also inevitably increase the
complexity of routing protocol.

 III. SATC ROUTING FRAMEWORK

In DTN routing protocols [31-33], multi-copy strategy
can greatly improve the message delivery ratio. But due
to limited network resource and restricted device capacity,
blind flooding may cause the opposite results. So in this
section, we propose two routing schemes to accurately
evaluate every encountered node, thus selecting fewer
but better relay nodes to spread messages and greatly
controlling message redundancy. Finally, we propose a
Statistical Analysis and Temporary Cluster based routing
algorithm (SATC) to efficiently improve the routing
performance. The SATC is based on the following
assumptions:

 DTN nodes are initiative to collect encounter
history information in every meeting chance.

 The size of the broadcast packet is very small
compared to the data message.

A. Routing Scheme based on Temporary Clusters

In most DTN application scenarios, because of spare
node density and node mobility, it is very difficult to
keep a complete end-to-end path between the sender and
the receiver. But the case that some moving nodes form a
temporary cluster (as shown in Fig. 3) may often occur.
In temporary cluster C1, if relay node a is carrying a
message Mi for destination node d, theoretically node a
can quickly and successfully transfers Mi to destination
node d by using the temporary path a-b-d. But node a
can only know its one-hop neighbor b. So when the
unfortunate case that node a does not think node b is a
good next hop relay node occurs, node a will eventually
miss this opportunity to successfully deliver Mi.

From the above instance we can see that the
establishment of the temporary cluster can greatly
increase the searching range to find the final destination
node, instead of only searching in current node’s one-hop
neighbors. It is out of this consideration, we try to make
full use of these temporary clusters. In order to find all
cluster members, current node s needs to broadcast a
Local Route Discovery Packet (LRDP) to the temporary
cluster. A LRDP contains the following information:

 source _id
 broadcast_id
 flag
 hop_count
 path
 time-to-live

The broadcast_id is incremented when source node
creates a new LRDP, so the pair <source_id, broadcast_id>
can uniquely identify a LRDP. The flag only has two
possible values: 0 and 1. The 0 represents that the packet
is a route discovery packet, and the 1 indicates that the
packet is a route reply packet. So when a node needs to
reply a LRDP (flag=0), it just needs to modify the flag
(flag=1) and then unicasts the LRDP to the source node,
not having to generate a new reply packet. The path
stores all intermediate nodes from the source node to a
temporary cluster member, and the order that the node is
added into the path is the node’s forwarding order along

the route. So the pair <source_id, broadcast_id, path> can
uniquely identify a temporary path to a cluster member,
and we can efficiently avoid route loop by detecting
whether there are duplicate nodes in the path. The
hop_count is the length of the path. The time-to-live is
the total time that a LRDP can survive, which is set to an
appropriate value to get all LRDP reply packets and is
gradually decreased over time.

When a node needs to deliver some messages, but
there are no routes to the destination nodes, a route
discovery process is initiated. The node creates a new
LRDP and broadcasts the LRDP to its all one-hop
neighbors. When a neighbor receives the LRDP, it first
needs to rebroadcast the LRDP to its own one-hop
neighbors after increasing the hop_count and adding
itself into the path, and then it also needs to reply the
LRDP by unicasting the LRDP to the source node along
the reverse path after modifying the flag (flag=1). A
cluster node may receive different copies of the same
LRDP from various neighbors. In this case, it still
rebroadcast the LRDP to its one-hop neighbors. The
purpose is for the consideration that the currently existing
path may be interrupted in the process of establishing the
route due to node mobility. So it may eventually fail to
get the final route if we only keep track of one single
path, ignoring other possible paths. In DTNs, due to
sparse node density, the size of a temporary cluster won’t

be too big. So the overhead caused by LRDP broadcast
can be controlled. The detailed process of a LRDP on a
cluster member Ni is shown in Fig. 4. Lines 1-15 are the
process of receiving a route discovery packet. Lines 2-3
and lines 9-10 can efficiently avoid the broadcast loop.
Line 17 is the process of receiving a route reply packet.

Figure 3. Temporary clusters: C1, C2, C3 and C4

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2293

© 2014 ACADEMY PUBLISHER

Now Ni needs to go on unicasting the LRDP to the
source node along the reverse path.

 As a LRDP travels from source node to a cluster
member, it automatically sets up the route. Eventually
when receiving all LRDP reply packets from cluster
members, source node can construct a temporary route
table. A route entry contains the following information:

 destination_node
 path
 hop_count
 path_capacity
 time_out

There may be multiple paths between source node and

a cluster member. So in this case, we choose the shortest
path to construct the route. Now there is a new issue:
how to define the shortest path? Here, we use the two
metrics: path capacity and hop count. The path capacity
is defined in (1). The i(TTL) represents the initial
time-to-live assigned to a new LRDP and the r(TTL)
gives the remaining time-to-live of the LRDP when
source node receives the reply packet. Then the half of

the round trip time (i.e. 𝑖(𝑇𝑇𝐿)−𝑟(𝑇𝑇𝐿)

2
) can objectively reflect

the current path capacity, and the less time represents a
better path capacity. In (1), we use the reciprocal of
𝑖(𝑇𝑇𝐿)−𝑟(𝑇𝑇𝐿)

2
 to define the final 𝐶𝑝𝑎𝑡ℎ, so that the less time

can get a bigger 𝐶𝑝𝑎𝑡ℎ value. Finally, we define the
shortest path as follows. If the hop counts of the paths are
all bigger than ℎ𝑜𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , we select the path with the
best path capacity as the shortest path. Else we select the
path with the shortest hop count as the shortest path. The
detailed process of constructing route table is shown in
Fig. 5.

 𝐶𝑝𝑎𝑡ℎ =
1

𝑖(𝑇𝑇𝐿)−𝑟(𝑇𝑇𝐿)

2

 (1)

When creating and updating a route, the time_out is

Algorithm 1: LRDP broadcast process on cluster

member Ni

Input:

one-hop neighbors of Ni: neigh_list

current broadcast packet: LRDP

output:

1. If LRDP.flag==0

2. If LRDP.path.contains(Ni)

3. drop LRDP;

4. Else

5. LRDP.hop_count++;

6. LRDP.path.add(Ni);

7. initialize bro_list to null;

8. For every node in neigh_list

9. If node.id != LRDP.source_id &&

! LRDP.path.contains(node)

10. add node into bro_list;

11. End for

12. broadcast LRDP to bro_list;

13. LRDP.flag=1;

14. unicast the LRDP to its source node along

the reverse path of LRDP.path;

15. End if

16. Else

17. go on unicasting LRDP to its source node

 along the reverse path of LRDP.path;

18. End if

Figure 4. LRDP broadcast process on cluster member

Algorithm 2: Construct route entry on source node S

Input:

route table of S: routeTable

current route reply packet: LRDP

the threshold of hop count: ℎ𝑜𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

output:

1. destination = the last node in LRDP.path;

2. compute path_capacity of LRDP.path ;

3. If routeTable has a route R to destination

4. If R.hop_count >ℎ𝑜𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 &&

LRDP.hop_count > ℎ𝑜𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

5. If path_capacity> R.path_capacity

6. reconstruct route R using LRDP;

7. Else if path_capacity== R.path_capacity

8. If LRDP.hop_count<R.hop_count

9. reconstruct route R using LRDP;

10. End if

11. End if

12. Else

13. If LRDP.hop_count<R.hop_count

14. reconstruct route R using LRDP;

15. Else if LRDP.hop_count==R.hop_count

16. if path_capacity> R.path_capacity

17. reconstruct route R using LRDP;

18. End if

19. End if

20. End if

21. Else

22. create a new route using LRDP;

23. add the route into routeTable;

24. End if

Figure 5. The process of constructing route table

2294 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

set to an appropriate time. And the route will be deleted
when the time is exhausted. Eventually, source node S
can get the routes to all cluster members. If there is a
message for a discovered cluster member, then node S
encodes the relevant route entry into the message and
forwards the message to the relevant next hop node along
the path stored in the route entry.

B. Routing Scheme based on Statistical Analysis

Most DTN nodes usually do not move around
completely randomly, and their mobility tends to be
regular in some ways. On the one hand, if two nodes
have encountered frequently in the past, it is likely that
they will meet again in the future. On the other hand,
DTN node may do periodic activity, and it may pass the
same place in the same time of different periods. An
example where may demonstrate such periodic mobility
is, for example, a social networks, where most people go
to work and come home in a regular time on every
workday and most students regularly move among
campus. So the history information can greatly help to
estimate whether a neighbor is a good next hop relay
node which can improve message delivery ratio. Based
on the observations, we can define the node activity cycle
according to specific application scenarios and divide the
activity cycle into different time units. For example, in
social networks, people's activity cycle is usually one day
and couple hours can be treated as a time unit. Then by
collecting the encounter count information between two
nodes in the time units of recent several cycles, we use
the methods of statistical analysis to compute several
statistics, which can be used to objectively evaluate every
encountered node.

For this purpose, a DTN node needs to maintain an N
× M dynamic matrix (2) to record the encounter history
information with other N nodes. M is equal to L×P,
where P represents the number of the cycles and every
cycle is divided into L different time units. The 𝐶𝑖(j, k)

records the encounter count between node i and node j in
the 𝑘𝑡ℎ time unit. Then for the last M time units, all
encounter history information are stored in the 𝐷𝑀𝑖 .

 𝐷𝑀𝑖 =

[

𝐶𝑖(1,1) ⋯ 𝐶𝑖(1, k)

⋮ ⋱ ⋮
𝐶𝑖(j, 1) ⋯ 𝐶𝑖(j, k)

⋯ 𝐶𝑖(1,M)
⋱ ⋮
⋯ 𝐶𝑖(j,M)

⋮ ⋱ ⋮
𝐶𝑖(N, 1) ⋯ 𝐶𝑖(N, k)

⋱ ⋮
⋯ 𝐶𝑖(N,M)]

 (2)

With the 𝐷𝑀𝑖 , we define the several statistics as the
follows.
(1) Average (AVG)

The 𝑃𝑖(𝑗, 𝑘) shown in (3) represents the probability
that 𝐶𝑖(𝑗, 𝑘) may occur, and in this case it is a fixed
value. Then the AVG is defined in (4).

 𝑃𝑖(𝑗, 𝑘) =
1

𝑀
 𝑘 = 1,2,3⋯𝑀 (3)

 AVG(i, j) = ∑ 𝐶𝑖(j, k) × 𝑃𝑖(𝑗, 𝑘)𝑀
𝑘=1 =

∑ 𝐶𝑖(j,k)𝑀
𝑘=1

𝑀
 (4)

The AVG is the average level of all samples which can
objectively reflect the central tendency. So AVG(𝑖, 𝑑)
can accurately describe the meeting frequency level

between node i and destination node d. In this case, a
neighbor with a bigger AVG than current node is
generally considered more likely to meet the destination
node again in the near time unit.
(2) Cycle average (CAVG)

In most DTN scenarios, for example, in the social
networks, it is possible that DTN nodes have different
mobility patterns in different time units of the same
activity cycle and have similar mobility patterns in the
same time unit of different activity cycles. So in order to
describe the similar mobility pattern in the same time
unit of different activity cycles, we define the cycle
average to compute the average encounter count between
two nodes in the same time unit of different activity
cycles. For node i and node j, equation (5) can compute
the summation of the encounter counts in every 𝑙𝑡ℎ time
unit of P different activity cycles. Then the CAVG is
defined in (6). A neighbor with a bigger CAVG than
current node is more likely to meet the destination node
again in the 𝑙𝑡ℎ time unit of the current cycle.

 𝑆𝑈𝑀𝑖,𝑗(𝑙) = ∑ 𝐶𝑖(𝑗, 𝑘)1≤ 𝑘≤ 𝑴
𝑘 𝑚𝑜𝑑 𝑳=𝑙

 𝑙 = 1,2,⋯𝑳 (5)

 CAVG(𝑖, 𝑗, 𝑙) =
𝑆𝑈𝑀𝑖,𝑗(𝑙)

𝑷
 (6)

(3) Mode (MODE)
The mode is the data which appears most frequently

among all samples, so it can reflect the most possible
level. In this case, we also use the mode as the metric to
evaluate encountered nodes. The 𝑀𝑂𝐷𝐸(𝑖, 𝑑) denotes
the mode of the all encounter counts between node i and
node d. A neighbor with a bigger MODE than current
node is more likely to meet the destination node again.
(4) Variance (VAR)

The VAR defined in (7) can comprehensively reflect
the degree of dispersion of all samples, which is often
used to describe the stability of data. A smaller VAR
indicates that the samples can more accurately reflect the
general level.

VAR(i, j) = ∑ (𝐶𝑖(j, k) − AVG(i, j))
2
× 𝑃𝑖(𝑗, 𝑘)

𝑀

𝑘=1

 =
∑ (𝐶𝑖(j,k)−AVG(i,j))2𝑀

𝑘=1

𝑀
 (7)

Finally with the above statistics, we can objectively
estimate whether a neighbor should be selected as the
next hop relay node. For the current node s, the neighbor
node j and the destination node d, we firstly take into
account AVG. By using (8), we can compute the utility
value 𝑈𝑎𝑣𝑔. When 𝑈𝑎𝑣𝑔(𝑠, 𝑗, 𝑑) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑣𝑔, which
indicates that the neighbor j has an obvious advantage on
AVG compared to the current node s, then the neighbor j
should be selected as the next hop relay node. Secondly,
we take into account CAVG and MODE. Assuming that
the current time unit is the 𝑙𝑡ℎ time unit, we use (9) to
compute another utility 𝑈2 . When 𝑈2(𝑗, 𝑑, 𝑙) >
𝑈2(𝑠, 𝑑, 𝑙), which indicates that node j is more likely to
meet the destination node d in the current time unit, so
the neighbor j should be selected as the next hop relay
node, too. The detailed algorithm is show in Fig. 6. In
addition, the communication time between two nodes is

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2295

© 2014 ACADEMY PUBLISHER

restricted due to node mobility, so it is very possible that
current node can’t copy all messages to all selected
neighbors. As a result, the delivery order of messages
may also affect the routing performance. So as shown in
lines 14-15 of algorithm 3, we give the tuple that has a
smaller VAR a higher priority and start transferring
tuples according to the priority.

 𝑈𝑎𝑣𝑔(𝑠, 𝑗, 𝑑) =
AVG(j,d)

AVG(s,d)
 (8)

 𝑈2(𝑖, 𝑑, 𝑙) = CAVG(𝑖, 𝑑, 𝑙) × 𝛽 + 𝑀𝑂𝐷𝐸(𝑖, 𝑑) × (1 − 𝛽) (9)

C. Buffer Management

In DTNs, due to the limited buffer resource, the
forwarding order of messages and the deletion strategy
may also affect the routing performance. So we also take
into account buffer management strategy. According to
the above different routing schemes, buffer is divided
into two parts as illustrated in Fig. 7.

The left part has a higher priority and messages are
first transmitted from here. The two types of messages:

the broadcast packets and the messages with temporary
routes to their destinations should be stored in the left
part buffer. In addition, these messages are sorted
according to the FIFO order.

The right part has a lower priority, and messages are
deleted first from here when buffer overflows. The
messages without route information to their destinations
are stored in the right part buffer, and messages are also
sorted according to the FIFO order.

D. SATC

Finally, combining with the above schemes, we finally
implement the Statistical Analysis and Temporary Cluster
based routing algorithm (SATC). The detailed algorithm
is shown in Fig. 8.

Lines 1-13 are the processing procedure of the
messages stored in the left part buffer. Lines 2-3 use
algorithm 1 to go on broadcasting a LRDP. In lines 5-7,
according to the relevant route entry stored in the
message, Ni goes on forwarding the message to the
relevant next hop node. In lines 9-10, when the relevant
next hop node is not within the scope of Ni’s one-hop
neighbors, which indicates that the current route is
broken due to node mobility, then Ni deletes the current
route entry from the message and moves the message to
the right part buffer. Lines 14-22 are the processing
procedure of messages stored in the right part buffer.
Lines 14-15 use algorithm 2 to reconstruct a new route
table. Lines 16-21 find the messages which can be
transferred to the destination nodes by using the current
route table. And then Ni encodes the relevant route entry
into the corresponding message and forwards the
message to the next hop node along the route. Finally,
line 22 uses algorithm 3 to select fewer but better
neighbors to spread the remaining messages.

IV. SIMULATION

In this section, we use the ONE simulator [34] to
implement our SATC algorithm. The ONE is an
Opportunistic Network Environment simulator which
provides a powerful tool for generating mobility traces,
running DTN messaging simulations with different
routing protocols, and visualizing both simulations
interactively in real-time and results after their
completion. At its core, ONE is an agent based discrete

Algorithm 3: Statistical analysis based routing on Ni

Input:

 the list of messages: msg_list

one-hop neighbors: neigh_list

the value of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑣𝑔 : 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑣𝑔

the current time unit of the current cycle: tu

output:

1. initialize tuple_list to null;

2. For each message in msg_list

3. destination=message.destination;

4. For each neighbor in neigh_list

5. If 𝑈𝑎𝑣𝑔(𝑁𝑖, 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛) >=

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑣𝑔

6. Add tuple<message,neighbor>

into tuple_list;

7. Else

8. If 𝑈2(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑡𝑢)>=

 𝑈2(𝑁𝑖, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, 𝑡𝑢)

9. Add tuple<message,neighbor> into

tuple_list;

10. End if

11. End if

12. End for

13. End for

14. Sort tuple_list in increasing order according to the

relevant VAR value of every tuple;

15. Try every tuple according to the order;

Figure 6. Statistical analysis based routing scheme

Figure 7. Buffer management

2296 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

event simulation engine, which is mainly made up of five
modules: movement models, event generators, routing,
visualization and results. A detailed description of the
modules and their interactions is shown in Fig.9. At each
simulation step the ONE engine updates a number of
modules that implement the main simulation functions.
The ONE platform has a good scalability and facilitates
the further development of the users.

In order to carry out simulations, we use 126 DTN

nodes in a Helsinki City Model based mobility scenario
which consists of 4500 × 3400 𝑚2 area. These nodes
are divided into 6 groups. Group 1 and Group 3 are
pedestrians groups and they consist of 40 nodes
separately. Group 2 is the car group which also consists
of 40 nodes. Group 4, Group 5 and Group 6 are tram
groups and they consist of two nodes separately.

Pedestrians move with speeds of 0.5–1.5 m/s, cars move
with speeds of 2.7 – 13.9 m/h, and trams move with
speeds of 7 – 10 m/h. Two types of devices are
introduced in the simulation: one is Bluetooth Device
with transmission speed of 250 kBps and transmission
range of 20m; other is High Speed Device with
transmission speed of 10 MBps and transmission range
of 1000m. Group 1, Group 2 and Group 3 have a 5MB
buffer respectively and they are all based on the Shortest
Path Map Based movement model. Group 4, Group 5 and
Group 6 have a 50MB buffer respectively and they are all
based on the Route Map Based movement model. Group
1,Group 2, Group 3, Group 5 and Group 6 use Bluetooth
Device, Group 4 uses both Bluetooth device and High
Speed Device. Besides, the other simulation settings of
126 nodes are shown in Table1. And the special
parameters of SATC are: time-to-live = 1000 msec (in
LRDP), time_out = 3000 msec (in route entry),
ℎ𝑜𝑝𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 2 (in algorithm 2), M = 24×7, P = 7, L =
24, 𝛽 = 0.5, 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑎𝑣𝑔 = 2.0 (in algorithm 3). In
the beginning of the simulations, we allow a warm up
period of 7 days to move nodes for the purpose of
collecting enough encounter history information.

Finally, extensive simulations have been conducted to

compare routing performance of SATC, Epidemic and
PRoPHET in terms of message delivery ratio, network
overhead ratio and average hop count. We mostly focus
on their different routing performance in different
message interval, message time-to-live and message size.

A. Vary Message Interval

Fig. 10 describes the different simulation results of
varying message interval. SATC can get the best routing
performance in terms of message delivery ratio, overhead
ratio and average hop count, which can validate that the

Algorithm 4: SATC routing scheme on node Ni

Input:

 messages in left part buffer: msg_left

 messages in right part buffer: msg_right

one-hop neighbors: neigh_list

output:

1. For message in msg_left

2. If message is a LRDP broadcast packet

3. execute Algorithm 1;

4. Else

5. Get the relevant next_hop_node of message

according to the relevant route entry stored

in the message;

6. If next_hop_node is in neigh_list

7. forward message to next_hop_node;

8. Else

9. delete the relevant route from message;

10. move message to msg_right;

11. End if

12. End if

13. End for

14. broadcast a new LRDP to neigh_list;

15. create temporary route table RT using Algorithm 2;

16. For message in msg_right

17. If RT has a route R to message.destination

18. encode R into message;

19. forward message to its next hop node;

20. End if

21. End for

22. execute algorithm 3 on the remaining messages of

msg_right;

Figure 8. The process of SATC on node Ni

TABLE I.
THE SAME SIMULATION SETTINGS OF 126 NODES

Parameter Default value

Initial topology

Message size

Message interval

Time-To-Live(TTL)

Simulation time

Uniform

500K

40s

4 hours

12 hours

Figure 9. Overview of the ONE simulator[34]

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2297

© 2014 ACADEMY PUBLISHER

routing strategy of SATC is more efficient and can
greatly improve the transmission performance of the
entire network.

Epidemic does not take any strategy to control
message redundancy, thus inevitably creating a large
number of redundant messages in whole network. When
buffer resource is insufficient, Epidemic will discard a lot
of messages, reducing the utilization efficiency of buffer
resource and greatly increasing the network overhead
ratio. As shown in Fig. 10, the routing performance of
Epidemic is the worst among the three routing schemes.
In addition, Epidemic does not estimate whether a
neighbor is a good relay node, but just flooding messages
to the entire network. So it can’t guarantee the accuracy

of routing strategy. As shown in Fig. 10(c), the average
hop count of Epidemic is the most, increasing the cost of
message transmission.

Different from Epidemic, PRoPHET uses the

encounter history information and transitivity to predict

the delivery possibility between two nodes and only
selects the neighbor with a bigger delivery possibility as
next hop relay node. So compared to Epidemic,
PRoPHET improves the message delivery ratio, lowers
overhead ratio and decreases the average hop count. But
when two nodes encounter, PEoPHET only subjectively
updates the delivery possibility according to some pre-set
parameters, which can’t accurately predict the actual
delivery possibility. So its routing performance is still
worse than SATC.

Our SATC not only uses the temporary cluster to
directly and quickly deliver message to the final
destination node, but also takes the methods of statistical
analysis to objectively and accurately estimate whether a
neighbor should be selected as next hop relay node. As a
result, SATC can greatly improve message delivery ratio
in the case of controlling message redundancy, lowering
the network overhead ratio and reducing the consumption
of resource. As shown in Fig. 10, SATC can get the best
routing performance. The message delivery ratio of
SATC is 40% and 20% more than Epidemic and
PRoPHET respectively, but the overhead ratio of SATC
is 75% and 65% less than Epidemic and PRoPHET
respectively. Besides, SATC can get the fewest average
hop count, which indicates that the routing strategy of
SATC is more efficient and more accurate, thus greatly
decreasing the cost of message transmission.

B. Vary Message’s time-to-live (TTL)

Fig. 11 shows the different simulation results of
varying message TTL. SATC can still outperform
Epidemic and PRoPHET in terms of message delivery
ratio, overhead ratio and average hop count. And
Epidemic is still unacceptable in this case.

When message’s TTL increases constantly, there will
be more messages in the entire network, thus greatly
affecting routing performance due to the limited buffer
resource. As shown in Fig.11, the message delivery ratios
of Epidemic and PRoPHET are both decreasing, and the
overhead ratios of Epidemic and PRoPHET keep
increasing. The key reason is that they can’t efficiently

control message redundancy, creating a large number of
redundant messages. So they can’t cope with the increase

of message’s TTL. On the contrary, by using the methods
of statistical analysis to select fewer but better neighbors
as next relay nodes, SATC can greatly control message
redundancy. As a result, the message delivery ratio of
SATC can be stabilized at a high level, but the overhead
ratio is still kept in a low level. At the same time, SATC
also gets the fewest average hop count, which indicates
that SATC can still keep the accuracy of routing strategy
in this case and can greatly reduce the cost of message
transmission.

Finally from the whole figure, we can see that SATC
can efficiently cope with the constant increase of
message TTL, thus providing better routing performance
compared to Epidemic and PRoPHET. In addition, the
overhead ratio of SATC is 70% and 60% less than
Epidemic and PRoPHET respectively.

Figure 10. The delivery ratio, overhead ratio,
average hop count VS message interval

(a) delivery ratio

(b) overhead ratio

(c) average hop count

2298 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

C. Vary Message Size

Fig. 12 compares the different simulation results of
varying message size. SATC can still get some
advantages in terms of message delivery ratio, overhead
ratio and average hop count. And in this case, Epidemic
is still unacceptable due to the lowest message delivery
ratio and the highest overhead ratio.

In Fig. 12 (a), the message delivery ratios of the three

routing schemes keep decreasing when message size
constantly increases. But SATC’s message delivery ratio

is always bigger than Epidemic and PRoPHET, which
indicates that the buffer utilization efficiency of SATC is
more efficient and SATC is able to cope with the increase
of message size. In Fig. 12 (b), the overhead ratio of
SATC is 75% and 60% less than Epidemic and
PRoPHET respectively. Besides, the average hop count
of SATC is also the fewest, which can prove once again
that the routing strategy of SATC is more efficient, thus
greatly decreasing the cost of message transmission.

Finally from the Fig. 12, we can draw a conclusion
that SATC can efficiently cope with the increase of
message size, providing better routing performance
compared to Epidemic and PRoPHET.

V. CONCLUSION AND FUTURE WORKS

In DTNs, due to node mobility, sparse node density,
etc, there may never be a complete path between the
sender and the receiver. But the case that some moving
nodes form a connected temporary cluster may often
occur. Relying on these clusters, a relay node may be
able to quickly and successfully deliver message to the
final destination node. Furthermore, by collecting a large
number of encounter history information as the samples,
we can use the methods of statistical analysis to
objectively and accurately estimate whether a neighbor
should be selected as next hop relay node, thus selecting
fewer but better relay nodes to spread messages.

Figure 11. The delivery ratio, overhead ratio,
average hop count VS message TTL

(b) overhead ratio

(a) delivery ratio

(c) average hop count

Figure 12. The delivery ratio, overhead ratio,
average hop count VS message size

(a) delivery ratio

(b) overhead ratio

(c) average hop count

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2299

© 2014 ACADEMY PUBLISHER

Extensive simulations have been conducted and the
simulation results shows that SATC can outperform
Epidemic and PRoPHET in terms of message delivery
ratio, overhead ratio and average hop count. SATC can
replace Epidemic and PRoPHET, thus providing better
routing performance.

Our future work will focus on the DTN routing
schemes in social networks. Social network is closely
related with public life, and the DTN network model is
increasingly used in civilian areas. In addition, we will
look for opportunities to deploy our routing scheme to
specific application scenarios.

ACKNOWLEDGEMENT

This research is supported in part by Foundation
research project of Qingdao Science and Technology
Plan under Grant No.12-1-4-2-(14)-jch and Natural
Science Foundation of Shandong Province under Grant
No.ZR2013FQ022.

REFERENCES

[1] Fall K, “A delay-tolerant network architecture for
challenged internets,” proceedings of the 2003 Conference

on Applications, Technologies, Architectures, and

Protocols for Computer Communications, Karlsruhe.
Germany: ACM, 2003:27-34.

[2] Fan XM, Shen ZG, Zhang BX, Chen H, “State-of-the-Art
of the architecture and techniques for delay-tolerant
network,” Acta Electronica Sinica, 2008,36(1):161-170.

[3] Fall K, Farrell S, “DTN: An architectural retrospective,”
IEEE Journal on Selected Areas in Communications,
2008,26(5):828-836.

[4] Burleigh S, Hooke A, Torgerson L, Fall K, Cerf V, Durst B,
et al, “Delay-Tolerant networking: An approach to
interplanetary Internet,” IEEE Communications Magazine,
2003,41(6):128-136.

[5] M. Chuah, L. Cheng, B. Davison, “Enhanced Disruption
and Fault Tolerant Network Architecture for Bundle
Delivery,” in proceedings of IEEE Globlecom, 2005.

[6] Cerf V, Burleigh S, Hooke A, et al, “Delay-Tolerant
Network Architecture,” IETF RFC4838. Informational,
2007.

[7] Juang P, Oki H, Wang Y, Martonosi M, Peh LS,
Rubenstein AD, “Energy-Efficient computing for wildlife
tracking: design tradeoffs and early experiences with
zebranet. ACM SIGOPS Operating Systems Review,
2002,36(5):96-107.

[8] Erramilli V, Chaintreau A, Crovella M, Christophe D,
“Diversity of forwarding paths in pocket switched
networks,” in proc of the 7th ACM SIGCOMM Conf. on

Internet Measurement (IMC), San Diego: ACM Press,
2007. 161-174.

[9] Alberto Cerpa, Jeremy Elson, Deborah Estrin, Lewis
Girod, Michael Hamilton, Jerry Zhao, “Habitat Monitoring:
Application Driver for Wireless Communications
Technology,” in the proceeding of ACM SIGCOMM

Workshop on Data Communications, Apr 2001.
[10] Z. Guo, B. Wang, J.-H. Cui, “Generic prediction assisted

single-copy routing in underwater delay tolerant sensor
networks,” Ad Hoc Networks, pp. 1–14, Jan. 2013.

[11] H. Wu, R. Fujimoto, R. Guensler, M. Hunter, “Mddv:

Mobilitycentric data dissemination algorithm for vehicular
networks,” in Proc. ACM SIGCOMM Workshop on

Vehicular Ad Hoc Networks (VANET),2004.

[12] P. R. Pereira, A. Casaca, J. J. P. C. Rodrigues, V. N. G. J.
Soares, J. Triay, C Cervello-Pastor, “From Delay-Tolerant
Networks to Vehicular Delay-Tolerant Networks,” IEEE

Commun. Surv. Tutorials, vol. 14, no. 4, pp. 1166–1182.
[13] V. N. G. J. Soares, J. J. P. C. Rodrigues, F. Farahmand,

“GeoSpray: A geographic routing protocol for vehicular
delay-tolerant networks,” INFORMATION FUSION, pp.
1–12, Nov. 2011.

[14] Z. Zhang, “Routing in intermittently connected mobile ad

hoc networks and delay tolerant networks: overview and
challenges,” IEEE Commun. Surv. Tutorials, vol. 8, no. 1,
pp. 24–37, 2006.

[15] Sharma G, Mazumdar R, Shroff B, “Delay and capacity
tradeoffs in mobile ad hoc networks: A global perspective,”
IEEE/ACM Trans on Networking, 2007,15(5):981-992.

[16] Zhao W, Chen Y, Ammar M, Corner M, Levine B, Zegura
E, “Capacity enhancement using Throwboxes in DTNs,”
In: Proc. of the IEEE Int’l Conf. on Mobile Ad Hoc and

Sensor Systems (MASS 2006), Vancouver: IEEE
Communications Society, 2006. 31-40.

[17] Banerjee N, “An energy-efficient architecture for DTN
Throwboxes,” In: Proc. of the Infocom 2007, Anchorage:
IEEE Communications Society, 2007. 776-784.

[18] W. Zhao, M. Ammar, E. Zegura, “A message ferrying
approach for data delivery in sparse mobile ad hoc
networks,” in MOBIHOC’ 04, pp 187-198, 2004.

[19] B. Tariq, M. Ammar, E. Zegura, “Message ferry route
design for sparse ad hoc networks with mobile nodes,” in

MOBIHOC’ 06 , pp 37-48, 2006.
[20] W. Zhao, M. Ammar, E. Zegura, “Controlling the mobility

of multiple data transports ferries in a delay-tolerant
network,” in INFOCOM’ 05, pp 1407-1418, 2005

[21] A. Vahdat and D. Becker, “Epidemic Routing for Partially

Connected ad hoc Networks. Duke University; Durham,
NC, USA: Apr,” 2000.

[22] T. Spyropoulos, K. Psounis, C. S. Raghavendra, “Spray

and wait: an efficient routing scheme for intermittently
connected mobile networks,” Proceedings of the 2005

ACM SIGCOMM workshop on Delay-tolerant networking,
pp. 252–259, 2005.

[23] T. Spyropoulos, K. Psounis, C. S. Raghavendra, “Spray

and focus: Efficient mobility-assisted routing for
heterogeneous and correlated mobility,” Pervasive

Computing and Communications Workshops, 2007.

PerCom Workshops' 07. Fifth Annual IEEE International

Conference on, pp. 79–85, 2007.
[24] Jain S, Fall K, Patra R, “Routing in a delay tolerant

network,” In: Yavatkar R, Zegura EW, Rexford J, eds. Proc.

of the 2004 ACM SIGCOMM, Portland: ACM Press, 2004.
145-158.

[25] Zhou XB, Lu HC, Li JS, Hong PL, “AED: Advanced
earliest-delivery algorithm used in DTN,” Journal of

Electronics & Information Technology, 2007,29(8):1956-
1960.

[26] Jones EPC, Li L, Schmidtke JK, Ward PAS, “Practical
routing in delay-tolerant networks,” IEEE Trans. on

Mobile Computing, 2007,6(8):943-959.
[27] Lindgren A, Doria A, Schelén O, “Probabilistic routing in

intermittently connected networks,” SIGMOBILE Mobile

Computing Communications Review, 2003, 7(3):19-20
[28] Y. Wang, S. Jain, M. Martonosi, K. Fall, “Erasur-coding

based routing for opportunistic networks,” in SIGCOMM’

05, pp 229-236, 2005.
[29] Liao Y, Tan K, Zhang ZS, Gao LX, “Estimation based

erasure-coding routing in delay tolerant networks,” In:

Proc. of the 2006 Int’l Wireless Communications and

Mobile Computing Conf. Vancouver: IEEE

2300 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

Communication Society, 2006. 557-562.
[30] Widmer J, Le Boudec JY, “Network coding for efficient

communication in extreme networks,” In: Guerin R,

Govindan R, Minshall G, eds. Proc. of the 2005 ACM

SIGCOMM, Philadelphia: ACM Press, 2005. 284-291.
[31] Yang SY, Jiang JT, Chen PZ, “OOPProPHET: A New

Routing Method to Integrate the Delivery Predictability of
ProPHET-Routing with OOP-Routing in Delay Tolerant
Networks,” Journal of Computers, vol.8, no.7, 2013.

[32] Zhenguo Yang, Liusheng Huang, Mingjun Xiao, Wang
Liu, “Flow-Based Transmission Scheduling in
Constrained Delay Tolerant Networks,” Journal of
Computers, vol.7, no.1, 2012.

[33] Fangbin Liu, Fengyu Liu, Hong Zhang, “An
Energy-efficient and Real-time Anonymous Routing
Protocol for Ad hoc Networks,” Journal of Computers,
vol.7, no.4, 2012.

[34] Ari Keranen, Jorg Ott, Teemu Karkkainen, “The ONE
simulator for DTN protocol evaluation, “Proceeding of the

Second International Conference on Simulation Tools and

Techniques, Rome, Italy: ACM, 2009: 1-10.

Jixing Xu was born in Yantai, China, 1989. Xu received the BS
degree in software engineering from Qingdao University in
2013 and is currently working toward the MS degree in
Information Engineering College of Qingdao University. Xu’s
research interests include delay tolerant networks, with an
emphasis on routing protocols, algorithms and social networks.

JianBo Li was born in Weifang city, Shandong Province, China
on Apr 6, 1980. Li received the B.Eng and M.A.Sc in
information engineering college from Qingdao University,
China, in 2002 and 2005 respectively. Li’s major study field

concentrated on wireless sensor networks.
Between July 2005 and Aug 2006, he worked as an assistant

teacher in Information engineering college of Qingdao
university. From September 2006 , he joined the School of
computer science & technology of University of Science and
Technology of China as a PHD candidate and received the PhD
degree in June 2009. Since July 2009, he has been worked at
the Information Engineering College, Qingdao University,
China, as an Associate Professor and Assistant Dean. He has a
paper published on Journal of Networks as follows: J. Li,
S.Jiang, “A scalable Clustering Algorithm in Dense Mobile

Sensor Networks,” Journal of Networks, vol.6(3), Academy

Publisher , pp 505-512, Mar 2011. His research interests
include routing protocol, data gathering, and topology control
in wireless sensor networks, ad hoc networks and delay tolerant
networks.

Dr Li now is a senior member of CCF (China Computer
Federation).

Lei You was born in Yantai, China, 1989. You received the BS
degree in software engineering from Qingdao University in
2012, and is currently working toward the MS degree in
information Engineering College of Qingdao University. You’s

research interests include delay tolerant networks, with an
emphasis on routing protocols, algorithms and social networks.

Chenqu Dai was born in Qingdao, China, 1987. Dai received
the BS degree in computer science and technology from
Qingdao University in 2011, and is currently working toward
the MS degree in information Engineering College of Qingdao
University. Dai’s research interests include delay tolerant

networks, with an emphasis on routing protocols, algorithms
and social networks.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2301

© 2014 ACADEMY PUBLISHER

