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Abstract—Software aging results from runtime environment 
degradation, and is significantly correlated with available 
computing resources. A set of variables evolving with time 
can describe the running state of computer system. 
Consequently, software aging is analogous to evolution of a 
dynamic system in this paper. We construct a nonlinear 
dynamic model based on the experimental observations. 
First, we assume the mathematical form of nonlinear 
dynamic equations. Then, we select resource parameters 
which can reflect the “health” of the whole computer system 
as variables of our model. Finally, we estimate the values of 
each parameters in our model using nonlinear inversion. 
Our approach is validated by two different datasets. The 
dynamic model can describe the evolution of software aging 
and interpret the interplay of various resource parameters.  
Moreover, this model can be used to forecast abrupt state 
degradation and help us to explore the root cause of 
software aging. For example, by comparing the output of 
our model against real values, with a suspected “aging 
factor” as input, we can identify which resource variable is 
the root cause of injuring the stability of computer system. 
 
Index Terms—Software aging; software maintenance; 
dynamic system 
 

I.  INTRODUCTION 

Software aging results from runtime environment 
degradation. [1] analyzes the time delay and available 
resources of computer system. For example, the process 
space or kernel space accumulate many error conditions 
after longtime execution, such as memory leak, round-off 
error, and out-of-order concurrent processes/threads [2]. 
These error conditions propagate and accumulate with 
time. Eventually, they will result in performance 
degradation even downtime. It should be noted that the 
code of software dose not degrade. The root origin of 
runtime error conditions is defects included in software. 
Usually, we cannot guarantee the large-scale and/or 
complex service-oriented software system dose not 
contain any defects. [3] states that diagnosing program 
error is a time-consuming hard work. Inherently, software 
aging refers to loss of available computing resources. 

So far, less than ten publications discussing 
experimental studies on software aging can be found on 
major software and reliability journals [4-6]. This is 
contrast with the growing awareness and widely accepted 
importance of experiment-based studies [7]. The main 
advantage of experimental studies is that theories of 

concern can be validated or invalidated by hard evidence 
with respect to practical software processes. [5] analyzes 
two important resource variables representing system 
activity, i.e., memory and swap space, using trend 
estimation method. Their finding lies in that software 
aging is usually accompanied with resource exhaustion. 
Consequentially, they propose a metric “time to 
exhaustion”. Nevertheless, there are several lacks in their 
study. First, too less resource variables are addressed. 
There are additional resource variables contribute to 
software aging, such as CPU usage, cache or buffer. 
Second, the interplay among these resource variables is 
not interpreted. For example, when memory is used up, 
the swapping rate will greatly increase. Consequently, 
swapping rate increase will consume much CPU time. 
Finally, software aging usually show nonlinear 
characteristics, as is overlooked in their study. To sum up, 
a challenge is to construct such a comprehensive model 
that it can describe the interplay among various resource 
variables, and forecast the paroxysmal state degradation 
of software system. This paper is aimed to meet this 
challenge. 

Taking into account the fact that software state can be 
described by a set of evolving resource variables, we can 
analog the software system as a dynamic system. The 
advantage of this idea lies in that we can exploit the rich 
achievements in dynamic system in physics. The 
variables refer to resource variables with regard to 
software system. Likewise, for dynamic system such as 
thermodynamic system, the variables refer to temperature, 
pressure, volume, etc. In addition, nonlinear phenomenon 
researches in physics are usually based on established 
dynamic equation set. As for software system, the 
dynamic equation set cannot be known because it is a 
new object and not researched adequately. Inspired by 
nonlinear dynamic inversion method [8], we construct a 
dynamic model based on massive observations from 
software experiments. Our dynamic model can describe 
the evolution of software aging and can forecast specific 
resource variables. In addition, it can help us to 
understand the origin of software aging 

The rest of this paper is organized as follows. Related 
studies are provided in Section 2. Section 3 introduces 
our method. The experimental set-up and observations 
are described in Section 4. Section 5 applies our model to 
forecasting paroxysmal state change and exploring the 
cause of software aging. Section 6 concludes this paper. 
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II. RELATED STUDIES 

Model-based studies are the majority of software aging 
research. In [9], Huang et al. proposed a three-state 
stochastic model, including a robust state, a failure-prone 
state and a failure state. This model is solved to validate 
the effectiveness of software rejuvenation and determine 
the optimal schedules. This model was extended and 
studied in detail by many researchers to answer similar 
question [10,11].   

Unlike model-based studies, measurement-based 
studies focus on practical software system, in which the 
data of interest are generated, collected, analyzed with the 
purpose of forecasting resource exhaustion time. The 
rationale behind measurement-based studies lies in that 
aging phenomenon is significantly related to resource 
usage of computer system [4-6]. Shereshevsky et al. [12] 
monitors the Hölder exponent (a measure of the local rate 
of fractality) of the system parameters and find that 
system crashes are often preceded by the second abrupt 
increase in this measure.  In [5], a reward function is 
defined based on the rate of resource consumption to 
estimate time to exhaustion for each resource. Further, a 
metric “estimated time to exhaustion” is proposed to 
predict the approximate time of system resource depletion. 
A comprehensive evaluation function is proposed in [4] 
to measure the mean aging speed of the Apache server. 
[13] extracts two primary components from seven 
important resource variables via Principal Component 
Analysis (PCA) method.  

To sum up, there is a large gap between model-based 
researches and measurement-based researches. This paper 
will bridge the gap by constructing a dynamic model 
based on experimental observations.  

III. INTRODUCTION OF DYNAMIC INVERSION 

A. Dynamic System  
Roughly speaking, a dynamic system is a mathematical 

formalization for a set of interplayed objects (real or 
virtual objects), which are changing following a fixed 
“rule”. Characteristics of dynamic system can be 
described by a set of state variables that measure 
concerned properties of these objects. Usually, dynamic 
system can be described by differential equation, integral 
equation or difference equation. For example, in a 
thermaldynamic system, thermaldynamic equations are 
used to formulate the rule of changing properties of the 
objects in the system. To take an example of gas, 
temperature, pressure and density of the gas are often 
used as state variables. Likewise, the evolving process of 
software system can be treated as a dynamic system. In 
this dynamic system, we are interested in the performance 
of Apache. Hence, we can use the parameters related with 
the performance of the server as state variables. In 
addition, we adopt different state variables for experiment 
I and experiment II as cross-validation of our conclusion, 
because the experimental configuration and subject 
software in both experiments are different, and key 
parameters of concern are different consequently. 

B. Nonlinear Dynamic Inversion 
The main rationale behind nonlinear dynamic 

inversion method is to determine the equations of the 
dynamic system using a set of input data. Nonlinear 
dynamic inversion has been employed in physics research 
extensively [8]. A common form of dynamic equations is 
as follows: 

        ௗ௫ೕௗ௧ ൌ ௝݂ሺݔଵ, ⋯,ଶݔ , ݆		௡ሻݔ ൌ 1,2,⋯ , ݊          (1) 

Where ݔଵ, ⋯,ଶݔ ,  .௡, are state variables of the systemݔ
Given the formulation of ௝݂ሺݔଵ, ⋯,ଶݔ ,  ௡ሻ and the valueݔ
of ݔ௝ሺݐ௜ሻሺ݅ ൌ 1,2,⋯ , ,ݍ ݆ ൌ 1,2,⋯ , ݊ሻ, we can estimate 
the values of various parameters in equation (1). Most 
nonlinear characteristics can be described by polynomials. 
Thus, we employ polynomials in our method. The 
discrete form of equation (1) can be written as: ௗ௫ೕௗ௧ ൌ ∑ ܳ௞ܾ௞௄௞ୀଵ 								݆ ൌ 1,2,⋯ , ݊            (2) 

In which, bk denotes the coefficients of polynomials 
function Qk; Qk is a term of the polynomials. In our case, 
the discrete form of equation (2) is employed, which is 
shown in equation (3). 

 

D ൌ ሺ݀ଵ, ݀ଶ,⋯ , ݀ேିଶሻ் ൌ
ێێۏ
ێێێ
ۍێ ሻݐ∆௝ሺ3ݔ െ ሻݐ∆௝ሺ4ݔݐ∆ሻ2ݐ∆௝ሺݔ െ ሻݐ∆௝ሺܰݔ⋮ݐ∆ሻ2ݐ∆௝ሺ2ݔ െ ௝൫ሺܰݔ െ 2ሻ∆ݐ൯2∆ݐ ۑۑے

ۑۑۑ
ېۑ
 

ൌ ∑ ܳ௞ܾ௞௄௞ୀଵ                            (3) 

In this paper, we need to improve the calculation 
accuracy of the D in equation (3). We exploit a type of 
non-parametric algorithm developed by Sen to estimate 
the slope of variables [14].This method is not affected by 
outliers, and it is robust to missing data. This approach 
focuses on all pairs of data points ݕ௞, k	௟withݕ ൏ ݈ . For 
each of these pairs, the slope ݍ௞௟ ൌ ሺݕ௟ െ ௞ሻ/ሺ݈ݕ െ ݇ሻ is 
calculated. Sen’s slope estimate is defined as the median 
of the nᇱ ൌ nሺn െ 1ሻ/2 slopes obtained. 

Substitute equation (3) into the right items of equation 
(2), then substitute ݔ௝ሺݐ௜ሻ, the obtained Q is shown as 
follows: 

  Q ൌ ൦ ܳଵଵ				 ܳଵଶܳଶଵ				 ܳଶଶ ⋯ ܳଵே⋯ ܳଶே	⋯ ⋯	ܳேିଶ,ଵ ܳேିଶ,ଶ 					⋯ ⋯⋯ ܳேିଶ,ே൪              (4) 

Let b ൌ ሼܾଵ, ܾଶ,⋯ , ܾ௞ሽ் , then equation (1) can be 
written as: 

                      D ൌ Qb                                   (5) 

Equation (5) is overdetermined equations with regard 
to vector b. This can be solved by generalized linear 
inversion method, as is omitted in this paper. 
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IV.EXPERIMENTS 

A. Experimental Setup 
The experimental setup consists of a server running 

Apache httpd 2.0 and three clients connected via an 
Ethernet local area network. Apache is deployed on a 
computer (CPU: Pentium III 776 Mhz, RAM: 256 
Megabytes, NIC 100 Mbps, OS: Fedora Core 6).  Three 
other computers with the same hardware configuration 
are used as clients to generate artificial concurrent 
requests to access static web pages on the Apache server. 
They are all connected via a switch. Figure 1 shows the 
schematic diagram of our experimental set-up. 

Figure 1. Experimental setup 

In this paper, we focus on the software aging 
phenomenon of Apache httpd 2.0. The early version of 
this software system was also used in the studies on 
software aging by other researchers [4]. However, the 
contemporary Apache httpd 2.0 provides many new 
features, and its aging phenomenon should be reviewed. 
Since Apache has been well tested in practice, it is 
difficult for us to observe its aging symptoms in a short 
period under a normal runtime environment and the 
default parameter settings. It is necessary to find some 
way to expedite the aging of Apache. In the experiments, 
we adjust two parameters that are related to the 
accumulation of the effects of software errors: 
MaxRequestPerChild and MaxSpareServers. The first 
parameter limits the number of requests handled by each 
child process of Apache. For example, when it is set to 10, 
a child process of Apache will be killed after it has 
handled 10 requests. After the old child process is killed, 
a new one will be created to replace the old one to handle 
subsequent requests. This periodical cleaning mechanism 
reduces the accumulation of runtime memory leak. In our 
experiments, this parameter is set to zero which means 
runtime errors will accumulate all through each 
experiment. The second parameter, MaxSpareServers, 
sets the maximum number of idle child processes. When 
the number of requests is low, some of existing child 
processes may be at idle state. If there are more than 
MaxSpareServers idle processes, Apache will kill 
excess ones. By setting it to zero, we can turn off this 
mechanism so that no child processes will be killed 
during runtime.  

Apart from above set-up, we use the method in [4] to 
determine the capacity of the server. We set 
MaxRequestsPerChild and MaxClients to 0 and 250 
respectively, to maximize the capacity of the server. The 
number of requests coming from the three clients is 
gradually increased. The reply rate, error rate and 
response time with respect to different connection rates 
are recorded.  Result shows that the capacity of the web 

server is about 390 requests per second. This parameter is 
used by httperf [15], a web server test tool, deployed on 
the three clients, to generate artificial connection requests 
for static html pages with exponential time intervals to 
the web server. 

We implemented a program named DataCol to 
monitor the resource usage of the operating system. It can 
online collect the metrics that are related with the 
performance of the server, such as available memory, size 
of caches, and CPU usage, etc. 

 
Figure 2. Real value and output of our model of cache 

 
Figure 3. Real value and output of our model of available CPU 

 
Figure 4. Real value and output of our model of buffer 

B. Observations of Experiment I 
Experiment I lasts for more than 400 hours. Three 

resource variables change obviously with time. They are 
cache, available CPU and buffer, as are shown by solid 
line in Figure 2, Figure 3 and Figure 4 respectively.  

From Figure 2 we can see that, cache usage decreases 
with time. Rather, cache usage is approximately 
proportional to system performance. This is to say, higher 
cache usage will provide better system performance. 
Thus, cache usage decrease may be a cause of software 
aging. From Figure 3 we can see idle CPU decreases with 
time, showing that the system is more and more busier 
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with time. In Figure 4, buffer usage increases greatly with 
time, this may be attributed too much data are blocked in 
buffer.  

Previous studies often focus on trend or characteristics 
analysis of various resource variables independently, as is 
contrary to practice. In next section, we will employ 
dynamic model to describe the entire software system, 
with purpose of describing the state degradation of the 
whole software system. 

C. Nonlinear Dynamic Model 
We adopt three variables in equation (2), and let X, Y 

and Z denote cache, buffer and available CPU 
respectively. In equation (2), the number of the highest 
order of Q, denoted by m, can be an arbitrary integer. The 
higher m is, the more accurate the model is. However, too 
large m will cause over-fitting problem that prejudices the 
generalization of the model. In our case, we got the best 
trade-off when m is set to 2. Then, equation (2) can be 
written as follows: ݀ܺ݀ݐ ൌ ܽଵܺ ൅ ܽଶܻ ൅ ܽଷܼ ൅ ܽସܺଶ ൅ ܽହܻଶ ൅ ܽ଺ܼଶ ൅ܽ଻ܻܺ ൅ ଼ܼܽܺ ൅ ܽଽܻܼ ൅ ܽଵ଴ ܻ݀݀ݐ ൌ ܾଵܺ ൅ ܾଶܻ ൅ ܾଷܼ ൅ ܾସܺଶ ൅ ܾହܻଶ ൅ ܾ଺ܼଶ ൅ܾ଻ܻܺ ൅ ଼ܾܼܺ ൅ ܾଽܻܼ ൅ ܾଵ଴ ܼ݀݀ݐ ൌ ܿଵܺ ൅ ܿଶܻ ൅ ܿଷܼ ൅ ܿସܺଶ ൅ ܿହܻଶ ൅ ܿ଺ܼଶ ൅ܿ଻ܻܺ ൅ ଼ܼܿܺ ൅ ܿଽܻܼ ൅ ܿଵ଴               (5) 

In which, ܽଵ, ܽଶ,⋯ , ܽଵ଴,  ܾଵ, ܾଶ,⋯ , ܾଵ଴,  ܿଵ, ܿଶ,⋯ , ܿଵ଴, 
are parameters to be determined. Following the method in 
section III, we get the dynamic model and compare the 
output of our model against real values, which are shown 
by dotted line in Figure 2, Figure 3 and Figure 4. 

From Figure 2, Figure 3 and Figure 4 we can see that 
the output of our dynamic model can fit the real values 
with high accuracy. In addition, the output of our 
dynamic model has filtered the vibrations of real vale, 
which enable us to study the nature of software aging. 

D. Experiment II 
To validate the effectiveness of our dynamic model, 

we apply our modeling method to the data set in [4]. The 
data collection process in [4] can be described as follows: 
The SNMP (Simple Network Management Protocol)-
based distributed resource monitoring tool developed by 
Garg et al. was used for data collection. The resource 
monitoring tool was used to collect operating system 
computing-resource usage data (physical/virtual memory 
usage, file/process table usage, etc.) and system activity 
data (paging activity, CPU utilization, etc.) from nine het 
erogeneous UNIX-like workstations. These workstations 
were connected by an Ethernet LAN at the Duke 
Department of Electrical and Computer Engineering. 
These workstations provide various services, and inputs 
from clients are unknown. The objects or parameters 
collected on the workstations include those that describe 
the state of the operating system resources, state of the 
processes running, information on the /tmp file system, 
availability and usage of network related resources, and 

information on terminal and disk I/O activity. More than 
100 such parameters were collected at regular intervals 
(10 mins) for more than three months.  In this paper, we 
focus on the data collected from the workstation named 
Rossby as cross-validation.  

There are several reasons to select the data in [4] as 
cross-validation: 1) The data set is collected at software 
system runtime rather than controlled experiment, so the 
conclusion is more helpful for software process. 2) The 
experiment II lasts for more than 1000 hours; 3) The 
subject software, Operating system and hardware 
configuration are quite different from experiment I.  

 In experiment II, we find the available CPU does not 
increase obviously, whereas storage-related variables, 
such as memory usage, net service memory, or swap 
usage, show obvious growing trend. Accordingly, we 
include these resource variables in our model. In order to 
obtain better fitting accuracy, we scale the three variables 
in the range [0-100]. The comparison of output of model 
against real value is provided in Figure 5, Figure 6 and 
Figure 7. 

 
Figure 5. buffer usage 

 
Figure 6. swap usage 

 
Figure7. net service memory usage 
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We can see from Figure 5 to Figure7 that, our model 
fits the observations with high accuracy. Particularly, the 
spike shown in all three resource variables can be tracked 
by our model. To sum up, our model can be generalized 
to describe the behavior of more software systems. 

V APPLICATION 

A. Forecasting Software State Jump 
In some scenarios, the usage of some resources must 

be limited under a threshold. For example, if the CPU 
usage of a web service system is over 40% long time, the 
system will crash with high probability. However, at the 
runtime of software system, its state often jumps 
paroxysmally, rather than degrades smoothly as we 
imagine. A question naturally arise is that how to forecast 
the paroxysmal jump of certain resource variable. In this 
subsection, we use the data set in experiment I to 
illustrate the effectiveness of our method. 

First, we need to construct the dynamic model with 
some samples from the observations in experiment I. 
There are 5259 observations in experiment I. This dataset 
is equally partitioned into two subsets, the first subset is 
used for constructing our dynamic model, and the latter 
subset is used for testing our approach. The forecasting 
results are listed in Figure 8, Figure 9 and Figure 10. 

 

 
Figure 8 Available CPU 

 

 
Figure 9 buffer usage 

 
Figure 10. cache usage 

 
From Figure 8, Figure 9 and Figure 10 we can see that 

the output of dynamic model can track the real value with 
high accuracy. Particularly, the state jump can be tracked. 

B. Analysis of Possible Causes of Software Aging 
When the computing resources are nearly exhausted, 

variation of a resource variable will cause other resource 
variables to change consequently. We have observed that 
three important resource variables change obviously. A 
following question is how to identify which resource 
variable is the root cause of injuring the stability of 
resource distribution of computer system. We will 
simulate the dynamics of the software system in 
experiment I.  We assume the root cause of software 
aging is buffer increase, idleCPU decrease and cache 
decrease respective in our three times of simulation, and 
test whether the output of our model can fit the 
observations. 

More specifically, we input the real value of one 
parameter and the initial value of other two parameters 
into the model, and calculate the value of the other two 
parameters with time. For example, we take the real value 
of buffer and the initial values of idleCPU and cache as 
input parameters. Then we calculate the idleCPU and 
cache of our dynamic model at next interval by 
recurrence, with real value of buffer as the input value. 
The result is illustrated in Figure 11 and Figure 12.  In 
addition, we also take cache or idleCPU as input 
parameters respectively and calculate the other two 
parameters. The results are not listed because the output 
of dynamic model cannot fit the observations. 

 

 
Figure 11. Forecasting available CPU 
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Figure 12. Forecasting of cache usage 

 
From Figure 11 and Figure 12, we can see that our 

assumption that, buffer usage increase incurs change of 
other parameters, will output similar dynamics as 
experimental observations. Obviously, we can see there is 
a large error in Figure 12. There are several reasons: 1) 
Our model employs only three variables, so the 
relationship between the three variables is not accurately 
described; 2) We assume that buffer usage increase is the 
only cause of the other two variables, many secondary 
factors are not included in our model; 3) More higher 
order of  polynomials will bring higher accuracy, whereas 
we just employ quadratic polynomials. 

Despite of the large errors shown in Figure 11 and 
Figure 12, we think our model is effective, because our 
object in the simulation is to explore which resource 
variable is the root cause of software aging, instead of 
accurately forecasting the value of cache or available 
CPU. Our analysis can help us to understand the behavior 
of software system when it gradually ages. 

VI CONCLUSION 

In this paper, we report the software aging phenomena 
observed in two service-oriented software systems, which 
are described in experiment I and experiment II. Both 
experiments show nonlinear aging signs. Further, the 
resource variables of software system in experiment I are 
mutually interplayed during their evolving process, and 
shows state jump. This observation is validated by 
experiment II. For the first time, software aging is 
analogous as state evolution of a dynamic system. 
Consequently, we formulate the experimental 
observations in a nonlinear dynamic model via method of 
dynamic inversion. Using the dynamic model, we can 
explore the causes of software aging, i.e., which resource 
variable is the root origin of software aging, and forecast 
the paroxysmal state change of software system. This 
dynamic model can help us understand software aging 
phenomenon and dynamic behavior of software system at 
runtime. In addition, this dynamic model can forecast the 
nonlinear state jump of software system. Finally, our 
method can be easily generalized to other software 
systems.  
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