
Analysis and Design of Cloud Publishing
Platform and Its Social Network

Xiuhong Chen, Rong Peng, Han Lai, Keqing He

State Key Lab. of Software Engineering, School of Computer, Wuhan University, Wuhan, China
E-mail: {chenxiuhong, rongpeng, laihan, hekeqing}@whu.edu.cn

Abstract—SaaS (Software as a Service) has been attracted
significant attentions from both industry and academia.
Owing to serving multiple clients in the Long Tail, many
notable SaaS applications have accomplished big successes
in many traditional domains, such as CRM (Customer
Relationship Management) and HRM (Human Resource
Management).

To promote the effect and efficiency of the traditional
publishing industry, a solution of CPP (Cloud Publishing
Platform) based on SaaS is proposed. Compared to the
traditional e-publishing systems used by the publishers, it
has the following distinguished features: 1) it is developed
and operated by independent SaaS provider who not only
provides valuable publishing services to enterprise tenants,
such as periodical presses, but also provides significant
services to individual tenants, such as scholars and
researchers; 2) any individual tenant is not just a dedicator
to a specific publisher, but a dedicator to all enterprise
tenants, and his academic reputation can be accumulated by
all the activities carried out in the platform; 3) a publishing
cycle will be established based on CPP and benefit all the
stakeholders.

At the end, five key points of developing and operating a
successful SaaS application are concluded, which can be
used as a guideline to general SaaS application development.

Index Terms—SaaS; multi-tenancy; manuscript submission
and review; sustainable ecological environment

I. INTRODUCTION

Recently, SaaS (Software as a Service) has been
attracted significant attentions from both industry and
academia [1]. With PaaS and IaaS, SaaS becomes one of
the most distinguished representative of Cloud Computing
Model which is designed to overcome the limitations and
inefficiency of traditional software solutions.

From Wikipedia, SaaS is a computing paradigm which
can provides software as a service continually through
networks on an on-demand basis, by which the tenants are
exempt from the exorbitant expense of software upgrade,
functionality extensions, software and hardware
management, and its operation and maintenance, et al [2].
Therefore, it has been successfully adopted in various
fields, such as client relationship management, storage
management and public administration [3-7]. Many newly
emergent SaaS providers gained significant successes,
such as SalesForce.com [8], Workday [9] and RightNow
Technologies [10], and many traditional IT industry giants,
such as IBM, Oracle and SAP, have purchased leading
SaaS companies to gain market positions [11].

In traditional publishing industry, many puzzles hinder
its development. For example, famous periodical presses
are flooded with manuscripts and it’s difficult for them to
find enough qualified reviewers to response quickly; while
the newly emerged or unknown periodical presses distress
with lack of qualified manuscripts [12]. As to authors,
they always contribute their manuscripts to seldom
familiar journals and suffer from their late responses, and
it is also difficult for them to identify the reputation of
newly emergent journals. As to reviewers, the peer review
process is energy consuming but anonymous, which
means they must pay a lot but gain little, so the
enthusiasm of reviews is relatively low. Obviously, the
above problems are beyond the capability of any
independent online manuscript submission and peer-
review system [13-15]. Establishing a well-formed
publishing ecological environment with affordable cost
maybe a feasible way [16]. In this paper, how to establish
a Cloud Publishing Platform (CPP) based on SaaS is
elaborated. Based on the CPP, publishers registered as
enterprise tenants can maximize the benefits by not only
various publishing services and brand promotion services,
but also the large amount of crowds including readers,
authors and reviewers; individuals registered as individual
tenants can gain benefits from not only the services rented
by the registered publishers and the services provided by
the platform, but also the social society established in CPP.
Owing to SaaS rental mechanism, the operation cost is
rather low. Therefore, within the CPP, all the stakeholders
can achieve the win-win.

The rest of this paper is organized as follows: Section II
introduces the related work. Section III analyzes the
similarities and differences between traditional mode and
SaaS mode, and elaborates the rationality of establishing
CPP based on SaaS. Section IV describes the platform
envisioning, and the focus lies on elaborating the
information and events flows in the publishing cycle
based on CPP. Section V analyzes the requirements of
CPP which put emphases on how to embody SaaS
features. Section VI elaborates the platform design from
the perspectives of architecture design, database design
and service design. Section VII concludes the analysis and
design experiences which can be generalized to guide the
development of SaaS applications.

II. RELATED WORK

There are many existing electronic publishing systems,
such as Elsevier Editorial System, ACS Paragon Plus

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2251

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.9.2251-2259

Environment, and Open Journal Systems based on ASP
(Application Service Provider) mode [17-19]. The ASP
mode uses a single commitment model by allocating a
specific service instance for each clients. Thus, if the
clients increase, the corresponding service instances
increase proportionally. Therefore, it is difficult for ASP
providers to maintain and upgrade the lending system
collectively, as every instance has its specific
customization. At the same time, there is no aggregation
effect regardless how many clients it has served.

To promote the effects and efficiencies of the periodical
presses, Tananbaum and Holmes [13] focused on the
evolution of Web-based peer-review systems; [20]
designed an e-Journal Management System; Zhong [21]
discussed the feasibility of making use of cloud
computing in periodical presses, and presented an
operational model.

In this paper, we focused on how to plan, analyze and
design a SaaS based CPP to establish a virtuous
publishing cycle for publishing industry.

III. SAAS MODEL

Owning and maintaining software remotely and
providing customizable services to multiple customers are
typical SaaS operating mode. The advantages include [22]:

• Software is provided on an on-demand basis and
the one-to-many service model based on common
codes and data definition reduces the cost of
update and maintenance.

• Real-time access and update services are provided
through the network.

• The billing system is based on usage or measures
and clients do not need to pay for the software
development, update and management.

Because of these advantages, SaaS has been adopted as
successful solutions in many fields, such as CRM [8] and
HRM [9].

TABLE I.
COMPARISON BETWEEN TRADITIONAL MODE AND SAAS MODE

Mode Traditional
mode SaaS mode

Development cycle • Long • Short
Maintenance • Difficult • Convenient and flexible
Scalability • Weak • Strong
TCO • High • Low
Accumulation
effect • No • Yes

Risks • High • Low
From the viewpoints of consumers, SaaS mode has

many advantages compared with traditional mode (as
shown in Table I):

1) The traditional software development cycle is
longer than SaaS mode. In traditional mode, building a
system on demand is time-consuming as the developing
process always complies with one of the traditional
models, such as waterfall model, adaptive software
development and scrum. But in SaaS mode, SaaS
application must provide customizable, composable and
scalable components to tenants to construct their
applications rapidly. Thus, from the viewpoints of clients,

the time spent to built their on-demand application is
rather short and it is just the time for customization.

 2) To traditional software, the maintenance is always
driven by customer. Thus, the tradeoff between the
responsibilities and benefits always makes the
maintenance difficult to fulfill. But the maintenance
decisions of SaaS applications are made by their owners:
SaaS providers. SaaS providers always utilize one
instance to serve multiple tenants, which make the
maintenance convenient and flexible.

 3) The scalability of traditional software is weak, for
it is designed according to the initial requirements
specification. Once it have been delivered, any additional
features will cost large amount of money. But in SaaS
mode, scalability is the basic feature, as SaaS provider
must support the fluctuation of the workload in the long
term.

4) The Total Cost of Ownership (TCO) in traditional
mode is higher than SaaS mode. In traditional mode, the
client should pay for the development, infrastructure and
maintenance; while in SaaS mode, the TCO of tenants are
only rental fee measured by usage.

5) The application developed in traditional mode is
designed for a single client. Its development, operation
and maintenance are all irrelevant with other similar
clients. In SaaS mode, the target clients of SaaS
application are clients with similar requirements. This
kind of similarity makes the accumulation effect possible
by accumulating similar clients and similar end users.

6) The risks in traditional mode are rather higher than
in SaaS mode. In traditional mode, the success of the
project relies on not only the talent and ability of the
development team, but also the maintenance team. Its
expenditure is also high. In SaaS mode, most SaaS
applications provide free trial before the tenant makes any
decision. If you are not satisfied with the services, you can
abandon it without a penny lost.

ASP is another typical development mode which has
many similarities with SaaS, such as:

• Both of them provide software services through
the Internet;

• Customers only need to pay for what they actually
use; and

• Service providers are responsible for software
management, upgrade and maintenance.

But there are still many differences between them, as
Table II shows.

As to operation, compared with ASP who provides a
unique instance to each client, SaaS only provides a single
version to all tenants via Internet. Thus, it is easy for SaaS
to maintain and upgrade in a stable way.

As to scalability, the most common solution of ASP is
scale up or scale down, namely increase or decrease the
resources to meet the demands of clients. But the
scalability solution of SaaS can be either scale up/down or
scale in/out which use the specific design of database to
satisfy the demands on scalability.

As to cost, the tenants of SaaS only need to pay for the
usage of selected services [23, 24]. But in ASP mode, the
ustomer needs to pay for the levy license fee,
customization fee and usage fee.

2252 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

Last but not least, the ASP platform can’t provide any
aggregation effects regardless how many clients the ASP
provider served, for it deploys a unique instance for each
customer. But in SaaS mode, all tenants share the same
platform, which is convenient for SaaS provider to
develop value-added service to promote the aggregation
effects.

TABLE II.
COMPARISON BETWEEN ASP MODE AND SAAS MODE

Although there are several issues needed to be
considered in SaaS mode, such as security and data
integrity, SaaS has still shown its great potential as a best
solution in terms of operational effectiveness, economy
efficiency and customer satisfaction. Therefore, we are
concentrating on design a CPP based on SaaS.

IV. PLATFORM ENVISIONING

The enthusiasm of CPP provider is not enough to well
serve the overall publishing industry and their customers
due to the lack of enough energy and resources.
Establishing a well-organized publishing economical
environment based on CPP is the most important.
Therefore, the platform envisioning should be the first
step of the whole development process.

Figure 1. Publishing Cycle in CPP

The envisioned Publishing Cycle in CPP, as shown in
Figure 1, is the first important guarantee for the success of
CPP. According to the publishing cycle, the CPP provider
must establish and make full use of the following four
social networks for four kinds of users:

For publishing enterprises, except providing
customizable rental publishing services to publishing
industry, especially those publishing organization in the

Long Tail, CPP provider will advocate the establishment
of a healthy publishing community. It can establish an
online enterprise forum which supports the publishers to
communicate the insights of publishing industry and
present their feedbacks to the CPP provider. It can also
use its portal to call for the annual on-site conference to
enhance the communication among publishers and
encourage the publishers to organize seminars,
symposiums and conferences by themselves. By these
online and offline activities, the publishers can share their
experiences and lessons on using the platform and
developing their business, which will help the platform to
evolve and improve the quality of the publications.

For end users, except providing valuable individual
services to authors, reviewers and readers, CPP provider
will establish an online discussion forum to support the
individuals to communicate any specific topics related
with the published contents and present their feedbacks to
the CPP provider. CPP will use its portal and other forms,
such as “Meetup” [25], to organize offline communication
among the individuals. The face-to-face communication
will help the individuals share their viewpoints and make
friends, which will enhance the attractiveness of the
platform.

To create a publishing environment with diversity, the
participation of large third party developers is vital too.

For developers, CPP will open its API and establish a
Developer Forum. With the open API, the developers can
develop various add-ons to enhance the system and
associate it with true life. The developers can use various
developer forums to discuss and communicate their
experiences and puzzles. And it can also be used as a
communication channel between CPP engineers and
developers. By monitoring and analyzing the forums, CPP
engineers will learn the developers’ demands and
concerns, and sometimes they may even discover the
vulnerabilities of the platform.

Encountering difficulties is inevitably as the knowledge
of any team is limit. Finding the right person and asking
for help may be the most economical and convenient
method to overcome difficulties. Thus, establishing and
maintaining a technical elite community is vital.

For technical elites, CPP can use the existing forums,
such as GitHub [26] and Hacker News [27], to establish a
collaboration network with the experts from Open Source
Community to share and discuss various issues
encountered together. At the same time, CPP can release
Technical Blogs to share the solution they found and ask
for improvement.

In summary, using CPP, on-line forums, on-site
conferences and offsite activities, it can encourage
publishers and end users to create diverse contents, share
their experiences and accumulate their reputations. The
huge user group will ignite the passion of developers.
Developers then create various valuable Add-ons to enrich
the CPP and support the users to create better contents.
The challenges aroused by the platform, such as huge
increase of access and storage, can be addressed by a
technical elite community. Therefore, by establishing the

Mode ASP mode SaaS mode
Operation Allocate a dedicated

instance for each user,
and each user will
have its own
application

All tenants share a unique
instance in most cases, and
each tenant will have its
own metadata

Scalability Scale up/down Scale up/down and Scale
in/out

Cost Levy license fee and
customization fee as
the initial expense;
Pay by use

No license fee and
customization fee needed;
Pay by use

Aggregation
Effect

No Yes

Developer
Forum

Forum &
Conference

Forum &
Meetup

Technical
Blog

API Publishing Developer
Community

End User
Community

Publishing
Community

CPP

Technical Elite
Community SourceForge

& GitHub

Contents
Creating

Add-ons
Creating

Performance
Improving

Activity
Suported by

Platform

Value
Creation by

Communities

Publishing
Cycle

Rental
Publishing
Services

Rental
Individual
Services

Community
Suported by

Platform

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2253

© 2014 ACADEMY PUBLISHER

cycle, the publishing environment established on CPP will
be well organized.

V. PLATFORM REQUIREMENTS

According to the platform envisioning, the strategic
goal of CPP is to build a sustainable ecological
environment for stakeholders. The detailed requirements
analysis process of Online Submission and Peer Review
Service Package (OSPRSP), consisted of online
submission and peer review service and its auxiliary
services, are selected to illustrate the requirements
analysis process of CPP.

The objective of OSPRSP is to achieve a win-win
among the main four roles in publishing process:
periodical presses, readers, authors and reviewers. Since
the OSPRSP is a SaaS based service package, its
requirements should be elicited not only from system level
and tenant level, but also from SaaS level.

A. System Level Requirements
In CPP, there are two major tenants, enterprise tenants

and individual tenants. Enterprise tenants, such as
periodical presses, rent the OSPRSP to carry out their
business and promote their reputations. Individual tenants,
such as scholars and students, can use the OSPRSP to
manage their academic activities, such as manuscript
submission, review and periodical retrieval. Thus, the
platform should provide valuable functions for them to
fulfill their tasks. The platform level requirements are
described hierarchically according to the demands of the
roles.

The roles include System Administrator and Tenant.
The role Tenant is refined as Enterprise Tenant and
Individual Tenant.

System Administrator is responsible to satisfy the
demands from tenants, manage and maintain the platform.
His main requirements include:

1) Support an on-line Service Level Agreement(SLA)
negotiation mechanisam to negociate SLA with tenants’
representatives;

2) Provide a friendly dashboard to monitor the status
of the platform and tenant applications;

3) Support system management and maintenance,
such as data replication and recovery, and usage
metering.

For Enterprise Tenant, taking periodical press as an
example, the main requirements are as following:

4) Support multiple negotiation mechanisms to
communicate with CPP provider, such as telephone, fax,
email and on-line negotiation, etc.

5) Support its main business processes: online
submission and peer review;

6) Support efficiency improvements, such as
manuscript-oriented reviewer recommendation and
journal recommendation;

7) Support its brand broadcasting, such as electornic
journal subscription and preference-oriented (PO)
journal recommendation;

8) Support its application management, such as
service configuration, authority management and data
management;

9) Support multiple billing modes.
For Individual Tenant, the main requirements are as

following:
10) Support individual academic activity management,

such as preference-oriented (PO) or manuscript-oriented
(MO) journal recommendation, unified submitted
manuscripts tracing and remainder, to-be-reviewed
manuscripts tracing and reminder, et al;

11) Support the multi-role based personal information
management for any individal can be both manuscript
contributor (author) and reviewer at the same time. The
multi-role based personal information management can
provide services such as personal preference, reputation
and academic social network management, etc;

12) Support the subscription of various electroic
services provided by enterprise’ tenants;

13) Support service configuration.
After synthesize the requirements from the three roles,

the UseCase diagram can be drawn as Figure 2.
System management

& maintenance Monitoring dashboard

PO journal
recommendation

MO journal
recommendation

Multi-role based
personal info
management

Academic activity
management

Service
configuration

Individual Tenant

SLA Negotiation Online negotiation

Enterprise Tenant

MO reviewer
recommendation

Electronic journal
publish

Application
management

Tenant

Electronic journal
subscription

System administrator

Figure 2. The UseCase Diagram of OSPRSP

B. Tenent Level Requirements
From tenant application level, the requirements of

OSPRSP must be elicited and analyzed further. For
example, the four roles of enterprise tenant, Enterprise
Administrator, Enterprise Tenant Editor, Author and
Reviewer must be identified to fulfill the task of online
submission and peer review (OSPR).

Enterprise Tenant Administrator: The responsibility
of the role is the same as the system administrator of
traditional OSPR systems. The requirements of the role
include:

1) Tenant application customization, such as
OSPRSP subscription, and UI and workflow
customization;

2) Tenant application management, such as role-
based member management, authority assignment and
management, and information publication.

Enterprise Tenant Editor: The main responsibilities
of the role are to manage manuscripts submitted, assign
the manuscripts to peer reviewers, and communicate with
authors and reviewers until the acceptation or rejection of

2254 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

the manuscript. Thus, the requirements of the role
include:

3) Reviewer and author management, such as their
contact information management;

4) Review process management, such as reviewer
selection, manuscript assignment, and time-based review
reminder, results synthesis,and results feedback, etc.;

5) Manuscript management, such as journal
compilation.

Author: The author who has already registered as an
individual tenant can use his/her profile to submit and
manage manuscripts to any publication published by the
enterprise tenants in CPP; and then, they become the
authors of the press automatically. For unregistered
authors, they must register as an individual tenant first,
and then submit their manuscripts.

Reviewer: Similar as the role of author, there are two
kinds of reviewers in the system, too. One is the
individual tenant and the other is not. The tenant
reviewers can use their unique profile to review papers
for all the presses in the platform and accumulate their
reputations. While non-tenant reviewers will be asked to
register first.

The detailed use cases can then be identified according
to the above elicited requirements. Based on the analysis,
all of the use case diagrams can be got and they are
omitted due to the page limitation.

After the requirements being elicited, the commonality
and variability analysis should be performed accordingly
[28].

C. SaaS Level Requirements
Since CPP is a SaaS application which is designed for

serving multiple tenants, the distinguished features, such
as multi-tenancy architecture (MTA), customization,
scalability, replication and recovery, and security, must
be taken into consideration.

1) MTA
CPP must provide qualified services to multiple

enterprise tenants, namely publishing enterprises, to share
the platform. Thus, its MTA must satisfy the following
demands:

• Load balance: The load balancing and resource
reallocation should be supported to balance the
requests;

• Data Isolation: The tenant-specific data should be
isolated from other tenants’ and kept secure;

• Dynamic operation: A specific tenant application
can be customized, added or removed from CPP
dynamically without affecting the functionality
and availability of other tenants applications;

• Independent deployment and maintenance: The
code base of CPP can be patched and updated
independently and unaware to tenants.

2) Customization
The 4-level customization should be supported: service

customization, workflow customization, data
customization and UI customization, which can support
tenants to customize its applications according to their
preferences.

• Service customization: CPP should allow each
tenant to subscribe their preferred services. The
tenant application should be able to be generated
automatically based on the selection.

• Workflow customization: The workflow of a
specific service should be customizable to comply
with its business workflow.

• UI customization: The UIs, such as the logo,
layout, style, and label description, should be
customizable according to the tenant’s preferences.

• Data customization: CPP should allow tenant to
extend the existing data set and allow the optional
data fields selection.

3) Scalability
The CPP should support hundreds enterprise tenants

concurrently. Each enterprise tenants can publish weekly,
biweekly, monthly and bimonthly journals according to its
routine. The behaviors of authors, readers, reviews and
editors are asynchronous. The obvious peeks are related to
the working hours of stakeholders from an overall point of
view. Thus, the scalability requirements can be
categorized as following:

• User scalability: The concurrent number of users
during peak hours that CPP can support should
not degrade its performance.

• System scalability: When the number of access
exceeds the threshold of its capability, CPP
should support horizontal extension to meet the
demands automatically.

• Database scalability: the database architecture
needs to be scalable to serve the anticipated
increase requests from online users, with no
noticeable performance decrease and without any
errors, holds and locks.

4) Replication & Recovery
The CPP should support triple-replication to provide

high reliable services to tenants. And the replication
should be dispersed physically. The failure of any server
and database should be recovered without the notice of
tenants.

At the same time, the CPP should support the tenant to
customize its own replication & recovery policy.

5) Security
The 4-level security must be considered: physical

security, network security, application security and data
security.

• Physical security: the regulations of creating,
access, and modification must be issued,
monitored and recorded; the replication and
recovery mechanism must be constructed.

• Network security: the proactive security
protections such as perimeter defense and network
intrusion prevention systems must be deployed;
the security in transit must be ensured;

• Application security: the role-based access
security and group policy-based security should
be provided; and all tenants in CPP and all users
in tenants’ applications must have unique
identifications;

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2255

© 2014 ACADEMY PUBLISHER

• Data security: the data segregation must be
guaranteed. When a user or a tenant requests data
access, the system should validate his
identification to ensure that it retrieves only the
information corresponding to his authority; and
the data in the system must be complete and
credible.

D. Other Important Issues
To speed up its development and minimize the cost,

locating and using appropriate existing software should
be given high priority. Meanwhile, various monitors
should be deployed in CPP to monitor the status of the
whole system, give alerts whenever exception happens
and provide the firsthand data to the decision of platform
evolution.

VI. PLATFORM DESIGN

Based on the above requirements analysis, the design
of CPP is illustrated from the following three
perspectives: architecture design, database design and
service design.

A. Architecture Design
To meet the requirements of dynamic customization,

generation, deployment and operation, the architecture of
CPP must be dynamic in nature to satisfy the
distinguished expectations of tenants and their users.
Thus, a metadata driven architecture is adopted by CPP.

The architecture of CPP is a 5-layer architecture,
which includes Presentation Layer, Logic Layer,
Application Layer, Web Service Layer and Data Layer,
as shown in Figure 3. Functions of each layer are
described as follows:

Figure 3. Architecture design of CPP

• Presentation Layer: This layer offers the
interactive interfaces to users and tenants. It can
support multiple interface definition languages,
such as CSS, JavaScript and PHP, to describe UIs.
For flexibility, the UI interface is designed
completely separate from the business logic. Thus,
updating or even completely re-architecture the
interface layer will not touch the underlying data
and business logic. The compositional UI
Components are stored in UI Repository together
with UI Templates. With the support of UI
repository, a tenant can select preferred UI
templates and UI components to configure his
own interface.

• Logic Layer: This layer is responsible to analyze
requests from the presentation layer, transfer it to
executable tasks and assign them to different
application server according to the load balance
policy. The Security Policy Executor is
responsible to execute necessary security checks
according to the security policies and the
parameters in the requests. The Request
Processor is responsible to interpret the requests
to executable tasks, such as application
customization request, service access request and
data retrieval request. The Response Generator
is responsible to generate responses according to
the feedbacks from the application layer and data
layer. The Load Balancer is responsible to assign

Presentation Layer

Customer Site Users
Internet

Browser
Tenants
Internet

Browser

XML based request/response

UI Repository UI Server

UI
Templates

UI
Components

CSS
Processor

JavaScript
Processor

… PHP
Processor

Logic Layer

Load Balancer

Security Policy
Checker

Request
Processor

Response
Generator

Policy Repository

Security Policy

Application Layer Metadata Repository

Common
Metadata

Data Layer Data Repository

Forms

Load Balance
Policy

Indexing
Optimizer

Data Cache
Processor

O
ntology A

nnotation R
epository

Tenant-specific
Metadata

Indexes

Web Service
Layer Profile Mapping Navigator

Web Service Runtime Engine

Internal
Service
Monitor

Web Service Repository

Atom
Services

Package
Profile

Composition
Profile

Runtime App Generator

Data Processing
Engine

Workflo
w Engine

R&R

Executor

Network
Resource
Monitor

Workload
and

Exception
Monitor

Running
Process
Monitor

Tables Reports

Query
Optimizer

Database Log
Analyzer

2256 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

tasks to appropriate servers according to load
balance policies. All policies needed are stored in
the Policy Repository.

• Application Layer: This layer is supported by a
serious of Application Servers. Each Application
Server adopts Multi-Tenancy Architecture. Its
responsibility is to perform the tasks assigned by
Load Balancer. The tasks include generating
tenant’s application, calling specific services to
fulfill the task; metering the usage and executing
R&R policies, etc. For example, when Runtime
App Generator receives the tenant application
generation request, it will search the Metadata
Repository first to find out the corresponding
common metadata and tenant-specific metadata;
with these metadata, it will call the Workflow
Engine to compose the tenant application and call
the Data Processing Engine to access the Data
Repository to get the necessary data, and then a
tenant application instance will be returned. At the
same time, the R&R Executor will execute the
replication task according to the tenant-specific
replication policy. And all the processes running
in the Application Server will be monitored by
Running Process Monitor.

• Web Service Layer: In this layer, Profile
Mapping Navigator is responsible to interpret
the relationship within the service package
according to the package profile and composition
profile in Service Repository; after interpretation,
the Workflow Engine calls the Web Service
Runtime Engine to execute the command. In CPP,
atom web services are the minimum functional
units. All functions are completed by web
services.

• Data layer: This layer consists of many Persistent
Data Servers physically. Data Servers store the
Metadata Repository, UI Repository, Policy
Repository, Web Service Repository and Data
Repository. The data inside these repositories can
be divided into three categories: Common System
Data, Tenant Specific Data and User Specific
Data. The Common System Data includes various
templates, policies, components, services and data
needed to construct CPP and the base
functionality of tenant applications. The Tenant
Specific Data includes various tenant-specific
metadata, policies and data are used to construct
customized tenant application. The User Specific
Data includes the user profiles, privileges and user
data.

Therefore, the Runtime App Generator is the kernel of
the platform. It is responsible for composing customized
tenant application according to tenant specific metadata
and data. The load balancer, security policy checker and
R&R executer are responsible for the scalability, security
and R&R respectively. And the monitors in each layer are
responsible for monitoring the status of the system and
reporting exceptions and alerts.

B. Database Design
Database design is vital to the performance, scalability

and availability of the CPP.
To support tenants to create, use and update their

customized applications without affecting other tenants’
usage, CPP adopts shared database policy.

The database is designed as Figure 4 shown.

Figure 4. Database design of CPP

• Metadata Tables: The Common Metadata Table,
App Metadata Table and Field Metadata Table are
three major metadata tables. The Common
Metadata Table stores the metadata of the
common objects in CPP and its tenant
applications. These objects cannot be customized
by tenants. And some of them are necessary to
construct tenant applications while others are
optional. The App Metadata Table stores the
metadata of the customized objects of tenant
application. Using the TenantID and ObjID in
each row can locate the unique object. The Field
Metadata Table stores the metadata of customized
fields that is defined for customized objects.
Using TenantID, ObjID and FieldID in each row
can locate the unique field. And the definition of
each field includes FieldName (the name of the
field), FieldType (the type of the field) and
FieldOrder (the order of the field).

• Data Tables: The System Data Table, App Data
Table and BigData Table are three major data
tables. The System Data Table stores the
information needed to construct CPP. The App
Data Table stores the tenant-specific data. With
the metadata defined in App Metadata Table and
Field Metadata Table, the App Data Table can
store different types of tenants’ data in a same
table by transform them into unique type
“Variable-length String”. And when the
application want to read data from the table, it can
use the internal functions provided by database to
transform the string to its corresponding data type,
such as Number, Date, and so on. The BigData
Table stores the unstructured data of tenants, such
as multimedia data and files. The information in it
can be searched by professional search engine for
better user experiences.

App Metadata
Metadata for
customized

objects

Field Metadata
Metadata for
customized

fields

Common
Metadata Tables

Metadata for
Common objects

App Data
Tenant’s

applications
customized data

BigData
Unstructured
data, such as
Multimedia,
Files, et al.

System Data
Data Tables

System Policy
Data, Services,
Profiles, et al.

ETenant Indexes
Indexes for

Enterprise Tenants

ITenant Indexes
Indexes for

Individual Tenants

Relationship
Indexes

Indexes for
Foreign keys

…

Indexes

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2257

© 2014 ACADEMY PUBLISHER

• Indexes: To speed up the high-frequency search
functions, various indexes will be built in the
database. The ETenant Indexes Table will
construct indexes according to the usage
frequency of the service by enterprise tenants; and
the same will be done in ITenant Indexes Table.
To speed up the Join functions among different
tables, the Relationship Table will be established
to record the combination relationships among
tables.

By the above metadata driven multi-tenant architecture
design, CPP can support tenants to customize their
applications respectively while the others are using their
applications concurrently. By the separation of UIs,
workflows, services and data, CPP could support multi-
level and multi-granularity customization; by the
information got from various Monitors and Load
Balancer in Logic Layer, CPP could scale accordingly;
by runtime R&R executor and customized R&R policies,
CPP can duplicate the data of tenant application in real
time according to the customized R&R policies; by
deploying peripheral firewall and the Security Policy
Checker in Logic Layer, CPP can guarantee the
authorized access; and by the TenantID based logic
partition, the data of different tenant is isolated.

C. Service Design
To develop the CPP rapidly and economically, reusing

existing software is a good choice. Based on the above
design, the social community and OSS search engine,
such as SourceForge, can be used to find reusable
software. The PaaS selection should not only pay much
attention to its functions and price, but also to its
availability. And the existing software selection must
concern on the functionality, maintenance status of the
software and the constraints of its license.

By wrapping them as web services, they can be used as
the basic functional units of CPP. According to the
commonality and variability analysis performed in the
phase of Requirements Analysis, the available services
and service packages in Web Service Layer can be
constructed.

After the requirements analysis and design of CPP
have been done, the agile development process can be
carried on.

VII. CONCLUSION

The emergence of SaaS computing paradigm brings
new opportunities to many traditional industries,
especially for those enterprises in the Long Tail. CPP
based on SaaS can help academic society to establish a
more energetic ecological environment. Publishers can
customize their own applications with lower cost. By
using the services provided, publishers can promote their
reputations, attract origin manuscripts and expand their
influences. Scholars can use the services provided to
manage their academic activities and promote their
academic experiences and prestige. And the most
important value of this paper is that it elaborates the
requirements analysis and design processes of CPP to

show how to develop a SaaS application successfully.
From the illustration, the following lessons can be drawn:

1) How to Establish a Well-organized SaaS
Environment Should be Taken into Consideration from
Beginning

SaaS application is designed to serve multiple tenants.
Due to the diversity of tenants, it is not enough to rely
solely on SaaS provider. SaaS provider must establish a
good operation environment to arouse the participation
enthusiasm of all stakeholders. And the plan must be
economical and energy-saving to carry out. The
publishing cycle proposed in Section IV is a good case to
exemplify how to establish a well-organized SaaS
environment.

2) The Requirements must be Elicited and Analyzed
from both System Level and Tenant Level

The users of a SaaS application may come from
multiple levels, such as tenants, subtenants, and the
customers of tenants and subtenants, according to its
business model. Thus, eliciting and analyzing its
requirements should take all these factors into
consideration. The requirements from system level
emphasizes its overall functionality and quality features,
while the requirements from tenant level concentrates on
demands of its users and customers. The requirements
elicitation and analysis in Section V is a good example.

3) The Requirements from Distinguished SaaS
Features must be Considered Carefully

Customizability, MTA, scalability, replication and
recovery, and security are the distinguished common
features of SaaS applications, which are proven by both
academia and industries [1, 8-10, 29]. Eliciting and
analyzing the impacts from these features, the earlier the
better, which have been shown in Section V.

4) The MTA and Database Design is Vital to the
Success of a SaaS Application Development

SaaS applications must afford the capability of tenant
application customization and operation concurrently,
securely and rapidly. Thus, MTA design and database
design are important. The platform design in Section VI
gives a good illustration of how to build a scalable MTA
and database. And the design can be extended to the
design of other SaaS applications by topic replacement.

5) Wise External Resource Utilization can
Significantly Reduce the Cost and the Time Needed by
Developement

Whether developing the SaaS application from scratch
or reusing some existing software, and whether tackling
all the difficulties entirely by the development team or
resorting to the technical elites outside are both important
decisions that should be made. As shown in Section VI,
selected existing software can be wrapped into services
and integrated into a SaaS application.

In future, CPP will be implemented accordingly and
the design method of CPP will be extended to general
SaaS application development.

2258 JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014

© 2014 ACADEMY PUBLISHER

ACKNOWLEDGMENTS

The research was supported by the National Natural
Science Foundation of China under Grant No. 61170026,
the National High Technology Research and Development
Program of China (863 Program) under Grant No.
2013AA12A206, the Key Technologies R&D Program of
Wuhan under Grant No. 201212521826.

REFERENCES

[1] W. Tsai, X. Bai and Y. Huang, "Software-as-a-service
(SaaS): perspectives and challenges," Science China
Information Sciences, pp. 1-15, 2014.

[2] Software as a Service, Wikipedia,
http://en.wikipedia.org/wiki/SaaS.

[3] H. Wang, "Information Services Paradigm for Small and
Medium Enterprises Based on Cloud Computing," Journal
of Computers, vol. 8, pp. 1240-1246, 2013.

[4] J. Cho, "Study on a SaaS-based library management
system for the Korean library network," The Electronic
Library, vol. 29, pp. 379-393, 2011.

[5] X. Shi, Y. Sui and Y. Zhao, "Hybrid Cloud Computing
Platform for Hazardous Chemicals Releases Monitoring
and Forecasting.," Journal of Computers, vol. 7, pp. 2306-
2311, 2012.

[6] C. D. Weissman and S. Bobrowski, "The design of the
force. com multitenant internet application development
platform.," in 2009 ACM SIGMOD International
Conference on Management of data, 2009, pp. 889-896.

[7] C. J. Guo, W. Sun, Z. B. Jiang, Y. Huang, B. Gao, and Z.
H. Wang, "Study of Software as a Service Support
Platform for Small and Medium Businesses," New
Frontiers in Information and Software as Services, pp. 1-
30, 2011.

[8] SalesForce.com, http://www.salesforce.com/company/.
[9] Workday, Workday’s Co-CEO Looks Ahead,

Entrepreneurs,
http://www.forbes.com/sites/tomtaulli/2013/01/09/workda
ys-co-ceo-looks-ahead-to-2013/, 2013.1.

[10] Oracle, Oracle RightNow Cloud Service,
http://www.oracle.com/us/products/applications/rightnow/
overview/index.html.

[11] Newsfactor, Analysis: SaaS Companies Are Hot
Acquisitions,
http://www.newsfactor.com/story.xhtml?story_id=001000
0MO8Y0, 2012.4

[12] S. K. S. Esseh, "Strengthening Scholarly Publishing in
Africa: Assessing the Potential of Online Systems," Ph.D.
dissertation, University of British Columbia, Vancouver,
Canada, 2011.

[13] G. Tananbaum and L. Holmes, "The evolution of Web-
based peer-review systems," Learned Publishing, vol. 21,
pp. 300-306, 2008.

[14] R. Clarke and D. Kingsley, "e-Publishing's impacts on
journals and journal articles," Journal of Internet
Commerce, vol. 7, pp. 120-151, 2008.

[15] M. Ware, "Online submission and peer-review systems,"
Learned publishing, vol. 18, pp. 245-250, 2005.

[16] H. Lai, R. Peng, J. Cui, Y. Ni, and Y. Huang, "Design and
implementation of journal manuscript submission and
review system based on SaaS," in 2013 IEEE Eleventh
International Symposium on Autonomous Decentralized
Systems, 2013, pp. 1-6.

[17] Elsevier Editorial System,
http://www.elsevier.com/editors/elsevier-editorial-system-
ees.

[18] ACS Paragon Plus Environment,
https://acs.manuscriptcentral.com/acs.

[19] M. Cyzyk and S. Choudhury, "A survey and evaluation of
open-source electronic publishing systems," unpublished
paper, Sheridan Libraries staff research, 2008.

[20] S. Bhattacharyya, K. Mondal, S. Agarwal, and A. Nath,
"Design and Analysis of e-Journal Management Systems:
SXC International Journal of Advanced Computing
Sciences (SXC-IJACS)," in 2012 International Conference
on Communication Systems and Network Technologies,
2012, pp. 913-918.

[21] X. J. Zhong and Y. Li, "Cloud computing and journals
cloud - science and technology journal of a new platform
for the future," Publish Research, pp. 77-81, 2011.

[22] N. I. S. Agency, "IT environmental change and tasks
according to appearance of SaaS," Issue Analysis of
Information Society 2007.

[23] M. Xin and N. Levina, "Software-as-a service model:
Elaborating client-side adoption factors," in 2008
International Conference on Information Systems, 2008.

[24] H. C. Liao and C. Q. Tao, "An anatomy to SaaS business
mode based on Internet," in 2008 International Conference
on Management of e-Commerce and e-Government, 2008,
pp. 215-220.

[25] L. F. Sessions, "How Offline Gatherings Affect Online
Communities: When virtual community members
‘meetup’." Information, Communication & Society, vol. 13,
pp. 375--395, 2010.

[26] GitHub, https://github.com.
[27] Hacker News, https://news.ycombinator.com/news.
[28] B. Sengupta and A. Roychoudhury, "Engineering multi-

tenant software-as-a-service systems," 3rd International
Workshop on Principles of Engineering Service-Oriented
Systems, 2011, pp. 15-21.

[29] G. Lin, Y. Bie and M. Lei, "Trust Based Access Control
Policy in Multi-domain of Cloud Computing," Journal of
Computers, vol. 8, pp. 1357-1365, 2013.

Xiuhong Chen, Hubei, China,
10/13/1981. Master in Computer
Software and Theory, Wuhan University,
Wuhan, Hubei, China, 2006.

She is a PH.D. candidate of of State
Key Lab of Software Engineering in
School of Computer at Wuhan University.
Her research interests include component
repository modeling and management,

software engineering and cloud computing.

Rong Peng is a Professor of State Key Lab of Software
Engineering in School of Computer at Wuhan University. She
has a Ph.D. in Computer Software and Theory from Wuhan
University in China. Her research interests include requirements
engineering, software engineering, and mobile computing.

Han Lai is a Ph.D. candidate of State Key Lab of Software
Engineering in School of Computer at Wuhan University. His
research interests include requirements engineering and service
computing.

Keqing He is a professor of State Key Lab of Software
Engineering in School of Computer at Wuhan University. His
research interests include service computing, cloud computing,
information system interoperability.

JOURNAL OF SOFTWARE, VOL. 9, NO. 9, SEPTEMBER 2014 2259

© 2014 ACADEMY PUBLISHER

