

A Nonlinear Dynamic Model for Software Aging
in Service-Oriented Software

Yun-Fei Jia, Hui Xu, Ren-Biao Wu

Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin, China
Email: yunfeijia1979@gmail.com, HuiXu@163.com，rbWu@cauc.edu.cn

Abstract—Software aging results from runtime environment
degradation, and is significantly correlated with available
computing resources. A set of variables evolving with time
can describe the running state of computer system.
Consequently, software aging is analogous to evolution of a
dynamic system in this paper. We construct a nonlinear
dynamic model based on the experimental observations.
First, we assume the mathematical form of nonlinear
dynamic equations. Then, we select resource parameters
which can reflect the “health” of the whole computer system
as variables of our model. Finally, we estimate the values of
each parameters in our model using nonlinear inversion.
Our approach is validated by two different datasets. The
dynamic model can describe the evolution of software aging
and interpret the interplay of various resource parameters.
Moreover, this model can be used to forecast abrupt state
degradation and help us to explore the root cause of
software aging. For example, by comparing the output of
our model against real values, with a suspected “aging
factor” as input, we can identify which resource variable is
the root cause of injuring the stability of computer system.

Index Terms—Software aging; software maintenance;
dynamic system

I. INTRODUCTION

Software aging results from runtime environment
degradation. [1] analyzes the time delay and available
resources of computer system. For example, the process
space or kernel space accumulate many error conditions
after longtime execution, such as memory leak, round-off
error, and out-of-order concurrent processes/threads [2].
These error conditions propagate and accumulate with
time. Eventually, they will result in performance
degradation even downtime. It should be noted that the
code of software dose not degrade. The root origin of
runtime error conditions is defects included in software.
Usually, we cannot guarantee the large-scale and/or
complex service-oriented software system dose not
contain any defects. [3] states that diagnosing program
error is a time-consuming hard work. Inherently, software
aging refers to loss of available computing resources.

So far, less than ten publications discussing
experimental studies on software aging can be found on
major software and reliability journals [4-6]. This is
contrast with the growing awareness and widely accepted
importance of experiment-based studies [7]. The main
advantage of experimental studies is that theories of

concern can be validated or invalidated by hard evidence
with respect to practical software processes. [5] analyzes
two important resource variables representing system
activity, i.e., memory and swap space, using trend
estimation method. Their finding lies in that software
aging is usually accompanied with resource exhaustion.
Consequentially, they propose a metric “time to
exhaustion”. Nevertheless, there are several lacks in their
study. First, too less resource variables are addressed.
There are additional resource variables contribute to
software aging, such as CPU usage, cache or buffer.
Second, the interplay among these resource variables is
not interpreted. For example, when memory is used up,
the swapping rate will greatly increase. Consequently,
swapping rate increase will consume much CPU time.
Finally, software aging usually show nonlinear
characteristics, as is overlooked in their study. To sum up,
a challenge is to construct such a comprehensive model
that it can describe the interplay among various resource
variables, and forecast the paroxysmal state degradation
of software system. This paper is aimed to meet this
challenge.

Taking into account the fact that software state can be
described by a set of evolving resource variables, we can
analog the software system as a dynamic system. The
advantage of this idea lies in that we can exploit the rich
achievements in dynamic system in physics. The
variables refer to resource variables with regard to
software system. Likewise, for dynamic system such as
thermodynamic system, the variables refer to temperature,
pressure, volume, etc. In addition, nonlinear phenomenon
researches in physics are usually based on established
dynamic equation set. As for software system, the
dynamic equation set cannot be known because it is a
new object and not researched adequately. Inspired by
nonlinear dynamic inversion method [8], we construct a
dynamic model based on massive observations from
software experiments. Our dynamic model can describe
the evolution of software aging and can forecast specific
resource variables. In addition, it can help us to
understand the origin of software aging

The rest of this paper is organized as follows. Related
studies are provided in Section 2. Section 3 introduces
our method. The experimental set-up and observations
are described in Section 4. Section 5 applies our model to
forecasting paroxysmal state change and exploring the
cause of software aging. Section 6 concludes this paper.

2260 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2260-2266

II. RELATED STUDIES

Model-based studies are the majority of software aging
research. In [9], Huang et al. proposed a three-state
stochastic model, including a robust state, a failure-prone
state and a failure state. This model is solved to validate
the effectiveness of software rejuvenation and determine
the optimal schedules. This model was extended and
studied in detail by many researchers to answer similar
question [10,11].

Unlike model-based studies, measurement-based
studies focus on practical software system, in which the
data of interest are generated, collected, analyzed with the
purpose of forecasting resource exhaustion time. The
rationale behind measurement-based studies lies in that
aging phenomenon is significantly related to resource
usage of computer system [4-6]. Shereshevsky et al. [12]
monitors the Hölder exponent (a measure of the local rate
of fractality) of the system parameters and find that
system crashes are often preceded by the second abrupt
increase in this measure. In [5], a reward function is
defined based on the rate of resource consumption to
estimate time to exhaustion for each resource. Further, a
metric “estimated time to exhaustion” is proposed to
predict the approximate time of system resource depletion.
A comprehensive evaluation function is proposed in [4]
to measure the mean aging speed of the Apache server.
[13] extracts two primary components from seven
important resource variables via Principal Component
Analysis (PCA) method.

To sum up, there is a large gap between model-based
researches and measurement-based researches. This paper
will bridge the gap by constructing a dynamic model
based on experimental observations.

III. INTRODUCTION OF DYNAMIC INVERSION

A. Dynamic System
Roughly speaking, a dynamic system is a mathematical

formalization for a set of interplayed objects (real or
virtual objects), which are changing following a fixed
“rule”. Characteristics of dynamic system can be
described by a set of state variables that measure
concerned properties of these objects. Usually, dynamic
system can be described by differential equation, integral
equation or difference equation. For example, in a
thermaldynamic system, thermaldynamic equations are
used to formulate the rule of changing properties of the
objects in the system. To take an example of gas,
temperature, pressure and density of the gas are often
used as state variables. Likewise, the evolving process of
software system can be treated as a dynamic system. In
this dynamic system, we are interested in the performance
of Apache. Hence, we can use the parameters related with
the performance of the server as state variables. In
addition, we adopt different state variables for experiment
I and experiment II as cross-validation of our conclusion,
because the experimental configuration and subject
software in both experiments are different, and key
parameters of concern are different consequently.

B. Nonlinear Dynamic Inversion
The main rationale behind nonlinear dynamic

inversion method is to determine the equations of the
dynamic system using a set of input data. Nonlinear
dynamic inversion has been employed in physics research
extensively [8]. A common form of dynamic equations is
as follows:

 ௗ௫ೕௗ௧ ൌ ௝݂ሺݔଵ, ⋯,ଶݔ , ݆		௡ሻݔ ൌ 1,2,⋯ , ݊ (1)

Where ݔଵ, ⋯,ଶݔ , .௡, are state variables of the systemݔ
Given the formulation of ௝݂ሺݔଵ, ⋯,ଶݔ , ௡ሻ and the valueݔ
of ݔ௝ሺݐ௜ሻሺ݅ ൌ 1,2,⋯ , ,ݍ ݆ ൌ 1,2,⋯ , ݊ሻ, we can estimate
the values of various parameters in equation (1). Most
nonlinear characteristics can be described by polynomials.
Thus, we employ polynomials in our method. The
discrete form of equation (1) can be written as: ௗ௫ೕௗ௧ ൌ ∑ ܳ௞ܾ௞௄௞ୀଵ 								݆ ൌ 1,2,⋯ , ݊ (2)

In which, bk denotes the coefficients of polynomials
function Qk; Qk is a term of the polynomials. In our case,
the discrete form of equation (2) is employed, which is
shown in equation (3).

D ൌ ሺ݀ଵ, ݀ଶ,⋯ , ݀ேିଶሻ் ൌ
ێێۏ
ێێێ
ۍێ ሻݐ∆௝ሺ3ݔ െ ሻݐ∆௝ሺ4ݔݐ∆ሻ2ݐ∆௝ሺݔ െ ሻݐ∆௝ሺܰݔ⋮ݐ∆ሻ2ݐ∆௝ሺ2ݔ െ ௝൫ሺܰݔ െ 2ሻ∆ݐ൯2∆ݐ ۑۑے

ۑۑۑ
ېۑ

ൌ ∑ ܳ௞ܾ௞௄௞ୀଵ (3)

In this paper, we need to improve the calculation
accuracy of the D in equation (3). We exploit a type of
non-parametric algorithm developed by Sen to estimate
the slope of variables [14].This method is not affected by
outliers, and it is robust to missing data. This approach
focuses on all pairs of data points ݕ௞, k	௟withݕ ൏ ݈ . For
each of these pairs, the slope ݍ௞௟ ൌ ሺݕ௟ െ ௞ሻ/ሺ݈ݕ െ ݇ሻ is
calculated. Sen’s slope estimate is defined as the median
of the nᇱ ൌ nሺn െ 1ሻ/2 slopes obtained.

Substitute equation (3) into the right items of equation
(2), then substitute ݔ௝ሺݐ௜ሻ, the obtained Q is shown as
follows:

 Q ൌ ൦ ܳଵଵ				 ܳଵଶܳଶଵ				 ܳଶଶ ⋯ ܳଵே⋯ ܳଶே	⋯ ⋯	ܳேିଶ,ଵ ܳேିଶ,ଶ 					⋯ ⋯⋯ ܳேିଶ,ே൪ (4)

Let b ൌ ሼܾଵ, ܾଶ,⋯ , ܾ௞ሽ் , then equation (1) can be
written as:

 D ൌ Qb (5)

Equation (5) is overdetermined equations with regard
to vector b. This can be solved by generalized linear
inversion method, as is omitted in this paper.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2261

© 2014 ACADEMY PUBLISHER

IV.EXPERIMENTS

A. Experimental Setup
The experimental setup consists of a server running

Apache httpd 2.0 and three clients connected via an
Ethernet local area network. Apache is deployed on a
computer (CPU: Pentium III 776 Mhz, RAM: 256
Megabytes, NIC 100 Mbps, OS: Fedora Core 6). Three
other computers with the same hardware configuration
are used as clients to generate artificial concurrent
requests to access static web pages on the Apache server.
They are all connected via a switch. Figure 1 shows the
schematic diagram of our experimental set-up.

Figure 1. Experimental setup

In this paper, we focus on the software aging
phenomenon of Apache httpd 2.0. The early version of
this software system was also used in the studies on
software aging by other researchers [4]. However, the
contemporary Apache httpd 2.0 provides many new
features, and its aging phenomenon should be reviewed.
Since Apache has been well tested in practice, it is
difficult for us to observe its aging symptoms in a short
period under a normal runtime environment and the
default parameter settings. It is necessary to find some
way to expedite the aging of Apache. In the experiments,
we adjust two parameters that are related to the
accumulation of the effects of software errors:
MaxRequestPerChild and MaxSpareServers. The first
parameter limits the number of requests handled by each
child process of Apache. For example, when it is set to 10,
a child process of Apache will be killed after it has
handled 10 requests. After the old child process is killed,
a new one will be created to replace the old one to handle
subsequent requests. This periodical cleaning mechanism
reduces the accumulation of runtime memory leak. In our
experiments, this parameter is set to zero which means
runtime errors will accumulate all through each
experiment. The second parameter, MaxSpareServers,
sets the maximum number of idle child processes. When
the number of requests is low, some of existing child
processes may be at idle state. If there are more than
MaxSpareServers idle processes, Apache will kill
excess ones. By setting it to zero, we can turn off this
mechanism so that no child processes will be killed
during runtime.

Apart from above set-up, we use the method in [4] to
determine the capacity of the server. We set
MaxRequestsPerChild and MaxClients to 0 and 250
respectively, to maximize the capacity of the server. The
number of requests coming from the three clients is
gradually increased. The reply rate, error rate and
response time with respect to different connection rates
are recorded. Result shows that the capacity of the web

server is about 390 requests per second. This parameter is
used by httperf [15], a web server test tool, deployed on
the three clients, to generate artificial connection requests
for static html pages with exponential time intervals to
the web server.

We implemented a program named DataCol to
monitor the resource usage of the operating system. It can
online collect the metrics that are related with the
performance of the server, such as available memory, size
of caches, and CPU usage, etc.

Figure 2. Real value and output of our model of cache

Figure 3. Real value and output of our model of available CPU

Figure 4. Real value and output of our model of buffer

B. Observations of Experiment I
Experiment I lasts for more than 400 hours. Three

resource variables change obviously with time. They are
cache, available CPU and buffer, as are shown by solid
line in Figure 2, Figure 3 and Figure 4 respectively.

From Figure 2 we can see that, cache usage decreases
with time. Rather, cache usage is approximately
proportional to system performance. This is to say, higher
cache usage will provide better system performance.
Thus, cache usage decrease may be a cause of software
aging. From Figure 3 we can see idle CPU decreases with
time, showing that the system is more and more busier

0 50 100 150 200 250 300 350 400 450
1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

time (hours)

ca
ch

e(
M

By
te

)

fitted values
observations

0 50 100 150 200 250 300 350 400 450
19

20

21

22

23

24

25

26

27

28

29

time (hours)

id
le

C
PU

(%
)

fitted values
observations

0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

time (hours)

bu
ff

er
(M

By
te

)

fitted values
observations

2262 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

with time. In Figure 4, buffer usage increases greatly with
time, this may be attributed too much data are blocked in
buffer.

Previous studies often focus on trend or characteristics
analysis of various resource variables independently, as is
contrary to practice. In next section, we will employ
dynamic model to describe the entire software system,
with purpose of describing the state degradation of the
whole software system.

C. Nonlinear Dynamic Model
We adopt three variables in equation (2), and let X, Y

and Z denote cache, buffer and available CPU
respectively. In equation (2), the number of the highest
order of Q, denoted by m, can be an arbitrary integer. The
higher m is, the more accurate the model is. However, too
large m will cause over-fitting problem that prejudices the
generalization of the model. In our case, we got the best
trade-off when m is set to 2. Then, equation (2) can be
written as follows: ݀ܺ݀ݐ ൌ ܽଵܺ ൅ ܽଶܻ ൅ ܽଷܼ ൅ ܽସܺଶ ൅ ܽହܻଶ ൅ ܽ଺ܼଶ ൅ܽ଻ܻܺ ൅ ଼ܼܽܺ ൅ ܽଽܻܼ ൅ ܽଵ଴ ܻ݀݀ݐ ൌ ܾଵܺ ൅ ܾଶܻ ൅ ܾଷܼ ൅ ܾସܺଶ ൅ ܾହܻଶ ൅ ܾ଺ܼଶ ൅ܾ଻ܻܺ ൅ ଼ܾܼܺ ൅ ܾଽܻܼ ൅ ܾଵ଴ ܼ݀݀ݐ ൌ ܿଵܺ ൅ ܿଶܻ ൅ ܿଷܼ ൅ ܿସܺଶ ൅ ܿହܻଶ ൅ ܿ଺ܼଶ ൅ܿ଻ܻܺ ൅ ଼ܼܿܺ ൅ ܿଽܻܼ ൅ ܿଵ଴ (5)

In which, ܽଵ, ܽଶ,⋯ , ܽଵ଴, ܾଵ, ܾଶ,⋯ , ܾଵ଴, ܿଵ, ܿଶ,⋯ , ܿଵ଴,
are parameters to be determined. Following the method in
section III, we get the dynamic model and compare the
output of our model against real values, which are shown
by dotted line in Figure 2, Figure 3 and Figure 4.

From Figure 2, Figure 3 and Figure 4 we can see that
the output of our dynamic model can fit the real values
with high accuracy. In addition, the output of our
dynamic model has filtered the vibrations of real vale,
which enable us to study the nature of software aging.

D. Experiment II
To validate the effectiveness of our dynamic model,

we apply our modeling method to the data set in [4]. The
data collection process in [4] can be described as follows:
The SNMP (Simple Network Management Protocol)-
based distributed resource monitoring tool developed by
Garg et al. was used for data collection. The resource
monitoring tool was used to collect operating system
computing-resource usage data (physical/virtual memory
usage, file/process table usage, etc.) and system activity
data (paging activity, CPU utilization, etc.) from nine het
erogeneous UNIX-like workstations. These workstations
were connected by an Ethernet LAN at the Duke
Department of Electrical and Computer Engineering.
These workstations provide various services, and inputs
from clients are unknown. The objects or parameters
collected on the workstations include those that describe
the state of the operating system resources, state of the
processes running, information on the /tmp file system,
availability and usage of network related resources, and

information on terminal and disk I/O activity. More than
100 such parameters were collected at regular intervals
(10 mins) for more than three months. In this paper, we
focus on the data collected from the workstation named
Rossby as cross-validation.

There are several reasons to select the data in [4] as
cross-validation: 1) The data set is collected at software
system runtime rather than controlled experiment, so the
conclusion is more helpful for software process. 2) The
experiment II lasts for more than 1000 hours; 3) The
subject software, Operating system and hardware
configuration are quite different from experiment I.

 In experiment II, we find the available CPU does not
increase obviously, whereas storage-related variables,
such as memory usage, net service memory, or swap
usage, show obvious growing trend. Accordingly, we
include these resource variables in our model. In order to
obtain better fitting accuracy, we scale the three variables
in the range [0-100]. The comparison of output of model
against real value is provided in Figure 5, Figure 6 and
Figure 7.

Figure 5. buffer usage

Figure 6. swap usage

Figure7. net service memory usage

0 200 400 600 800 1000
25

30

35

40

45

50

55

60

65

time(ten min slot)

bu
ff

er
(M

by
te

)

fitted values
observations

0 200 400 600 800 1000
3

3.5

4

4.5

5

5.5

6

6.5

time(hours)

us
ed

Sw
ap

Sp
ac

e(
M

by
te

)

fitted values
observations

0 200 400 600 800 1000
30

35

40

45

50

55

60

65

time(hours)

M
em

or
yU

sa
ge

(M
by

te
)

fitted values
observation

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2263

© 2014 ACADEMY PUBLISHER

We can see from Figure 5 to Figure7 that, our model
fits the observations with high accuracy. Particularly, the
spike shown in all three resource variables can be tracked
by our model. To sum up, our model can be generalized
to describe the behavior of more software systems.

V APPLICATION

A. Forecasting Software State Jump
In some scenarios, the usage of some resources must

be limited under a threshold. For example, if the CPU
usage of a web service system is over 40% long time, the
system will crash with high probability. However, at the
runtime of software system, its state often jumps
paroxysmally, rather than degrades smoothly as we
imagine. A question naturally arise is that how to forecast
the paroxysmal jump of certain resource variable. In this
subsection, we use the data set in experiment I to
illustrate the effectiveness of our method.

First, we need to construct the dynamic model with
some samples from the observations in experiment I.
There are 5259 observations in experiment I. This dataset
is equally partitioned into two subsets, the first subset is
used for constructing our dynamic model, and the latter
subset is used for testing our approach. The forecasting
results are listed in Figure 8, Figure 9 and Figure 10.

Figure 8 Available CPU

Figure 9 buffer usage

Figure 10. cache usage

From Figure 8, Figure 9 and Figure 10 we can see that

the output of dynamic model can track the real value with
high accuracy. Particularly, the state jump can be tracked.

B. Analysis of Possible Causes of Software Aging
When the computing resources are nearly exhausted,

variation of a resource variable will cause other resource
variables to change consequently. We have observed that
three important resource variables change obviously. A
following question is how to identify which resource
variable is the root cause of injuring the stability of
resource distribution of computer system. We will
simulate the dynamics of the software system in
experiment I. We assume the root cause of software
aging is buffer increase, idleCPU decrease and cache
decrease respective in our three times of simulation, and
test whether the output of our model can fit the
observations.

More specifically, we input the real value of one
parameter and the initial value of other two parameters
into the model, and calculate the value of the other two
parameters with time. For example, we take the real value
of buffer and the initial values of idleCPU and cache as
input parameters. Then we calculate the idleCPU and
cache of our dynamic model at next interval by
recurrence, with real value of buffer as the input value.
The result is illustrated in Figure 11 and Figure 12. In
addition, we also take cache or idleCPU as input
parameters respectively and calculate the other two
parameters. The results are not listed because the output
of dynamic model cannot fit the observations.

Figure 11. Forecasting available CPU

300 400 500 600 700 800 900
19

19.5

20

20.5

21

21.5

22

22.5

time (hours)

id
le

C
PU

(%
)

predicted values
observations

300 400 500 600 700 800 900
2.8

2.9

3

3.1

3.2

3.3

3.4

3.5

3.6

3.7

time (hours)

bu
ff

er
(M

By
te

)

predicted values
observations

300 400 500 600 700 800 900
1.97

1.98

1.99

2

2.01

2.02

2.03

2.04

2.05

2.06

2.07

time (hours)

ca
ch

e(
M

By
te

)

predicted values
observations

0 50 100 150 200 250 300 350 400 450
19

20

21

22

23

24

25

26

27

28

29

time (hours)

id
le

C
PU

(%
)

predicted values
observations

2264 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

Figure 12. Forecasting of cache usage

From Figure 11 and Figure 12, we can see that our

assumption that, buffer usage increase incurs change of
other parameters, will output similar dynamics as
experimental observations. Obviously, we can see there is
a large error in Figure 12. There are several reasons: 1)
Our model employs only three variables, so the
relationship between the three variables is not accurately
described; 2) We assume that buffer usage increase is the
only cause of the other two variables, many secondary
factors are not included in our model; 3) More higher
order of polynomials will bring higher accuracy, whereas
we just employ quadratic polynomials.

Despite of the large errors shown in Figure 11 and
Figure 12, we think our model is effective, because our
object in the simulation is to explore which resource
variable is the root cause of software aging, instead of
accurately forecasting the value of cache or available
CPU. Our analysis can help us to understand the behavior
of software system when it gradually ages.

VI CONCLUSION

In this paper, we report the software aging phenomena
observed in two service-oriented software systems, which
are described in experiment I and experiment II. Both
experiments show nonlinear aging signs. Further, the
resource variables of software system in experiment I are
mutually interplayed during their evolving process, and
shows state jump. This observation is validated by
experiment II. For the first time, software aging is
analogous as state evolution of a dynamic system.
Consequently, we formulate the experimental
observations in a nonlinear dynamic model via method of
dynamic inversion. Using the dynamic model, we can
explore the causes of software aging, i.e., which resource
variable is the root origin of software aging, and forecast
the paroxysmal state change of software system. This
dynamic model can help us understand software aging
phenomenon and dynamic behavior of software system at
runtime. In addition, this dynamic model can forecast the
nonlinear state jump of software system. Finally, our
method can be easily generalized to other software
systems.

ACKNOWLEDGEMENT

The authors would like to thank Professor Kishor S.
Trivedi, the Hudson Chair in the Department of Electrical
and Computer Engineering at Duke University, and
Michael Grottke for providing the datasets that are
analyzed in this paper. This work is supported by the The
National Key Technology R&D Program (Grant No.
2011BAH24B12) and the Fundamental Research Funds
for the Central Universities (Grant No. 3122013P006).

REFERENCES
[1] Liang F., Ma S., Luckow A. and Schnor B.“Advance

Reservation-based Computational Resource Brokering
using Earliest Start Time Estimation,” Journal of
Computers, 2012 V7(6):1329-1336

[2] http://www.software-rejuvenation.com
[3] Pu F., “Assumption-based Reasoning with Constraints for

Diagnosing Program Errors,” Journal of Computers,2014
V9(1):1-11

[4] M. Grottke, L. Li, K. Vaidyanathan, and K. S. Trivedi,
“Analysis of Software Aging in a Web Server,” IEEE
Transaction on Reliability, 55(3):411-420, September 2006.

[5] A. Vaidyanathan, and K.S. Trivedi, “A Comprehensive
Model for Software Rejuvenation,” IEEE Transaction on
Dependable and Secure Computing, 2005, V2: 124-137

[6] R. Matias, P.A. Barbetta, K.S. Trivedi, and P.J.F.
Filho, ”Accelerated Degradation Tests Applied to Software
Aging Experiments,” IEEE Transaction on Reliability,
59(1):102-114, December 2009

[7] Cai K.Y. “Software Reliability Experimentation and
Control,” Journal of Computer Science and Technology,
2006, V21(5): 697-707

[8] Sara D.C., Caroline F.J., Sophie P. and Raul M., “Dynamic
inversion of the 2000 Tottori earthquake based on elliptical
subfault approximations,” Journal of Geophysical
Research: Solid Earth, 115(B12)(1978-2012), December,
2010

[9] Huang Y., Kintala C., Kolettis N., et al., “Software
Rejuvenation: Analysis, Module and Applications,”
Proceedings of the 25th IEEE International Symposium on
Fault-Tolerant Computing, pp.381-390,1995

[10] Zhao J., Wang Y.B., Ning G.R., Trivedi K.S., Matias R. Jr.,
Cai K.Y., “A comprehensive approach to optimal software
rejuvenation,” Performance Evaluation, 2013

[11] Liang Y.W., Yang H., Fu J., Tan C.Y., Liu A.L., Zhu S.W.,
“The Effect of Real-valued Negative Selection Algorithm
on Web Server Aging Detection,” Journal of Sofware,
pp.849-855,2012

[12] Shereshevsky M., Crowell J., Cukic B., et al., “Software
Aging and Multifractality of Memory Resources,”
Proceedings of the 2003 International Conference on
Dependable Systems and Networks, pp:721-730, 2003

[13] Jia Y.F., Chen X.E., Zhao L. et. al., “On the Relationship
between Software Aging and Related Parameters,”
Proceedings of the 8th International Conference on
Quality Software, pp.: 241- 246, 2008

[14] Sen P.K., “Estimates of the Regression Coefficient Based
on Kendall’s Tau,” Journal of the American Statistical
Association, 63:1379–1389, 1968.

[15] Mosberger D. and Jin T., “Httperf - A Tool for Measuring
Web Server Performance”, In First Workshop on Internet
Server Performance, Madison, Jun. 1998.

0 50 100 150 200 250 300 350 400 450
1.95

2

2.05

2.1

2.15

2.2

2.25

2.3

2.35

2.4

2.45

time (hours)

ca
ch

e(
M

By
te

)

predicated values
observations

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2265

© 2014 ACADEMY PUBLISHER

Yun-Fei Jia is currently a lecturer in the School of Electronical
& Information Engineering at Civil Aviation University of
China. He received a B.E.(2001) and a M.S. (2004) degrees
from HeBei University of Technology, and completed a PhD in
software testing at BeiHang University in 2010. His research
interests include software testing and software measurement.

Hui Xu is a Master student in School of Electronic Information
Engineering at Civil Aviation University of China.He gained
the B.E. Degree from Civil Aviation University of China in
2011.

Ren-Biao Wu was born in Wuhan, China, in 1966. Currently,
he is a professor at Civil Aviation University of China. His
interests are signal processing and image processing.

2266 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

