
Considering Partially Developed Artifacts in 
Change Impact Analysis Implementation 

 
Nazri Kama and Sufyan Basri 

Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia 
Email: nazrikama@ic.utm.my, msufyan4@live.utm.my 

 
 
 

Abstract—It is important to manage the changes in the 
software to meet the evolving needs of the customer and 
hence, satisfy them. Accepting too many changes causes 
delay in the completion and it incurs additional cost. One 
type of information that helps to make the decision is the 
prediction of the number of classes affected by the changes 
or change impact analysis. Current impact analysis 
approaches assume that all classes in the class artifact are 
completely developed and the class artifact is used as a 
source of analysis since it represents the final user 
requirements. However, these assumptions are impractical 
for impact analysis in the software development phase as 
some classes in the class artifact are still under development 
or partially developed that leads to inaccuracy. This paper 
presents a novel impact analysis approach to be used in the 
software development phase. The significant achievements 
of the approach are demonstrated through an extensive 
experimental validation using several case studies. The 
experimental analysis shows improvement in the accuracy 
over current impact analysis results.  
 
Index Terms—Impact analysis, class interaction, 
requirement interaction, traceability, software development 
 

I. INTRODUCTION 

Current impact analysis techniques include static 
analysis techniques [1] [2] [3] [4] and dynamic analysis 
techniques [5] [6] [7] [8]. These techniques are mainly 
developed for the software maintenance phase. The 
implementation of these techniques is based on the 
assumptions that: (1) all classes in the class artifacts are 
completely developed; and (2) the class artifact is used as 
a source of analysis since it represents the final forms of 
user requirements [9]. Unfortunately, these assumptions 
are not practical for implementing impact analysis in the 
software development phase since some classes in the 
class artifacts are still under development or partially 
developed [10]. 

The existence of partially developed classes in the 
class artifacts causes several problems to these static 
analysis and dynamic analysis techniques. The static 
analysis technique faces a problem related to the accuracy 
of program static information (i.e., class interactions) that 
is generated from source code through reverse 
engineering. The generated class interactions that involve 

partially developed classes may not represent the actual 
class interactions as some of the interactions have not 
been developed yet. On the other hand the dynamic 
analysis techniques tend to produce inaccurate method 
execution paths that are generated from source code 
through reverse engineering. This is because some 
method execution paths that involve partially developed 
classes may have not been developed yet. The inaccuracy 
of the generated program static information from the 
static analysis technique and method execution paths 
from the dynamic analysis technique indirectly lead to 
inaccuracy of impact analysis results. 

We propose a new approach to perform impact 
analysis during software development. Our approach 
combines current static and dynamic analysis techniques, 
and supplements actual class interactions derived from 
source code with inferred class interactions derived from 
the requirements.  

This paper is laid out as follows: Section 2 justifies 
past related works. Next, Section 3 describes the new 
impact analysis approach. Thereafter, Section 4 and 
Section 5 present evaluation strategy and results. Finally, 
conclusion and future work are explained Section 6 and 
Section 7.  

II. RELATED WORK 

One of the most referred definitions of impact analysis 
is a process of identifying potential consequences of a 
change, or estimating what needs to be modified to 
accomplish a change [11].  

There are two main perspectives to impact analysis 
which are the dependency analysis and the traceability 
analysis. Typically, the dependency analysis is also 
known as a program analysis. The program analysis 
focuses on identifying relationships among class artifacts 
or source codes by exploring the internal structure of the 
codes [11]. This analysis aims to determine what 
elements in the source codes could be potentially affected 
by a change. There are many types of program analysis 
techniques that have been introduced, such as the control 
dependency and the data dependency [12]. The control 
dependency uses a program’s conditional structures for 
the analysis whereas the data dependency analyses the 
program’s variable. 

Comparatively to the program analysis, the traceability 
analysis is the analysis of relationships between software 
artifacts across different software phases. Since this 

 

Manuscript received October 7, 2013; revised December 2, 2013;
accepted January 8, 2014. 

2174 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2174-2179



analysis involves various software artifacts across 
different software phases, some researchers use this 
analysis to support impact analysis activity for the 
software development phase [13] [14]. The difference 
between this analysis and the program analysis is that this 
analysis focuses on the dependencies between software 
artifacts in different software phases instead of a single 
software artifact. There are two types of traceability 
analysis which are the Pre-traceability analysis and the 
Post-traceability analysis [15]. The pre-requirement 
traceability provides a mechanism to verify that all 
requirements have been described in a formal 
requirement specification document.  On the other hand, 
the post-requirement traceability provides a mechanism 
to ensure all requirements in the formal requirement 
specification document have been implemented and how 
they have been implemented in the software.  

Much of the work on impact analysis has been limited 
to source code analysis [5] [8] [11] using the dependency 
analysis approach. Relying on the source code analysis 
does not account for the overall impact to a software 
project [1] [16]. Software artifacts such as design and test 
artifacts should be kept up-to-date according to the 
change. This indirectly shows that these software artifacts 
are part of the impacted artifacts by the change. Thus, to 
identify thorough consequences of making a change in a 
software project, an effective combination between the 
traceability analysis and the dependency analysis is 
important.   

III.  A NEW CHANGE IMPACT ANALYSIS APPROACH 

This section describes an overall structure of a new 
impact analysis approach for the software development 
phase (will be called the Software Development Phase 
Change Impact Analysis (SDP-CIA)). The new approach 
is a direct extension of the Class Interaction Prediction 
with Impact Prediction Filters (CIP-IPF) technique [14]. 
The difference between the CIP-IPF technique [14] and 
this approach is the inclusion of the dynamic analysis 
technique in the impact analysis process implementation. 
In brief, there are two main stages in the approach which 
are: (1) Stage 1- Developing the program static 
information (i.e., class interactions prediction) and; (2) 
Stage 2- Performing impact analysis.  

A.  Stage 1: Developing Class Interactions Prediction 
This approach uses a predictive technique to develop 

class interactions prediction model. In brief, the new 
predictive technique develops the class interactions 
prediction based on two analyses which are: (1) 
significant object interactions analysis in the requirement 
artifact; (2) design patterns analysis in the design artifact. 
The first analysis analyses the significant object 
interactions in the requirement artifact to develop an 
initial class interactions prediction via horizontal 
traceability links. For the horizontal traceability links, the 
new predictive technique refines the selected current 
technique which is the Rule-based technique [17] [18].  

The second analysis is the design patterns analysis. 
This analysis is considered as an important analysis for 

the new predictive technique as the current techniques 
[19] [20] [21] do not exploit the design artifacts. This 
analysis modifies the initial class interactions prediction 
produced by the first analysis according to design 
patterns. At this moment, this stage performs the analysis 
according to the Boundary-Controller-Entity (BCE) 
design pattern only. However, the developed steps for 
this analysis are flexible in that it can also be used to 
implement other design patterns analyses. 

There are four processes in this stage which are: (1) 
Extracting software artifact elements process; (2) 
Detecting traceability link process; (3) Developing initial 
class interactions prediction process; and (4) Modifying 
the initial class interactions prediction. 

B.  Stage 2: Performing Impact Analysis 
This stage identifies a set of potential impacted classes 

using the class interactions prediction (Stage 1 result) 
according to change requests. There are two main 
processes in this stage which are the impact analysis 
process and filtration process. 

Impact Analysis Process: There are three steps in this 
process which are: Step 1: Identifying a set of impacted 
requirements; Step 2: Identifying a set of impacted design 
classes; and Step 3: Identifying an initial set of potential 
impacted classes. The outcome of this process is an initial 
set of impacted classes that will be used by the next 
process (the filtration process) to filter false impacted 
classes in the initial set of impacted classes if they exist.  

Filtration Process: This process eliminates some 
typically false results generated by the impact analysis 
process. There are two filtration levels in this process 
which are the Class Dependency Filtration (CDF) level 
and the Method Dependency Filtration (MDF) level.   

 
Method 1 in Class A Pseudocode:   
BEGIN (P1) 
       Temperature = ThermometerRead(41) 
       IF Temperature > 40 THEN 
            PRINT "It's HOT!" 
       END IF 
   END (P1) 

Method 2 in Class B Pseudocode:   
   BEGIN ThermometerRead(Source 
insideOrOutside) 
        // to be developed 
        RETURN 
   END ThermometerRead 
 

 
Figure 1. Example of stub 

 
The CDF level implements the static analysis on the 

initial set of potential impacted classes produced by the 
impact analysis process. This implementation is 
important by the fact that some interaction links in the 
initial set of potential impacted classes have no change 
impact value. The interaction link that has no change 
impact value means that if change happens to one side of 
two interacting classes, the other class will not be 
affected. This is because the other class does not require 
the changed class for its implementation.  

The MDF level performs another filtration on the 
filtered set of potential impacted classes produced by the 
CDF level. In brief, all method execution paths from the 
filtered set of potential impacted classes will be extracted 
and further analysed to eliminate false impacted classes. 
We use the backward and forward analysis technique 
from [5] for the elimination technique. This level can be 
considered as the dynamic analysis level as it uses the 

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2175

© 2014 ACADEMY PUBLISHER



method execution paths to identify potential impacted 
classes. 

Generally, most dynamic analysis techniques [6] [7] 
[22] [23] consist of two main steps in its implementation. 
These steps are extracting method execution paths from 
the application and analysing the generated method 
execution paths to identify a set of potential impacted 
classes (according to change request). The first step 
focuses on generating method execution paths from 
completed classes using a path generator tool. There are 
many existing path generator tools that can be used for 
the generation such as Code Surfer [24] or IBM Rational 
Application Developer [25]. The next step analyses the 
generated method execution paths to detect a set of actual 
impacted classes according to change requests using 
detection technique such as the backward or forward 
technique from [5], the global tracking-based algorithm 
and the influence graph-based algorithm from [8]. 

There are two main disadvantages of the current 
dynamic impact analysis techniques from the software 
development phase perspective which are: (1) all 
techniques are developed to support change impact 
analysis in the software maintenance phase, and; (2) all 
techniques do not consider or include partially developed 
class analysis in its implementation. This second 
disadvantage occurs because of all classes in the software 
maintenance phase have been completely developed or 
fully developed. Thus, it is not important for these 
techniques to have the partially developed class analysis. 

From the dynamic impact analysis implementation in 
the software development phase, the inclusion of partially 
developed class analysis is an important feature. This is 
due to in the software development phase where situation 
of some classes in the class artifacts are still under 
construction or partially developed exist. This inclusion is 
required to ensure the accuracy of the extracted or 
generated method execution paths from class artifacts. 
This accuracy indirectly contributes to the accuracy of the 
set of potential impacted classes results. 

Prior to demonstrating the importance of the inclusion 
of partially developed class analysis in the dynamic 
analysis technique, the partially developed class is 
defined as a class that consists of some undeveloped 
methods. Typically, this undeveloped method is replaced 
using a dummy code or a stub [26]. Fig. 2 is an example 
of stub. 

 M() 
{ 

M1(); 
IF Cond1 THEN M2(); 

ELSE M3(); 
 

WHILE Cond2 DO 
{ 

M4(); 
M5(); 

} 
M6(); 

} 

M2() 
{ 

M8(); //method stub 
M10(); 

} 
 

M3 () 
{ 

M8();//method stub 
} 
 

M6() 
{ 

IF Cond4 THEN 
M7(); 

ELSE M9(); 
} 

 
M8 ()*- Partially 
Developed  
{ 
} 

 
Figure 2. Example of several methods’ algorithms 

 
Fig. 2 shows a Method 1 in Class A reads a 

temperature using a ThermometerRead function call from 
Method 2 in Class B. Since the Method 2 has yet to be 
completely developed, the ThermometerRead function is 
replaced using a default value (41) to represent the 

Method 2 functionality. In this case, the 
“ThermometerRead(41)” is considered as the stub. To 
demonstrate the importance of the inclusion of partially 
developed class analysis in the software development 
phase. 

Assuming that M8 is partially developed, M2 and M3 
consist of M8 stubs. This stub will not call actual M8 
method (see asterisk (*) symbol represents the actual M8 
implementation). Based on the path generator tool (IBM 
Rational Application Developer tool [25]), among the 
extracted method execution paths are: (1) Path 1: M, M1, 
M2, M10, M4, M5, M6, M7 and; (2) Path 2: M, M1, M3, 
M4, M5, M6, M7. However based on the actual method 
execution paths, the actual path (based on Path 1 and Path 
2) are: (1) Path 1: M, M1, M2, M8, M10, M4, M5, M6, 
M7 and; (2) Path 2: M, M1, M3, M8, M4, M5, M6, M7.  

The difference between the generated method 
execution paths using automated tool and the actual 
method execution paths can be seen after M2 execution. 
The path generator tool does not consider M8 after M2 in 
the generated paths as the statement to call M8 is 
replaced by a stub. Therefore, by looking at this example, 
there are two important aspects can be seen. First, the 
stub has caused the method execution paths generated are 
not reflected to the actual method execution paths. 
Second, the partially developed class analysis/stub 
analysis consideration is important to produce an accurate 
potential set of method execution paths. 

IV.  EVALUATION 

This section describes the evaluation strategy that is 
established to measure the effectiveness of the new 
proposed approach (will be called the “SDP-CIA” 
Software Development Phase Change Impact Analysis). 
Basically the measurement will answer a question of 
“Does the SDP-CIA give better accuracy of impact 
analysis results than the selected current impact analysis 
approaches?” The selected current impact analysis 
approaches are: (1) the Class Interactions Prediction with 
Impact Prediction Filters (CIP-IPF) approach [27] [28] 
and (2) Path Impact approach [5].  

A.  Subject and Case Study 
The subjects of the experiment were three groups of 

final year post-graduate students of software engineering 
course at Advanced Informatics School, Universiti 
Teknologi Malaysia (UTM). During their professional 
attachment session in the industry, we were involved as 
one of the software developers in these projects. We 
developed some of the modules which were then used as 
the case study. 

For the purpose of performing the impact analysis 
evaluation, the author issues a set of change requests to 
the developed modules and the impact analysis results 
according to the issued change requests are then 
identified. This experiment requires the subjects to use or 
implement three different impact analysis approaches 
which are the CIP-IPF approach [27] [28], the Path-
Impact approach [5] and the SDP-CIA. The subjects were 
given a preliminary guideline and briefing on these 

2176 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER



techniques prior to the experiment. The guideline 
includes thorough technique explanations and example of 
its implementation. 

B.  Evaluation Metrics 
This study employed evaluation metrics as described in 

[29] [30]. The reason why we choose this metrics is that 
this metric has been used by several researchers [1] [5] 
[10] to measure the effectiveness of impact analysis 
prediction. Briefly, each impacted class predictions were 
categorized according to four numbers: 

• Not Predicting and Not Changing (NP-NC): 
number of pairs of classes correctly predicted to 
not be changing 

• Predicting and Not Changing (P-NC): number of 
pairs incorrectly predicted to be changing.  

• Not Predicting and Changing (NP-C): number of 
classes incorrectly predicted to not be changing. 

• Predicting and Changing (P-C): number of 
classes correctly predicted to be changing. 

These numbers are then used to calculate: 
• Completeness value: The ratio of the actual class 

interactions or impacted classes that were 
predicted.  

• Correctness value: The ratio of the predicted 
class interactions that were actually interacting 
or impacted classes that were actually impacted. 

• Kappa value: This value reflects the accuracy or 
the prediction (0 is no better than random chance, 
0.4-0.6 is moderate agreement, 0.6-0.8 is 
substantial agreement, and 0.8-1 is almost 
perfect agreement [31].  

 

C.  Hypotheses 
A hypothesis that investigates the effectiveness of the 

new approach (to recap, we call it SDP-CIA) is 
developed. The SDP-CIA represents a combination of the 
static and dynamic analysis approaches whereby the 
selected current impact analysis approaches represent the 
independent technique (CIP-IPF- static analysis approach 
only; Path Impact- dynamic analysis approach only). If 
the combination is not effective, H0 is accepted. 
Otherwise, H0 is rejected. The hypothesis is: 

 H0: The SDP-CIAF does not give higher 
accuracy of impact analysis results than the 
selected current techniques results 

 Ha: The SDP-CIAF gives higher accuracy of 
impact analysis results than the selected current 
techniques results 

V.  EVALUATION RESULTS 

Table I shows impact analysis results produced by all 
impact analysis approaches (the CIP-IPF, the Path Impact 
technique and the SDP-CIA). 

To validate the hypothesis, the Independent T-Test 
statistical analysis is used. Two stages of analysis are 

created. The first stage compares Means results between 
the CIP-IPF approach and the SDP-CIA approach 
whereas the second stage compares Means results 
between the Path Impact technique and the SDP-CIA 
approach. 

A.  Stage 1 Analysis: The CIP-IPF Technique vs. The 
SDP-CIA 

Table II shows the Independent T-Test results. 

 
 

The null hypothesis for the Independent T-Test was 
that the Kappa mean value from both approaches are 
equal, H0: µ1=µ2. The null hypothesis is accepted if the 
Sig. (2-tailed) value is greater than 0.05. The alternative 
hypothesis was used to reject the null hypothesis if the 
Kappa means values from both approaches are not equal, 
H0: µ1≠µ2. The alternative hypothesis is accepted if the 
Sig. (2-tailed) value is less than 0.05.  

To answer the question of “Does the SDP-CIAF give 
better accuracy of impact analysis results than the 
selected current impact analysis techniques (CIP-IPF 
technique)?” the Mean results from both approaches at 
the Group Statistics box is reviewed. The results show the 
SDP-CIA value is 0.9060 and the CIP-IPF approach 
value is 0.7927. This shows that the SDP-CIA value is 
higher than the CIP-IPF approach. Thus, the values reject 
the null hypothesis (H0: The SDP-CIA does not improve 
on the CIP-IPF approach results) and accept the alternate 
hypothesis (Ha: The SDP-CIA approach gives higher 

TABLE II. 
IMPACT ANALYSIS RESULTS 

CRID
CIP-IPF Path Impact SDP-CIA 

Com
(%) 

Corr
(%) 

Kappa 
Value

Com
(%) 

Corr 
(%) 

Kappa 
Value 

Com 
(%) 

Corr
(%) 

Kappa 
Value

CR1 80 100 0.785 66.7 100 0.652 86.7 100 0.876 

CR2 81.3 100 0.821 78.6 100 0.789 92.9 100 0.935 

CR3 76.9 100 0.768 80 92.3 0.752 100 93.8 0.944 

CR4 83 94 0.795 88.7 94.1 0.85 94.4 94.4 0.903 

CR5 83 91 0.767 91.7 91.7 0.852 91.7 91.7 0.852 

CR6 82.4 100 0.832 76.5 92.9 0.721 94.1 94.1 0.842 

CR7 81.8 90 0.734 80 94.1 0.764 95 95 0.912 

CR8 80 100 0.806 78.6 100 0.787 92.9 100 0.935 

CR9 75 100 0.752 87.5 100 0.884 87.5 100 0.884 

CR10 76 100 0.77 88.2 100 0.892 94.1 100 0.947 

CR11 85.7 100 0.863 73.7 93.3 0.695 94.7 94.7 0.908 

CR12 80 100 0.773 68.8 100 0.676 87.5 100 0.884 

CR13 90.9 90.9 0.83 76.5 100 0.769 94.1 100 0.947 

CR14 83 100 0.843 77.8 100 0.784 94.4 100 0.95 

CR15 80 92 0.749 80 100 0.804 86.7 100 0.874 

TABLE I.   
INDEPENDENT T-TEST RESULTS BETWEEN THE CIP-IPF AND THE SDP-

CIA 

The Technique Means Results 
CIP-IPF Technique 0.7927 

SDP-CIA 0.9060 

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2177

© 2014 ACADEMY PUBLISHER



accuracy of impact analysis results than the CIP-IPF 
approach). 

B.  Stage 2 Analysis: The Path Impact Technique vs. The 
SDP-CIAF 

Table III shows the Independent T-Test results. 
Similarly to the Independent T-Test between the CIP-IPF 
approach and the SDP-CIA approach, the null hypothesis 
for the Independent T-Test was that the Kappa mean 
value from both approaches are equal, H0: µ1=µ2. The 
null hypothesis is accepted if the Significance (2-tailed) 
value is greater than 0.05. The alternative hypothesis was 
used to reject the null hypothesis if the Kappa means 
values from both approaches are not equal, H0: µ1≠µ 2. 
The alternative hypothesis is accepted if the Sig. (2-tailed) 
value or the rho value is less than 0.05. Thus, the SDP-
CIA approach gives higher accuracy of impact analysis 
results than the selected current impact analysis approach 
(in particular to the Path Impact technique). 

To answer the question of “Does the SDP-CIA give 
better accuracy of impact analysis results than the 
selected current impact analysis techniques? (Path Impact 
technique)?”, the Mean values from both approaches at 
the Group Statistics box is reviewed. The results show the 
SDP-CIA approach value is 0.9060 and the Path Impact 
approach value is 0.7773. This shows that the CIP-IPF 
approach value is higher than the Path Impact approach. 
Thus, the values reject the null hypothesis (H0: The SDP-
CIA does not give higher accuracy of impact analysis 
results than the Path Impact approach) and accept the 
alternate hypothesis (Ha: The SDP-CIA approach gives 
higher accuracy of impact analysis results than the Path 
Impact approach). 

VI.  CONCLUSION 

This paper contributes a new approach that can be used 
for performing impact analysis during software 
development through partially developed artifacts 
consideration in its analysis.. This approach combines 
current static and dynamic analysis techniques, and 
supplements actual class interactions derived from source 
code with inferred class interactions derived from the 
requirements. 

ACKNOWLEDGMENT 

The authors would like to thank the Lab of Advanced 
Informatics School for their offered helps, and all the 
members of the Lab for their useful discussions that 
guided us through this research. Also, to all academic 
staff and students of Advanced Informatics School who 

have been participating directly and indirectly in this 
study. The financial of this project is supported by 
Ministry of Higher Education Malaysia and Universiti 
Teknologi Malaysia under Vot No: 00K01. 

REFERENCES 

[1] S. A. Bohner and R. Arnold, Software Change Impact 
Analysis, Wiley-IEEE Computer Society Press, July, 1996. 

[2] J. Hassine, J. Rilling, J. Hewitt, and R. Dassouli, “Change 
Impact Analysis for Requirement Evolution using Use 
Case Maps,” in Proc. of the 8th International Workshop on 
Principles of Software Evolution, 5-6 Sept. 2005, pp. 81 – 
90.  

[3] M. Shiri, J. Hassine, J. Rilling, “Feature Interaction 
Analysis A Maintenance Perspective,” in Proc. of the 22nd 
IEEE/ACM International Conference on Automated 
Software Engineering, November 2007, pp. 437-440.  

[4] Y. Li, J. Li, Y. Yang, and M. S. Li, “Requirement-centric 
traceability for change impact analysis: A case study,” in 
Proc. International Conference on Software Process (ICSP 
2008)--Making Globally Distributed Software 
Development a Success Story, , Leipzig, Germany, May 
10-11, 2008, pp. 100-111.  

[5] J. Law and G. Rothermal, “Whole Program Path-Based 
Dynamic Impact Analysis,” in Proc. of the 25th 
International Conference on Software Engineering (ICSE 
2003), May 2003, pp. 308-318.  

[6] T. Apiwattanapong, A. Orso, and M. J. Harrold, “Efficient 
and precise dynamic impact analysis using execute-after 
sequences,” in Proc. of the 27th Int. Conf. on Software 
Engineering, May 2005, pp. 432-441.  

[7] A. Orso, T. Apiwattanapong, and M. J. Harrold, 
“Leveraging field data for impact analysis and regression 
testing,” in Proc. of the ACM SIGSOFT Symposium on 
Foundations of Software Engineering, September 2003, pp. 
128-137.  

[8] B. Breech, M. Tegtmeyer, and L. Pollock, “Integrating 
influence mechanisms into impact analysis for increased 
precision,” in Proc. of the 22nd International Conference 
on Software Maintenance, September 2006, pp. 55-65.  

[9] K. H. Bennet, V. T. Rajlich, “Software maintenance and 
evolution: A roadmap,” in Proc. of the Int. Conf. on the 
Future of Software Engineering, June 2000, pp. 75-87.  

[10] B. Nuseibeh, and S. Esterbrook, “Requirement engineering: 
A roadmap,” in Proc. of the Conference on the Future of 
Software Engineering (ICSE), June 2000, pp. 35-46.  

[11] R. S. Arnold and S. A. Bohner, “Impact analysis - Towards 
a framework for comparison,” in Proc. of the Int. Conf. on 
Software Maintenance, September 1993, pp. 292-301.  

[12] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural 
slicing using dependence graphs,” ACM Transactions on 
Programming Languages and Systems, vol. 12, no. 1, July, 
1998, pp. 26-60.  

[13] J. S. O’Neil, and D. L. Carver, “Analyzing the impact of 
changing requirements,” in Proc. of the IEEE International 
Conference on Software Maintenance, November 2001, pp. 
190-195.  

[14] N. Kama, T. French, and M. Reynolds, “Impact analysis 
using class interactions prediction approach,” in Proc. of 
the 9th International Conference on New Software 
Methodologies, Tools and Techniques, October 2. 

[15] O. Gotel, Contribution Structures for Requirements 
Traceability, PhD. Imperial College of Science, 
Technology and Medicine, Department of Computing, 
University of London, August 1995. 

TABLE III 
INDEPENDENT T-TEST RESULTS BETWEEN THE PATH IMPACT AND THE 

SDP-CIA 

The Technique Means Results 
Path Impact  0.7773 
SDP-CIA 0.9060 

2178 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER



[16] A. L. Pfleeger, S. A. Bohner, “A framework for software 
maintenance metrics,” in Proc. of the Int. Conference on 
Software Maintenance, November 1990, pp. 320-327.  

[17] G. Spanoudakis, “Plausible and adaptive requirements 
traceability structures,” in Proc. of the 14th International 
Conference on Software Engineering and Knowledge 
Engineering, July 2002, pp. 135-142.  

[18] G. Spanoudakis, A. Zisman, E. P. Minana, and P. Krause, 
“Rule-based generation of requirements traceability 
Rrelations,” Journal of Systems and Software, vol. 72, no. 
2, July 2004, pp. 105–127.  

[19] R. C. Sharble and S. S. Cohen, “The object-oriented 
brewery: A comparison of two object-oriented 
development methods,” ACM Software Engineering Notes, 
vol. 18, no. 2, April 1993, pp. 60-73.  

[20] A, Bahrami, Object Oriented Systems Development, 
McGraw-Hill 

[21] Y. Liang, “From use cases to classes: A way of building 
object model with UML,” Journal of Information and 
Software Technology, vol. 45, no. 2, February 2003, pp. 
83-93.  

[22] L. Huang and Y. T. Seong, “Dynamic impact analysis 
using execution profile tracing,” in Proc. of the 4th 
International Conference on Software Engineering 
Research, Management and Applications, August 2000, pp. 
237-244.  

[23] L. Huang, and Y. T. Seong, “Precise dynamic impact 
analysis with dependency analysis for object-oriented 
programs,” in Proc. of the 5th ACIS International 
Conference on Software Engineering Research, 
Management & Applications, August 2007, pp. 374-384.  

[24] R. C. Metzger, Debugging by Thinking: A 
Multidisciplinary Approach, Elsevier Digital Press. 

[25] J. Fung, C. Lau, E. Mckay, V. Birsan, C. Yu, J. Winchester, 
G. Mendel, and F. Flood, An Introduction to IBM Rational 
Application Developer: A Guided Tour (IBM Illustrated 
Guide Series), Mc Press. 

[26] E. Dustin, Effective Software Testing: 50 Specific Ways to 
Improve Your Testing, Addison-Wesley. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

[27] N. Kama, T. French, and M. Reynolds, “Considering 
patterns in class interactions prediction,” In Advances in 
Software Engineering, Springer Berlin Heidelberg, vol. 
117, pp. 11-22.  

[28] N. Kam and F. Azli, “A change impact analysis for the 
software development phase,” in Proc. of the 19th Asia-
Pacific Software Engineering Conference (APSEC 2012), 
December 2012, pp. 583-592.  

[29] A. Finkelstein and J. Kramer, “Software engineering: A 
roadmap,” in Proc of the Conference on the Future of 
Software Engineering, October 2000, pp. 3-22.  

[30] N. Kama, T. French, and M. Reynolds, “Predicting class 
interactions from requirement interactions: Evaluating a 
new filtration approach,” in Proc. of the IASTED 
International Conference on Software Engineering, 
February 2010, pp. 109-116.  

[31] J. Cohen, “A coefficient of agreement for nominal scales,” 
Journal of Educational and Psychological Measurement, 
vol. 20, no. 1, pp. 37-46, April 1960.  

 
Nazri Kama obtained his first degree at 
Universiti Teknologi Malaysia (UTM) in 
Management Information System in 
2000, second degree in Real Time 
Software Engineering at the same 
university in 2002 and his PhD at The 
University of Western Australia (UWA) 
in Software Engineering in 2010. He has 
a considerable experience in a wide 

range on Software Engineering area. His major involvement is 
in software development.  
 

Sufyan Basri obtained his first degree at 
Universiti Teknologi Malaysia (UTM) in 
Electrical Engineering (Mechatronic) in 
2001, second degree in Real Time 
Software Engineering at the same 
university in 2003. He is currently 
pursuing his PhD at UTM and his 
research interest includes Software 
Engineering, Change Management and 

Effort Estimation. 
 
 

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2179

© 2014 ACADEMY PUBLISHER




