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Abstract— This paper proposes a situation analysis decision 
support system (SADSS) for safety of safety-critical systems 
where the operators are stressed by the task of 
understanding what is going on in the situation. The 
proposed SADSS is developed based on a new model-driven 
engineering approach for hazardous situations modeling 
based on dynamic object oriented Bayesian networks to 
reduce the complexity of the decision-making process by 
aiding operators’ cognitive activities. The SADSS includes 
four major elements: a situation data collection based on 
observable variables such as sensors, a situation knowledge-
base which consists of dynamic object oriented Bayesian 
networks to model hazardous situations, a situation analysis 
which shows the current state of hazardous situations based 
on risk concept and possible near future state, and a human-
computer interface. Finally two evaluation methods for 
partial and full validation of SADSS are presented.   
 
Index Terms—Situation awareness, decision support 
systems, safety-critical systems 

I.  INTRODUCTION 

In many safety-critical systems, operational safety is 
the top priority because the consequence of every 
accident can result in loss of life, environmental pollution, 
and financial losses. The majority of accidents in these 
environments are caused by human error. For instance, a 
review showed that the human error contribution in air 
traffic management accidents is more than 90%, and most 
industries have similar human error contributions i.e. 70–
90% [1]. Chernobyl disaster in 1986 is a famous event 
that was caused by human errors that dealt with decision 
making, receiving information, and action selection. 
Therefore to maintain safety in such complex systems, 
human factor issues cannot be ignored.  

Later, the human factors researches showed that in 
many of accidents, operators were struggling against 
significant challenges. They have to face both data 
overload and the challenge of working with a complex 
system. In fact, the persons are not the cause of these 
errors but they have inherited the problems and 
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difficulties from the technologies that engineers have 
created. Operators generally have no difficulty in 
physically performing their tasks, and no difficulty in 
knowing what is the correct thing to do, but they are 
stressed by the task of understanding what is going on in 
the situation [2]. Over the last two decades, great deal of 
research has been undertaken in the area of situation 
awareness (SAW). Situation awareness, a state in the 
mind of human, is essential to conduct decision-making 
activities. It is about the perception of the elements in the 
environment, the comprehension of their meaning, and 
the projection of their status in the near future [2]. 
Situation analysis (SA) is defined as a process, the 
examination of a situation, its elements, and their 
relations, to provide and maintain a product, i.e. SAW. 
One important aspect of SA is to focus attention to 
relevant situations. When a decision maker is aware of 
the current situation and its future implications it can be 
quite straight forward to decide on which action to take. 
After an action is performed, the cycle is completed by 
once again observing the universe of discourse and 
analyzing if the chosen action had the desired effect. This 
iterative process is perhaps better known as the OODA 
(Observe, Orient, Decide and Act) loop. The OODA loop 
is a cyclic process that allows for concepts such as SA 
and SAW to be related to decision making as shown in 
Fig. 1 [3].  

 
Figure 1.  Situation analysis and decision making. 

In a technological system, the operators’ tasks include 
information gathering, planning, decision making, and 
avoiding unforeseen risks through the operation system. 
They monitor the system continually to ensure that the 
system is stable and functioning normally. During 
abnormal situations, a well-trained operator should 
comprehend a malfunction in real time by analyzing 
alarms, assessing values, or recognizing unusual trends of 
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multiple instruments. Today in a complex system, many 
alarms from many different systems often occur at the 
same time during an incident, making it difficult for the 
operator to select a correct response efficiently. In the 
absence of operator support systems, the operators must 
consider an overwhelming amount of information and 
make decisions very quickly. Since the decision-making 
environment is extremely complicated, the use of 
automated systems to aid decision making is highly 
recommended. This paper focuses on the development of 
a decision support system to improve operators’ SAW 
and to lower the chance of human errors. 

II. BACKGROUND 

A. Situation Awareness 
One of the earliest and most widely used definitions of 

SAW describes it as the “perception of the elements in 
the environment within a volume of time and space, the 
comprehension of their meaning and the projection of 
their status in the near future” [2]. Based on this 
definition, SAW includes three levels: 1) perception, 2) 
comprehension, and 3) projection. 

Level 1 SAW, perception, involves the sensory 
detection of significant environmental cues. For example, 
operators need to be able to see relevant displays or hear 
an alarm sound. Comprehending the meaning or 
significance of that information in relation to one’s goals 
is also important. Operators with good Level 2 SAW are 
able to understand the immediate impact of an outage on 
other parts of the system. Projection, the highest level of 
SAW, consists of extrapolating information forward in 
time to determine how it will affect future states of the 
operating environment. This merges what the individual 
knows about the current situation with their mental 
models of the system to predict what is likely to happen 
next. The higher levels of SAW allow operators to 
function in a timely and effective manner, even with very 
complex and challenging tasks. 

B. Bayesian Networks Theory 
A BN is defined as a couple: ࣡ ൌ ሺሺܰ, ,ሻܣ ࣪ሻ, where 

(N,A) represents the graph; N is a set of nodes; A is a set 
of arcs; ࣪ represents the set of probability distributions 
that are associated to each node. When a node is not a 
root node, the distribution is a conditional probability 
distribution that quantifies the probabilistic dependency 
between that node and its parents. A discrete random 
variable X is represented by a node ݊ ∈ ܰ with a finite 
number of mutually exclusive states. States are defined 
on ܵ: ሼݏଵ, ,ଶݏ … , ெݏ ሽ . The set ࣪  is represented with 
Conditional Probability Tables (CPT). Then, each node 
has an associated CPT. For instance, the nodes ni and nj 
are defined over the sets ܵ: ሼݏଵ, ,ଶݏ … , ெሽݏ  and ܵೕ: ሼݏଵೕ, ,ଶೕݏ … ,  ೕሽ. The CPT of nj is then defined byݏ
the conditional probabilities p(nj |ni) over each nj state 
knowing its parents states (ni). This CPT is defined as a 
matrix: 

ܲ ቀ ݊ቚܽ൫ ݊൯ቁ ൌ൫ ݊ ൌ ଵೕห݊ݏ ൌ ଵ൯ݏ … ൫ ݊ ൌ ೕห݊ݏ ൌ ൫⋮ଵ൯ݏ ݊ ൌ ଵೕห݊ݏ ൌ ெ൯ݏ ⋮⋯ ൫⋮ ݊ ൌ ೕห݊ݏ ൌ  ெ൯                   (1)ݏ

 
Various inference algorithms can be used to compute 

marginal probabilities for each unobserved node given 
information on the states of a set of observed nodes. The 
most classical one relies on the use of a junction tree. 
Inference in BN then allows to take into account any state 
variable observation (an event) so as to update the 
probabilities of the other variables. When observations 
are given, this knowledge is integrated into the network 
and all the probabilities are updated accordingly. 

A hard evidence of the random variable X indicates 
that the state of the node ݊ ∈ ܰ  is one of the states ܵ: ሼݏଵ, ,ଶݏ … , ெݏ ሽ. Nevertheless, when this knowledge is 
uncertain, soft evidences can be used. A soft evidence for 
a node n is defined as one that enables the updating of the 
prior probability values for the states of n.  

A dynamic BN (DBN) is a BN that includes a temporal 
dimension. This new dimension is managed by time-
indexed random variables Xi is represented at time step k 
by a node ݊ሺ,ሻ ∈ ܰ  with a finite number of states ܵ: ሼݏଵ, ,ଶݏ … ,  ெሽ. Several time stages are representedݏ
by several sets of nodes and an arc that links two 
variables belonging to different time slices represents a 
temporal probabilistic dependence between these 
variables. Then DBNs allow to model random variables 
and their impacts on the future distribution of other 
variables. Defining these impacts as transition 
probabilities between the states of the variable at time 
step k-1 and those at time step k leads to the definition of 
CPTs, that are relative to inter-time slices. With this 
model, the future slice (k) is conditionally independent of 
the past given the present (k-1) [4]. 

Modeling systems containing an important number of 
variables with BNs generally leads to complex models. 
To avoid this phenomenon, a particular class of BNs, the 
Object Oriented Bayesian Networks (OOBNs) has been 
defined [5]. This modeling is based on the decomposition 
of the global network into hierarchical levels. This 
representation method allows to decentralize and to 
structure the knowledge within BNs of reduced size. An 
OOBN class is a BN fragment containing output, input, 
and protected (or encapsulated) nodes. The input and 
output variables form the interface of the class. The 
interface encapsulates the internal variables of the class, 
d-separating them from the rest of the network. All 
communication with other instances is formulated in 
terms of probability statements over the instance's 
interface. 

C. Fuzzy Sets 
Fuzzy logic deals with problems that have vagueness, 

uncertainty, or imprecision, and uses membership 
functions with values varying between 0 and 1. In fuzzy 
set theory based on fuzzy logic, a particular object has a 
degree of membership in a given set that may be 
anywhere in the range of 0 to 1. Fuzzy theory was first 
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proposed by Zadeh in 1965. A fuzzy logic system (FLS) 
consists of three parts: fuzzification of the input variables, 
fuzzy inference process and defuzzification. In the 
fuzzification process, the fuzzy sets are formed for all 
variables. The fuzzy inference engine takes into account 
the input variables and the logic relations between them 
and uses fuzzy logic operations to generate the output. 
Mamdani’s fuzzy inference method is the most 
commonly seen fuzzy methodology. This inference 
includes the implication in each single rule and the 
aggregation from all rules. All output functions returned 
by the implication process for each rule are combined 
into a single output fuzzy set. In the defuzzification stage, 
the crisp value of output is obtained using a centroid 
method [6]. 

III. A SITUATION ANALYSIS DECISION SUPPORT SYSTEM 

Decision making, by its nature, is a cognitive process, 
involving different cognitive tasks, such as collecting 
information, evaluating situation, generating and 
selecting alternatives, and implementing solutions. 
Decision making is never error-proof, as decision makers 
are prone to their cognitive biases. Therefore, decision 
support systems (DSSs) are often used by decision 
makers in order to minimize their cognitive errors and 
maximize the performance of actions. Based on the 
model of assistance, DSS can be categorized into various 
types, such as model-driven DSS, communication-driven 
DSS, data-driven DSS, document-driven DSS and 
knowledge-driven DSS [7]. 

In this paper we propose a situation analysis decision 
support system (SADSS) which is a model-driven DSS as 
shown in Fig. 2. The model-driven DSSs include 
computerized systems that use the quantitative models to 
assist in decision-making. In fact, the model-driven DSSs 
emphasize access to and manipulation of the quantitative 
models and hence the models are the dominant 
component in the DSS architecture that provide the 
functionality for the DSS [8]. The proposed system 
consists of four major components: 1) situation data 
collection (e.g. observable variables such as sensors), 2) 
situation knowledge base, 3) situation analysis, and 4) 
human-computer interface.  

 
Figure 2.  A situation analysis decision support system. 

A. The SAW Requirements 
To determine the aspects of a situation that are 

important for a particular user’s SAW, we use a 
methodology which is called the goal-directed task 
analysis (GDTA). This methodology is a specific form of 

cognitive task analysis that focuses on identifying the 
goals and critical information needs for a task context. 
The GDTA process forms an exemplary template for 
incorporating human cognition into an actionable model 
by describing in detail not only a user’s information data 
needs (Level 1) , but also how that information needs to 
be combined to form the comprehension (Level 2), and 
projection of future events (Level 3) that are critical to 
SAW, thereby providing a critical link between data input 
and the decisions to be made in a goal-directed 
environment [2]. In this paper, the elements of GDTA 
include goal, subgoals, decisions and SAW requirements 
are determined as shown in Table I. The main goal of 
SADSS, elimination of the risk to a level that is as low as 
reasonably practicable (ALARP), is followed by two 
subgoals: risk determination and risk reduction. 
Associated with each subgoal, the major decisions that 
need to be made are then identified. The SAW needed for 
making these decisions and carrying out each sub-goal 
are determined. 

TABLE I.   
SAFETY GOALS, DECISIONS AND SAW REQUIREMENTS 

Goal: Eliminate or reduce the risk to a level that is ALARP 
Subgoal 1: Determine the risks 

Decision 1-1: Hazardous situation identification 
• L1: Objects and relationships which contribute to create a 

hazardous situation  
• L1: Situations and relationships which contribute to 

create a hazardous situation 
• L2: Hazardous situations that threaten the system 

Decision 1-2: Likelihood determination 
• L1: Objects which are relevant to contributors of the 

hazardous situation  
• L1: Observable variables which are relevant the 

hazardous situation 
• L2: Prior likelihood of the hazardous situation 
• L3: Posterior likelihood of the hazardous situation 

Decision 1-3: Severity determination 
• L2: Possible consequences of the hazardous situation 
• L3: Degree of loss 

Decision 1-4: Risk Level Estimation  
• L2: Likelihood of the hazardous situation (Decision 1-2) 
• L2: Severity of the hazardous situation (Decision 1-3) 
• L3: Current level of risk  

Subgoal 2: Reduce the risks 
Decision 2-1: Choosing practical options  

• L2: Available reduction and containment options 
Decision 2-2: Options impact prediction 

• L3: Projecting the new likelihood of the hazardous 
situation  

• L3: Projecting the new severity of the hazardous situation
• L3: New level of risk 

Note: L3= Level 3 SAW; L2= Level 2 SAW; L1= Level 1 SAW. 
 

B. Constructing the Situation Knowledge-Base 
 Bayesian network is a kind of cause and effect 

inference method under uncertainty with directed acyclic 
graphical mode that encodes the probability relationship. 
However, one of the main obstacles is to create and 
maintain very large domain models. To remedy this 
problem, the OOBNs have been proposed to solve the 

Situation Data 
Collection 

Situation 
Analysis 

Operator Data-Base t1 t2 

n0 
n1 
n2 
n3 

SCADA 

Time 

Sensor Node 

Human-Computer 
Interface 

Situation  
Knowledge-Base

Decision Making
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represent method of the complex system. The module BN 
can decompose the complex problem into simple sub-
problem. Then the BN model for each sub-problem is 
built and linked into a whole BN model according to the 
relation between the sub-problems lastly. In this paper, to 
model the hazardous situations, the dynamic OOBNs are 
relied according to below definitions. 
Definition 1 (Situation): A situation is a collection of 
physical or conceptual objects which have relationships 
to each other and the environment.  

In the object oriented paradigm the basic component is 
the object; an entity with identity, state and behaviour. 
Definition 2 (Hazardous situation): A hazardous situation 
is defined as a circumstance immediately before harm is 
produced by a hazard. 
Definition 3 (First level hazardous situation): A situation 
is defined as a first level hazardous situation, if the 
interactions among its objects create a hazard. 

For instance, high temperature inside a mixing tank is 
a first level hazardous situation because it is produced by 
interaction of its objects which are a sensor, a pneumatic 
unit, and a manual steam valve.   
Definition 4 (Higher level hazardous situation): A 
situation is defined as a higher level hazardous situation, 
if the relationships among other situations and the 
environment create it.  

In the above example, accumulated vapor at the mixing 
tank environment is a higher level hazardous situation 
because it is created by two other hazardous situations, 
high temperature inside the tank and inadequate 
ventilation in the production unit.  

The first level situations can be illustrated by a simple 
BN, based on its objects. Usually the BN begins with root 
nodes that include the basic objects, and follows by a 
pivot node and leaf nodes. The pivot node is the focal 
object which delegates the situation. The leaf nodes may 
be safety barriers which are physical objects of the 
environment and will connect to each other if there is 
relation between their performances. Also, one of the leaf 
nodes may be a consequence node which has some states, 
and shows the possible accidents, that the situation may 
create. 

According to OOBN, a class is a BN fragment 
containing three sets of nodes [5]: 

• O is a set of output nodes. Output nodes can be 
referenced outside the class, hence they can be 
parents of nodes outside instances of the class. 

• I is a set of input nodes. Input nodes represent 
nodes that are actually not in the class; they act as 
place-holders for parents of nodes inside instances 
of the class. Input nodes cannot have parents 
within the class. 

• P is a set of protected nodes, i.e. nodes that can 
only have parents and children inside the class 
itself. 

A class encapsulates nodes and restricts the visibility 
of its nodes to the interior, in order to use a class it must 
be instantiated. When an instantiation of a class is created, 
it can be linked to the rest of the network by reference 
link. In this paper we use the class definition to develop 

similar situations. For instance, in the above example, if 
the environment includes 5 similar mixing tanks, then 5 
instances of the high temperature situation class can be 
created. This enables us to overcome the challenges of 
working with traditional BN. 

The higher level hazardous situations can be inferred 
from other situations. Several situations can exist in 
parallel or the existence of one situation can exclude the 
existence of another situation. Additionally the class 
definition can be used for higher level hazardous 
situations modeling. There are also situations which can 
only be inferred by observing the real world over a period 
of time. Although the situations are characterized by 
information collected over a time-period, they only exist 
at a special point in time. Their existence in the next 
time-point has to be verified again. The complete 
modeling of the dependencies results a knowledge-base 
of hazardous situations. 
 

C. Situation Data Collection 
The situation data collection provides the current 

state of the observable variables based on the online 
condition and process monitoring systems. According to 
the conditions and process monitoring, each observable 
variable value is obtained from field sensors based on 
SCADA1 systems. The component stores these data in a 
database where they will be used to modify the CPTs of 
BN models in the future. Additionally, the component 
conducts a discretization process for continuous 
observable variables to be prepared as soft evidence in 
order to use in the subsequent situation analysis 
component. In general, mapping a continuous variable to 
a discrete variable can be done with a crisp set or a fuzzy 
set. The literature shows that the concept of fuzzy set 
theory can provide a smoother and structured way to 
improve the classical discretization techniques. Therefore 
in this paper, to discretize the continuous variables, a 
fuzzy partitioning method is used according to below 
definitions.  
Definition 5 (Fuzzy partition): A fuzzy partition on the 
universe Ω is a set of fuzzy sets ሼݍଵ, ,ଶݍ … ,  :ሽ such thatݍ
ݔ∀  ∈ ,ߗ ∑ ሻݔሺߤ ൌ 1ୀଵ 																											(2)  
where ߤሺݔሻ is the membership function of ݍ. 
Definition 6 (Fuzzy state): Let ሼݍଵ, ,ଶݍ … ,  ሽ be a fuzzyݍ
partition on the universe Ω , then every fuzzy set ݍ , ݅ ൌ 1,… ,݉ is defined as a fuzzy state such that: 
ݍ  ൌ ሼߤሺݔሻ|ݔ ∈ Ωሽ																																	(3) 

To simplify the inference process for a continues 
variable Xi, consider the fuzzy partition ሼݍଵ, ,ଶݍ … ,  .ሽݍ
Define Hj (j=1,2,…,m) as hypotheses that Xi is in fuzzy 
state qj. The results of membership functions ߤೕሺݔሻ  
j=1,2,…,m form the soft evidence vector: 

 ݁ ൌ ሼߤభሺݔሻ, ,ሻݔమሺߤ … ,  (4)																						ሻሽݔሺߤ

                                                           
1 Supervisory Control and Data Acquisition 
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The ߤೕሺݔሻ is considered to be approximately equivalent 
to the condition probability ܲሺݍ| ܺ ൌ  .ሻ [9]ݔ

D. Situation Analysis 
Based on goals and the scope of the operator’s 

responsibility, the situations of interest are recalled from 
situation knowledge-base. The BN models provide a 
graphical situational network for operator. According to 
the situation models, the probabilities of the existence of 
the first level hazardous situations are inferred directly 
from their objects, and the probabilities of the higher 
level hazardous situations are calculated based on the 
existence probability of other situations. This also 
includes temporal dependencies, i.e. that the existence 
probability of an inferred situation in future can be 
supported by the earlier existence of the situation itself. 
Based on the situational network, the prior and posterior 
probability of the situations are available at any time. The 
situation analysis component generates an estimation 
level of risk for every situation to show the operator that 
the current risk level is acceptable or not. As such 
estimation is highly subjective and related to inexact 
information, the application of fuzzy set theory is 
appropriate. Generally, the risk model calculation follows 
a multi-step process: 

• Estimation of the situation likelihood (i.e. 
Decision 1-2) 

• Estimation of the situation severity (i.e. Decision 
1-3) 

• Estimation of the situation risk (i.e. Decision 1-4) 
To determine the prior and posterior likelihood, the 

situational network provides the required quantities. The 
quantitative analysis can proceed along two lines, the 
forward (or predictive) analysis and backward (or 
diagnostic) analysis. In forward analysis, the probability 
of occurrence of any situation of the network is calculated 
on the basis of the prior probabilities of the objects and 
the conditional dependence of each node, and backward 
analysis consists of computing the posterior probability 
distribution of any situation and object, given the 
observation of a set of evidence variables.  

Usually, the occurrence of a hazardous situation may 
lead to a broad range of consequences, some of which 
will probabilistically be undesirable events. Generally, 
the loss of a consequence may be categorized into one of 
four groups; asset loss, human fatality, environmental 
loss, and confidence or reputation loss or a combination 
thereof. It is useful for all four components to be 
converted in a common currency such as money for 
potential comparison and aggregation. Table II shows the 
proposed severity matrix of this paper.  

To estimate the risk level of every situation, a FLS is 
used. The selection of the membership functions depends 
on the variable characteristics, available information and 
expert knowledge. In this paper, the shapes of the 
membership functions are defined as a combination of 
trapezoidal and triangular numbers to simplify the 
operation and increase the sensitivity in some bounds. Fig. 
3 illustrates the proposed fuzzy sets. The fuzzy inference 
engine takes into account the input variables, likelihood 

and severity, and the logic relations between them 
including the 25 rules as shown in Table III, and uses 
fuzzy logic operations to generate the output i.e. risk.  

 
TABLE II:  

CONSEQUENCE SEVERITY MATRIX. 
Severity 

Class 
Monetary 

Value 
Human 

Loss Asset Loss Environment Loss

Negligible <10k One minor 
injury 

Minor repairs that 
can be done 

immediately by own 
crew 

Around the area, 
easy recovery 

Minor 10-100k
One or two 

minor 
injuries

Repairs that take 
several days to carry 

out 

Within plant, short 
term remediation 

effort 

Medium 100k-
1million

Multiple 
major 

injuries

Damage that takes 
months to repair and 

causes serious 
consequences 

Minor offsite impact, 
remediation cost will 
be less than 1 million

Major 1-10 
million 

One fatality 
or multiple 

injuries 
with 

disabilities

Very large material 
damage 

Community advisory 
issued, remediation 
cost remains below 

10 million 

Catastrophic >10 million Multiple 
fatalities

Significant parts of 
the system 
destroyed 

Community 
evacuation for longer 
period, remediation 
cost in excess of 10 

million 

Figure 3.  Membership functions of the FLS variables. 
 

TABLE III:  
A RISK MATRIX. 

 
Severity 

Negligible Minor  Medium  Major  Catastrophic  

L
ik

el
ih

oo
d 

Very likely Tolerable not 
acceptable 

Tolerable not 
acceptable 

Not 
acceptable 

Not 
acceptable 

Not 
acceptable 

Likely Tolerable 
acceptable 

Tolerable not 
acceptable 

Tolerable not 
acceptable 

Not 
acceptable 

Not 
acceptable 

Even Acceptable Tolerable 
acceptable 

Tolerable not 
acceptable 

Not 
acceptable 

Not 
acceptable 

Unlikely Acceptable Acceptable Tolerable 
acceptable 

Tolerable not 
acceptable 

Not 
acceptable 

Very 
Unlikely Acceptable Acceptable Tolerable 

acceptable 
Tolerable not 

acceptable 
Tolerable not 

acceptable 
 

If the estimated risk of the situation is unacceptable, it 
is necessary to recover the situation. However the 
proposed situational network does not provide the risk 
reduction measures, it helps to simulate the impact of risk 
recovery decisions on the situations. A list of available 
reduction and containment options can be presented as 
decision rules to remove or eliminate the risk and recover 
the situations (i.e. Decision 2-1).  Based on the operator’s 
decision to choose the practical options, the situation 
analysis component has the ability to simulate the 
situations and estimate the new risk level of situations (i.e. 
Decision 2-2). The aim is to eliminate or reduce the risk 
level of potential situations to an acceptable level. 

E. Human-Computer Interface 
A graphical user interface (GUI) for the proposed 

system is being developed based on SAW-oriented design 
principles and using SMILE (Structural Modeling, 
Inference, and Learning Engine), which is a library of 
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C++ classes for implementing BNs in intelligent systems. 
The SAW-oriented design principles include general 
guidelines for supporting SAW, coping with automation 
and complexity, designing of alarm systems, presenting 
the information uncertainty, and supporting SAW in team 
operations. The principles have been used successfully as 
a design philosophy for systems involving operations, 
medical systems, flexible manufacturing cells, and 
command and control for distributed teams [2]. 

IV. EVALUATION 

Evaluation is an important aspect of every 
methodology as it provides a reasonable amount of 
confidence to the results of the model. As in this paper 
the SADSS was proposed based on DOOBNs, the 
evaluation of the proposed system can be conducted via 
two ways: a SAW measurement or a sensitivity analysis. 
The SAW measurement can be used for a full validation 
of human-computer interface and the sensitivity analysis 
is appropriate for partial evaluation of BN models. 

A. Situation Awareness Measurement 
The enhancement of SAW is a major design goal for 

developers of interfaces, automation concepts, and 
training programs in a verity of fields. To evaluate the 
degree to which new technologies actually improve 
operator’s SAW, it is necessary to systematically evaluate 
them based on a measure of SAW, which can determine 
those ideas that have merit and those that have unforeseen 
negative consequences. A recent review identified over 
thirty different approaches designed specifically for the 
measurement of SAW that can be categorized into the 
different types: 1) freeze probe techniques, 2) real-time 
probe techniques, 3) self-rating techniques, 4) observer 
rating techniques, 5) observer rating techniques, 6) 
performance measures, and 7) process indices. However, 
the literature showed that the SAGAT1 which is a freeze 
probe technique, and the SART2 which is a self-rating 
approach, are by far the most commonly applied during 
individual and team SAW assessments [10].  

B. Sensitivity Analysis 
As in this paper to develop the situation knowledge-

base, DOOBNs were relied, therefore a partial validation 
can be investigated by a sensitivity analysis according to 
the following three axioms [11]: 

• A slight increase/decrease in the prior subjective 
probabilities of each parent node should certainly 
result in the effect of a relative increase/decrease 
of the posterior probabilities of the child node. 

• Given the variation of subjective probability 
distributions of each parent node, its influence 
magnitude to the child node values should keep 
consistency. 

• The total influence magnitudes of the combination 
of the probability variations from x attributes 
(evidence) on the values should be always greater 

                                                           
1 Situation Awareness Global Assessment Technique 
2 Situation Awareness Rating Technique 

than the one from the set of x-y ሺݕ ∈  ሻ attributesݔ
(sub-evidence). 

V. CONCLUSION AND FUTURE WORK 

This paper has presented a model-driven SADSS 
based on the identified SAW requirements, DOOBNs and 
fuzzy risk analysis concept. The proposed SADSS 
includes four major elements. First, it consists of a 
situation data collection component, which provides the 
new information of currents situations from SCADA 
monitoring system. Second, it includes a situation 
knowledge-base based on DOOBNs. Third, the situation 
analysis based on current BN models provides the risk 
level of situations to show the operator that the current 
risk level is acceptable or not. Also it can show the 
possible future state of every situation. Fourth, the 
SADSS enjoys a GUI. Situation analysis processes are 
often distributed in nature and involve multiple operation 
operators that observe and react to events distributed in 
time and space, so the future direction of the research is 
to extend the proposed system to a distributed system that 
applies a team situation awareness concept. 
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