
A Completeness Optimized Algorithm for Closed
Model Clone Detection

Zhengping Liang, Yiqun Cheng, Jiajia Tan, Jianyong Chen
College of Computer Science & Software Engineering, Shenzhen University Shenzhen Guangdong 518060, China

Email: liangzp@szu.edu.cn

Abstract—The detection of model clone has been an active
research area in recent years. The closed clone instances
contain all the information of model clones so they can
ensure the completeness of detection results essentially. In
order to improve the degree of completeness in clone
detection, a novel model clone detection algorithm named
CL_MCD (Closed Model Clone Detection) is proposed.
CL_MCD focuses on exactly matched clones and aims to
find all the closed clone instances. The main innovation of
CL_MCD is in the detection phase. Every time after finding
a new node pair with the same label in the breadth-first
search of model graph, CL_MCD transforms all the node
pairs into a clone pair, and puts the clone pair into a set that
contains all the candidate clone instances if its size is greater
than or equal to the size of minimum clone. Then every
candidate clone instance is compared with all the others in
the set. If a candidate clone instance is one part of any other
instance, it is deleted. After the filtering, redundant clone
instances are removed and only the closed clone instances
are kept in the set. Theoretical analysis and experimental
studies demonstrate that CL_MCD has higher degree of
completeness than CloneDetective.

Index Terms—Simulink model, model clone, closed model
clone, model clone detection

I. INTRODUCTION

In recent years, model-driven software development
(MDSD) has become a popular way of creating software
systems [1,2]. Developers can define software systems on
a higher level of abstraction by MDSD. Matlab/Simulink
is a popular Model-Driven Engineering tool for designing
and modeling software in many products from small
electronic control software to large-scale flight control
systems [3]. Models are the collection of logical entities
which describe a system at multiple levels of abstraction
and from a variety of perspectives. As models are used to
generate code, they can be regarded as a higher level
programming language.

Previous studies in [4] showed that most of the reasons
leading to clones in code-based development are also
valid for MDSD. Therefore, it is not surprising that
simulink models often contain clones. Model clones are
taken as the exactly or similar matched fragments in
simulink models [5]. Similar to traditional code clones,
model clones in simulink models require additional

efforts for maintenance and management in most cases.
For example, changes to one place must be carried out
multiple times for all occurrences of clones. Thus, the
identification and elimination of model clones is
important to improve the maintainability of the system
under development. Moreover, in the case of product
lines construction, it is a core requirement to identify the
reusable pieces of functionality and integrate them into a
library for future reuse.

The detection of model clones has been an active area
of research in recent years. There exist several
approaches to detect clones in MDSD [4-9].Among them,
CloneDetective [4] which is included in the open-source
tool of ConQAT represents a classical clone detection
algorithm. However, it has low degree of completeness in
detection because the CloneDetective mainly focuses on
the maximal clones and cannot reveal hidden clone
instances which usually have smaller size and are covered
by larger clone instances.

This paper presents a novel clone detection algorithm,
i.e., CL_MCD (Closed Model Clone Detection), for
exactly matched clones in Matlab/Simulink models. The
core idea of CL_MCD is that it aims to find all of the
closed clone instances in the phase of detection.
Fundamentally, the closed clone instances can ensure the
completeness of detection results because they contain all
the information of exact model clones. Besides,
theoretical and experimental studies also demonstrate that
CL_MCD can find some hidden clones that
CloneDetective has failed to detect. Therefore, its
completeness is better than CloneDetective. Moreover, its
running time is reasonable and acceptable.

The remainder of this paper is organized as follows. In
section 2, we briefly describe MATLAB/Simulink graph
and model clone representation. The process of model
clone detection and clone detection problem are presented
in section 3. We analyze limitations of CloneDetective
and present CL_MCD in section 4. Section 5 performs
practical evaluations of the detection algorithm CL_MCD
and compares it against CloneDetective. Related works
are discussed in section 6. Conclusion and future works
appear at last section.

II. MATLAB/SIMULINK GRAPH AND MODEL CLONE
REPRESENTATION

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2125

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2125-2132

Figure 1. Clone between discrete saturated PI-controller and PID-controller [4]

MATLAB is a software package provided by The
MathWorks Inc [10]. It can be extended by several
toolboxes used for control systems, signal processing and
optimization. Simulink is one of toolboxes that provide a
graphical environment for designing, modeling and
simulating dynamic systems via data flow graphs.
Simulink also offers an extensive library of predefined
function and parameter blocks for linear, non-linear,
discrete and hybrid systems [11].

In Simulink, users can construct systems models
graphs by using instances of these function blocks that
are connected to each other by signal flow lines. A block
instance can be associated with a set of attributes
depending on the block’s type. With Real-Time
Workshop (RTW) tools, systems models graphs can be
used to generate source code of C or C++ etc. They can
be regarded as a higher level programming language.
Figure 1 shows an example of a Simulink model of two
controllers [4]. The shapes (squares, triangles, circles)
represent function blocks and the lines between those
blocks represent the flow of data.

An important feature of Simulink is that users can
combine sets of blocks and lines into subsystems and
create higher-level domain abstractions like a PID
controller [12]. This makes it possible to create very large
and complex model without losing the overview. Models
are partitioned into a layered hierarchy by using
subsystems. If a subsystem shall be used at multiple
locations, it should be externalized as a library element.
To use the functionality provided by a library element, a
model needs to reference the library element together
with a set of input parameters.

Previous studies showed that with the nature of using
graphical editors for models, it is not surprising that
clones in simulink models often exist [4]. Similarly to the
definition of traditional code clones, the exactly or similar
matched fragments in simulink models are called model
clones. For example, the two colored parts in Figure 1 are
clones of each other, which are usually created by a
sequence of copy, paste, and modify steps. Although
sometimes clones are unavoidable and can't be eliminated
completely, in most cases clones in simulink models
require additional efforts for maintenance and
management [5]. For example, changes to one place must
be carried out multiple times for all occurrences of clones.
Thus, in order to improve the maintainability of the
system under development, it is useful to identify and
eliminate model clones. Moreover, in the case of product
lines construction, it is a core requirement to identify the
reusable pieces of functionality and integrate them into a
library.

III. MODEL CLONE DETECTION

This section briefly describes the process of model
clone detection at first, and then defines the clone
detection problem for MATLAB/Simulink models.

A. The Process of Model Clone Detection
Generally clones are detected through three phases [4]:

preprocessing and normalization, detection, and
postprocessing. Figure2 shows the general process of
model clone detection for MATLAB/Simulink models.

Figure 2. The process of model clone detection

In the process of model clone detection, simulink
models must be preprocessed and normalized at first. The
result of this step is a labeled and directed multi-graph
with G= (V, E, L). The detection phase is the core content
in the model clone detection. It works on the labeled
graph produced during the previous phase. The main task
of this phase is generating candidate clone instances, and
then grouping them into clone groups. Postprocessing
maps the clone results found at the detection phase with
the simulink models. In order to analyze and manage the
results of clone detection easily, we should generate
readability clone detection report and show the results of
clone detection in an intuitive, easy to accept and
understandable way.

B. Formulation on the Clone Detection Problem
Simulink models can be represented as a labeled and

directed multi-graph with G= (V,E,L) after preprocessing
and normalization. Now let us formulate the clone
detection problem for MATLAB/Simulink models.

Definition 1(Clone Instance)
A clone instance is defined as a weakly connected sub-

graph 1g of the model graph G= (V,E,L) that is isomorphic
or approximate to at least one other sub-graph 2g of
G with regard to the labeling function L .

Definition 2(The Support of Clone Instance)
The support of clone instance g is denoted as sup(g):

sup(g)=|M|, and ,g M∈ where |M| is the number of clone

2126 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

instances in the clone group M that contain the clone
instance g.

Definition 3(Closed Clone Instance)
A clone instance g in clone group M is called closed

clone instance if and only if there are not exist a clone
instance g′ in another clone group N, such that the
following conditions hold: () ()g g sup g sup g′ ′⊂ ∧ = .

The definition of closed clone instance is similar to the
closed frequent sub-graph in graph mining. Closed clone
instances contain all the information of model clones and
they can ensure the completeness of detection result
essentially [13].

Definition 4(Exact Clone Pair)
Two weakly connected and directed sub-graphs

G1=(V1,E1) and G2=(V2,E2) of G=(V,E,L) are considered
exact clone pair if they are isomorphic with regard to the
labeling function L, and V1, V2 aren’t overlapping. The
clone in a exact clone pair is usually called exact clone.

Definition 5(Clone Group)
A clone group is a set that contains at least two clone

instances and any two clone instances in the same clone
group form a clone pair.

Definition 6(Covered Group)
A clone group M is said to be covered by another

group N if and only if 1 ,g M∀ ∈ 2 1 2() ()g N g g∃ ∈ ∧ ⊆ .
The g1 is a clone instance in clone group M.The g2 is a
clone instance in clone group N. If a clone group M is covered by another group N, M is
redundant because the information of its member clones
is also contained in the group N. In this case, M can be
deduced from N.

IV. CLOSED MODEL CLONE DETECTION ALGORITHM
(CL_MCD)

This section provides an overview of the exact clone
detection algorithm CloneDetective at first, then analyzes
the limitations of CloneDetective and presents a closed
model clone detection algorithm of CL_MCD that base
on CloneDetective captions

A. CloneDetective
CloneDetective is a classical model clone detection

algorithm of ConQAT tool [4] in MDSD. It was the first
proposed exact model clone detection algorithm that
enumerates all maximal exact clones in MATLAB/
Simulink models. The process of model clone detection
in CloneDetective is the same with the description in
section 3.1.

The result of the preprocessing and normalization
phase is a labeled, directed multi-graph with G=(V,E,L).
After preprocessing and normalization, CloneDetective
runs in two distinct steps in the phase of detection: firstly,
all clone pairs are identified; secondly, clone pairs are
clustered to form clone groups.

In the first step, the algorithm enumerates all pairs of
clones, i.e., all pairs of sub-graphs that are isomorphic.
To do that, the algorithm iterates over all possible pairs of
nodes and proceeds in a breadth-first search manner from
there. The authors do not use an exhaustive search.

Instead, they use a heuristic to reduce the time
complexity. While estimate the similarity of a pair of
nodes, the heuristic reference the normalization labels as
well as the structure of the neighborhood of both nodes.
Moreover, the heuristic play a major role to quickly find
other pairs of nodes that can be combined with the
current pair of nodes to a clone pair in the course of the
algorithm iterates over all possible pairings of nodes. In
the second step, the CloneDetective provides a method to
combine clone pairs to a clone class. It uses a union-find
structure to build clone groups. More information about
CloneDetective can be found in [4].

B. Closed Model Clone Detection Algorithm of
CL_MCD

Although CloneDetective is the classical clone

detection algorithm, it has several limitations [4,5]. The
most important limitation is its low degree of
completeness in detection. As CloneDetective always
tries to build maximal clones, some hidden clone
instances and clone groups are not reported. Those hidden
clones are also valuable to construct reusable models
library in the way of model-driven software development
and the completeness of clone detection results in
CloneDetective will decrease if without them. In this
section, we present CL_MCD that can detect the hidden
clone, as CloneDetective has failed to detect.

Firstly we present an example about some hidden
clone groups and clone instances that CloneDetective has
failed to detect in Figure 3. The clone instances are
represented by geometric figures of rectangles, circles,
and triangles. In Figure 3(a), CloneDetective does not
find the star shaped clone group S=(s1,s2,s3) whose
elements have smaller sizes and only reports three clone
groups R=(r1,r2), T=(t1,t2) and C=(c1,c2) (represented as
shapes). Because CloneDetective always tries to build
maximal clones, it only can find clone pairs with the sizes
as large as possible, and smaller clone pairs are not
reported if each clone pair is covered by a bigger clone
pair. For example, the case starting from nodes in stars of
s1 and s2 identifies the rectangles clone group R=(r1,r2),
the case starting from nodes in stars s2 and s3 identifies
the circles clone group C=(c1,c2), and the case starting
from nodes in stars s1 and s3 identifies the triangle clone
group T(t1,t2).

(a) (b)

Figure 3. (a) Example that star shaped clones are not reported (b)
Example that star shaped clones are reported partly

According to the definition 3 and 6 in section 3.2, it is
easy to know that the clone instances of s1, s2, s3 in clone
group S=(s1,s2,s3) are closed clone instances, and the
clone group S=(s1,s2,s3) is not covered by clone groups R,
T, C. Therefore, they should also been reported as clone
group S=(s1,s2,s3). However, the clone group S=(s1,s2,s3)

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2127

© 2014 ACADEMY PUBLISHER

is lost in the detection of CloneDetective. Evidently, the
completeness of clone detection results in CloneDetective
will decrease.

The same as the analysis of Figure 3(a),
CloneDetective reports three clone groups R=(r1,r2),
T=(t1,t2) and S=(s2,s3) (represented as shapes) in Figure
3(b): the case starting from nodes in stars of s1 and s2
identifies the rectangle clone group R=(r1,r2), the case
starting from nodes in stars s1 and s3 identifies the
triangle clone group T=(t1,t2), and the case starting from
nodes in star s2 and s3 identifies the star clone group
S=(s2,s3). It is found that the clone instance s1 is lost.
However, the clone instance s1 also has clone
relationship with clone instance s2 and s3. Thus we should
report clone group S=(s1,s2,s3) instead of S=(s2,s3). In this
case, although there aren’t clone groups be lost, some
clone instances are still lost. It means that for
CloneDetective, the completeness of clone detection will
decrease.

Through above analysis, we can see the hidden clones
of s1, s2, s3 in Figure 3(a) and the hidden clone s1 in
Figure 3(b) are closed clone instances and they are also
useful for showing all the information of model clones.
However, those valuable hidden clones are discarded by
CloneDetective because they are not maximal clones. So
closed clone instance is better than maximal clone in the
aspect of completeness of model clone detection.
Therefore, we had better find all the closed clone
instances instead of maximal clones in model clone
detection.

Based on the above findings, we present CL_MCD, a
model clone detection algorithm that has better
performance in the aspect of completeness than
CloneDetective. Figure 4 presents the process of clone
detection with algorithm CL_MCD.

Figure 4. The process of clone detection with CL_MCD

The core of innovation in CL_MCD is at the step of
generating all the candidate clone instances in Figure 4.
In order to find all the closed clone instances, the breadth-
first search of model graph is used. Every time after
finding a new node pair with the same label, CL_MCD
transforms all the current node pairs into a clone pair, and
puts this clone pair into a set that contains all the
candidate clone instances if its size is greater than or
equal to the size of minimum clone. CL_MCD aims to

find closed clone instance and can find the valuable
hidden clone that CloneDetective has failed to detect,
such as the clone group S=(s1,s2,s3) in Figure 3(a), and
the clone instance s1 in Figure 3(b). CL_MCD has higher
degree of completeness than CloneDetective in clone
detection.

The Pseudo code of CL_MCD is presented in Figure5.
D denotes a set of already visited node pairs. S is a set of
nodes seen in the current breadth-first search. Set C
contains all node pairs of the current clone. CIS is a set
containing all candidate clone instances. C_CIS is a set
containing all closed clone instances. CG denotes the set
of clone groups.

CL_MCD also detects clones through three phases:
preprocessing, detection and postprocessing. Let’s
analyze each phase of CL_MCD now. Generally,
simulink models must be preprocessed and normalized at
first in the process of model clone detection, and the
result of the preprocessing phase is a labeled, directed
multi-graph G=(V,E,L) where a node represents a block
and an edge represents a signal connection line. This
preprocessing phase is carried out in the same manner as
CloneDetective.

Input: Model graph G=(V,E,L)
Output: Clone Group Set CG

1. :D = ∅ , :CIS = ∅ , _ :C CIS = ∅
2. for each (,)u v V V∈ × with () ()u v L u L v≠ ∧ = do

 if { },u v D∉ then

3. Queue { }: (,)Q u v= , { }: (,)C u v= , { }: ,S u v=
4. while Q ≠ ∅ do
5. dequeue pair (w, z) from Q
6. from the neighborhood of (w, z), build a list of node

pairs P with equivalent labels
7. for each (,)x y P∈ do
8. if (,)x y D∈ then continue with loop at line 2
9. if { },x y x y S≠ ∧ ∩ = ∅ then
10. { }: (,)C C x y= ∪ , { }: ,S S x y= ∪
11. enqueue (x, y) in Q
12. report node pairs in C as clone pair {p1,p2}
13. { }

1 2
: ,CIS CIS p p= ∪

14. :D D C= ∪
15. _ : ()C CIS Filter CIS=
16. (_)CG Group C CIS=
17. Return CG

18. Function Filter(CIS)
19. for each c CIS∈ do
20. if () ()c c sup c sup c′ ′⊆ ∧ = the c CIS′ ∈ then
21. : ()CIS CIS clones c= −
22. _ :C CIS CIS=

Figure 5. The pseudo code of CL_MCD

The phase of detection is the main innovation of
CL_MCD. Instead of only finding maximal clone
instances as CloneDetective, CL_MCD aims to find all of
the closed clone instances, on account of closed clone
instances are better than maximal clone instances at the
side of completeness of detection results. The definition
of closed clone instance is presented in section3.2.
According to the previous analysis, some hidden clone

2128 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

instances that can’t be detected by CloneDetective are
also closed clone instances and all the information of
model clones are contained in closed clone instances, so
the closed clone instances can ensure the completeness of
detection results essentially.

As shown in Figure 4, the detection phase of CL_MCD
mainly contains three steps: Firstly, generating the set
CIS that contains all candidate clone instances. Secondly,
filtering CIS to obtain C_CIS that contains all the closed
clone instances. Thirdly, grouping the C_CIS into clone
groups. Through these three steps, CL_MCD can find all
of the closed clone instances, each step of detection phase
in CL_MCD is analyzed as follows.

In the first step of detection, the CL_MCD generates
the set CIS that contains all candidate clone instances.
CL_MCD iterates over all possible node pairs and uses
the pairs with the same label as the starting point of a
breadth-first search to find other node pairs that can be
combined with the current node pairs to form a candidate
clone pair(lines 2-14). In this step, in order to generate
the set CIS that contains all of the candidate clone
instances, every time after putting a new node pair into
the queue of Q, CL_MCD transforms all the current node
pairs in set C into a clone pair, and put this clone pair into
the set CIS if its size is greater than or equal to the size of
minimum clone(lines 13-14).Through this way, all of the
candidate clone instances can be detected by CL_MCD,
and of course the hidden clone instances of s1, s2, s3 in
Figure3 (a),and the clone instance s1 in Figure3 (b) can
also be found. Therefore, CL_MCD can ensure the
completeness of detection results essentially. However,
CloneDetective does that until the queue of Q is empty,
so it can only find maximal clone instance and all of the
hidden clone instances which usually have smaller size
and are covered by larger clone instances are lost. Such as
the hidden clone instances s1, s2, s3 shown in Figure 3(a),
and the clone instance s1 in Figure3 (b) are lost.

Analysis showed that in the first step of detection some
clone instances incompletely covered groups are also put
into CIS. These completely covered clone instances are
redundant because all the information of them are also
contained in the bigger clone instances covering them. By
this means, we should remove them in the filtering step
(line 16). In the filtering step, we remove the redundant
clone instances in CIS and only keep all the closed clone
instances to form C_CIS. It is carried out as follows.
Firstly it sorts all the clone instances of CIS in the order
of increasing clone sizes, and then for every two different
size clone instances of c and in CIS, if, the clone instance
isn’t closed clone instance but a redundant clone instance.
Therefore, C and all the clone instances which have clone
relationship with clone instance c should be removed
from CIS. The result of filtering step is that the set of
C_CIS only contain all of the closed clone instances. In
the third step of detection phase, we obtain the set of
clone groups CG by grouping C_CIS (line 17).In this step,
all closed clone instances in C_CIS are inserted into a
hash table with their label as a key. The hash table
consists of several lists, where each list contains the
closed clone instances that have the same key. Because

the closed clone instances that have the same key are
isomorphic, each list represents a clone group.

The postprocessing phase maps the results of clone
detection with the original simulink models. Generally,
this phase can also be used to order clones or discard
some of them. In the simplest case, all the results of clone
are just reported to the user in the order of increasing
clone sizes. Postprocessing phase should show the clones
in an intuitive, easy to accept and understandable way, so
that users can analyze and manage the results of clone
detection easily.

V. EMPIRICAL EVALUATION

To evaluate performance of CL_MCD, we do several
experiments with both CL_MCD and CloneDetective and
compare their performance each other.

A. Experiment Settings
All experiments were performed on a desktop

computer running Windows XP with an Intel Pentium 4
CPU 2.1 GHz and 3GB RAM. We evaluate the
performance of CL_MCD in term of completeness and
running time.

For comparison, We choose four public simulink
model-based systems in table 1 as experimental case that
were also used by Deissenboeck et al. [4] and by Pham et
al. [5]. The systems are publicly available from Matlab
Central.Table1 shows the sizes of these systems where
#Bl denotes the total number of blocks, #Li denotes the
total number of connection lines, #Ty denotes the total
number of used block types. The minimum clone size for
both CloneDetective and CL_MCD is 5.

B. Completeness
We conduct experiments to compare the clone

detection results between the CL_MCD and
CloneDetective. In our experiment, the level of clone
detection results is evaluated from completeness and
running time.

TABLE I.

THE SIMULINK MODEL-BASED SYSTEMS AS CASE STUDY

System #Bl #Li #Ty

SIM 428 415 47

MUL 475 576 44

SEM 1741 2029 86

ECW 2312 2274 68

Table 2 shows the clone detection results of both
CL_MCD and CloneDetective. #Cl is the numbers of
correctly detected clone instances after reviewing by the
definition of clone instance. #CG is the numbers of
correctly detected clone groups after reviewing by the
definition of clone group. #T is running time. The running
time in the table is the only the times taken by the clone
detection algorithms. The time for preprocessing and
postprocessing is not included in the displayed numbers.
#hid-Cl is the numbers of hidden clones that CL_MCD
can find but CloneDetective has failed to detect.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2129

© 2014 ACADEMY PUBLISHER

TABLE II.

CLONE DETECTION RESULTS OF CL_MCD AND CLONEDETECTIVE

 CloneDetective CL_MCD

System #Cl #CG #T(ms) #Cl #hid-Cl #CG #hid-CG #T(ms)

SIM 30 10 391 30 3 10 0 421

MUL 21 7 250 21 6 9 2 281

SEM 151 38 1890 206 55 47 9 2187

ECW 405 82 3453 545 140 82 0 3850

#hid-CG is the numbers of hidden clone groups that
CL_MCD can find but CloneDetective has failed to
detect.

Generally, the completeness of clone detection results
is determined by the numbers of correctly detected clone
instances (#Cl) and clone groups (#CG). As shown in
table 2, CL_MCD can find all the clones that
CloneDetective finds. Moreover, it also can find some
hidden clones（#hid-Cl） that CloneDetective has failed
to find. So in all subject systems, the number of clone
instances correctly detected by CL_MCD is larger than
that found by CloneDetective in reasonable running time.
The rate of increased clones found by CL_MCD is
measured. That in SEM is 36.4% and that in ECW is
34.6%. Thus the new algorithm CL_MCD yields a higher
completeness than CloneDetective.

C. Running Time
The running time in the table is the only time taken by

the clone detection algorithms. The time for
preprocessing and postprocessing is not included. The
running time is the average value of multiple running
results (twenty times).Because the randomness of initial
expansion in algorithm and the influence of computer
cache, the running time has a certain variation amplitude

From the table 2, we can see that the running time of
CL_MCD is longer than CloneDetective. This is not
surprising because CL_MCD needs to filter the CIS. The
more clones found the more time need. Although the
running time of CL_MCD is longer, it’s in the range of a
few hundred milliseconds for large simulink systems.
Therefore, it is acceptable. Furthermore, from the table 2
we can know that from SIM to ECW the rate of increased
clones is greater than the rate of increased running time.
For example, in SEM the rate of increased clones is
36.4%. However, the rate of increased running time is
only 11.5%. In a word, the running time of CL_MCD is
reasonable and acceptable.

In summary, CL_MCD is better than CloneDetective
in the side of completeness, and the running time of it is
reasonable and acceptable. Furthermore, CL_MCD has a
certain of scalable as it can process large-scale case like
ECW in reasonable time.

VI. RELATED WORKS

In this section, we summarize existing related works in
the area of clone detection on models and in source code.

We also give a short overview on frequent sub-graph
mining.

A. Clone Detection in Models
The detection of model clone has been an active area

of research within the last years. There exist several
approaches to detect clones in Simulink models.

In 2008 Deissenboeck et al. published the first exact
model clone detection algorithm CloneDetective that
enumerates all maximal exact clones in
MATLAB/Simulink models [4]. CloneDetective first
detects all clone pairs and then performs the grouping
process. In 2009 Pham et al. proposed a clone detection
framework for Simulink models called ModelCD [5]. The
framework consists of two algorithms, eScan and aScan.
The eScan algorithm is designed to find exact clone,
while the aScan algorithm can find approximate clone.
Pham et al. attempts to improve CloneDetective by
providing eScan and aScan together in order to detect
both exact and near-miss clones.

Their improvements utilize graph mining work and
Simulink specific properties.

In 2011 Hummel et al. presented an approach to clone
detection by storing indices of fragments of a model in a
database [8]. The approached is based on the idea that
most of the times only small parts of a model are altered
between clone detection runs. In their approach only
newly changed parts of the model are taken into
consideration in consecutive algorithm runs.

In 2012 Alalfi et al. made an improvement based on
the code clone detection tool NiCad and applied it to
clone detection for Matlab/Simulink models [6]. After
improvement, NiCad can find exact clone and
approximate model clone as well. In addition, in 2012
Stephan et al. choose some public simulink model-based
systems as experiment case, and made a comparison of
the existing simulink model clone detection approaches
[7]. Furthermore, Stephan et al. presented a new approach
for evaluating and comparing model clone detectors that
is based on mutation analysis and also clone
representation transformation in 2013, which helps to
address the challenges of manual comparison and to
provide a standard and extendable way of evaluating and
comparing model-clone detectors [14].

B. Code-based Clone Detection
Code-Based clone detection research starts much

earlier than model clone detection. There are a large

2130 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

number of code clone detection approaches and a survey
can be found in [15].

Generally, based on the representation of features
extracted from source code, these approaches can be
classified as text-based [16,17], token-based [18,19], tree-
based [20,21], graph-based [22,23] and metric-based [24]
approaches. Among these approaches, graph-based
approach is most similarly with the approaches used in
model clone detection. In the approach of program
dependence graphs (PDGs) which is used by Komondoor
and Horwitz firstly [25], the isomorphic subgraphs
represent code clones. However, existing code clone
detection algorithms can't be applied to model clone
detection directly because the fundamentally different
between code and model.

6.3 Frequent sub-graph mining
Graph-based clone detection can be regarded as a

specialization of frequent sub-graph mining problem
within a single graph and a minimum required pattern
frequency of two after the model has been normalized to
a labeled graph.

Frequent sub-graph mining deals with the extraction of
interesting structures from graphs [26,27]. An overview
and comparison of algorithms for sub-graph mining is
given by [28]. These algorithms strive for an exact
solution and usually work with a much higher required
minimum pattern frequency than 2. Thus, they may not
be appropriate for our purpose. However, in order to
develop novel algorithms for model clone detection,
those sub-graph mining algorithms offer a certain
reference value.

VII. CONCLUSION AND FUTURE WORKS

In this section we summarize our findings and give an
overview of potential future works to improve clone
detection for models.

A. Conclusion
MDSD has become a popular approach for creating

software systems. Most of the reasons leading to clones
in code-based development are also valid for MDSD. In
simulink models clones are the exactly or similar
matched fragments, and clones in simulink models
require additional efforts for maintenance and
management.

This paper presents CL_MCD (Closed Model Clone
Detection), a clone detection algorithm for Matlab/
Simulink models, which aims to find closed clone
instance. Experimental results show that CL_MCD has
better performance than CloneDetective. It detects all of
the closed clone instances in the detection phase through
three steps: generating all the candidate clone instances at
first, then filtering redundant clone instances to obtain all
the closed clone instances, and grouping all the closed
clone instances into clone groups at last. The process of
generating all the candidate clone instances is the main
innovation of CL_MCD. CL_MCD iterates over all
possible node pairs and uses the pairs with the same label
as the starting point of a breadth-first search to find other
node pairs that can be combined with the current node

pairs to form a candidate clone pair. In order to find all
the closed clone instances, every time after finding a new
node pair with the same label, CL_MCD transforms all
the node pairs into a clone pair, and puts this clone pair
into the set CIS that contains all the candidate clone
instances if its size is greater than or equal to the size of
minimum clone. If a candidate clone instance is one part
of any other instance, it is deleted. Therefore, redundant
clone instances in CIS are removed and can obtain the set
C_CIS that contains all the closed clone instances.
CL_MCD can find all the clones that CloneDetective
found. Moreover, it also can find some hidden clones that
CloneDetective has failed to detect. These hidden clones
are included in closed model clone instances and they are
also useful for constructing reusable models library in the
way of model-driven software development.

B. Future Works
Model clone detection has been studied only in recent

years. There are still many problems remain to solve. The
most obvious direction for improvement is the clone
detection algorithm which should has higher degree of
completeness in reasonable and acceptable running time.
Moreover, model clone detection algorithms must be
capable of processing larger-scale models within
reasonable time and memory limits because Simulink
models usually have significant size in real-world. We
can learn some techniques and ideas from frequent sub-
graph mining and code clone detection.

Another interesting research problem is to find
approximate model clone in which two parts of a model
have slight differences. CL_MCD can only find exact
model clone at present, we will improve CL_MCD and
make it can detect approximate model clone as well in the
future. Furthermore, improving the relevance of clone
detection is also an important research direction.
Deissenboeck etc. have shown that currently many of the
clones found are not interesting for the developer,
although they are of course clones according to clone
definition [29]. In order to make the clone detection more
targeted and personalized, in the phase of preprocessing
and normalization, it is interesting to study how to
remove the blocks and its adjacent lines whose types are
not cared by users, and only keep the blocks and its
adjacent lines whose types are more valuable to construct
reusable models library. It is also interesting to analyze
the factors that affect clone relevance and study the
scheme of clone ranking.

ACKNOWLEDGES

This work was supported by the Science &Technology
Fund of Shenzhen under Grant JCYJ20120613114918935,
JCYJ20120616135936123 and
JCYJ20130326112033984, National High-Technology
Research and Development Program (“863” Program) of
China under Grand 2013AA01A212, Ministry of
Education in the New Century Excellent Talents Support
Program of China under Grand NCET-12-0649, and
National Nature Science Foundation of China under
Grant 61170283.

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2131

© 2014 ACADEMY PUBLISHER

REFERENCES
[1] D.C. Schmidt, “Guest Editor’s Introduction: Model-Driven

Engineering,” Journal of IEEE Computer, volume 39,
issue 2, pp. 25-31, 2006.

[2] K. Rajeev. “Business Rules Modeling for Business Process
Events: An Oracle Prototype”, Journal of Computers,
volume 7, issue 2, pp. 2099-2106, 2012.

[3] A. Angermann, M. Beuschel, M. Rau, et al. “Matlab
Simulink Stateflow, Grundlagen, Toolboxen, Beispiele,”
Oldenbourg, 2007.

[4] F. Deissenboeck, B. Hummel, E. Juergens, et al. “Clone
Detection in AutomotiveModel-Based Development,”
Proc. 30th International Conference on Software
Engineering(ICSE), pp. 603-612, 2008.

[5] N.H. Pham, H.A. Nguyen, T.T. Nguyen, et al. “Complete
and Accurate CloneDetection in Graph-based Models,”
Proc. 31th International Conference on Software
Engineering(ICSE), pp. 276-286, 2009.

[6] H. Alalfi, R. Cordy, T.R. Dean, et al. “Near-miss Model
Clone Detection for Simulink Models,” Proc. 6th
International Workshop on Software Clones(IWSC), pp.
78-79, 2012.

[7] M. Stephan, M. Alafi, A. Stevenson, and J. Cordy,
“Towards Qualitative Comparison of SimulinkModel
Clone Detection Approaches,” Proc. 6th International
Workshop on Software Clones(IWSC), pp. 84–85, 2012.

[8] B. Hummel, E. Juergens, D. Steidl, “Index-Based Model
Clone Detection,” Proc. 5th International Workshop on
Software Clones(IWSC), pp. 21-27, 2011.

[9] Bakr Al-Batran, Hummel B, Bernhard Schätz, “Semantic
Clone Detection for Model-Based Development of
Embedded Systems,” Proc. 14th International Conference
on Model Driven Engineering Languages and Systems
(MODELS) , pp. 258-272, 2011.

[10] The MathWorks Inc. Matlab Product Website.
http://www.mathworks.com/products/ma- tlab/.

[11] The MathWorks Inc. Simulink Product Website.
http://www.mathworks. com/products/sim- ulink/.

[12] The MathWorks Inc. “Simulink Model-Based and System-
Based Design - Using Simulink,” 2002.

[13] D.J. Cook and L.B. Holder, Mining Graph Data, John
Wiley & Sons, 2006.

[14] M. Stephan, M. Alafi, A. Stevenson, and J. Cordy, “Using
Mutation Analysis for a Model-Clone Detector
Comparison Framework,” Proc. 35th International
Conference on Software Engineering(ICSE), pp. 1261–
1264, 2013.

[15] C. Roy, J. Cordy, and R. Koschke, “Comparison and
Evaluation of Code Clone Detection Techniques and Tools:
a Qualitative Approach,” Science of Computer
Programming, volume 74, issue 7, pp. 470–495, 2009.

[16] R. Wettel, R. Marinescu, “Archeology of Code Duplication:
Recovering Duplication Chains From Small Duplication
Fragments,” Proc. 6th Symbolic and Numeric Algorithms
for Scientific Computing(SYNASC), pages 11–15, 2005.

[17] A. Marcus, A. Sergeyev, V. Rajlich, and J.I. Maletic, “An
Information Retrieval Approach to Concept Location in
Source Code,” Proc. 11th Working Conference on Reverse
Engineering (WCRE), pp. 214–223, 2004.

[18] Y. Yuan, Y. Guo, “Boreas: an Accurate and Scalable
Token-based Approach to Code Clone Detection,” Proc.
27th International Conference on Automated Software
Engineering (ASE), pp. 286-289, 2012.

[19] H. Murakami, K. Hotta, Y. Higo, et al. “Folding Repeated-
instructions for Improving Token-based Code Clone
Detection,” Proc. 12th International Working Conference

on Source Code Analysis and Manipulation (SCAM), pp.
64–73, 2012.

[20] A. Corazza, S.Di Martino, V. Maggio, and G. Scanniello,
“A Tree KernelBased Approach for Clone Detection,”
Proc. 26th International Conference on Software
Maintenance (ICSM), pp. 1–5, 2010.

[21] R. Koschke, “Large-scale Intersystem Clone Detection
Using Suffix Trees and Hashing,” Journal of Software:
Evolution and Process, Feb 2013, doi: 10.1002/smr.1592.

[22] Y. Higo, Y. Ueda, M. Nishino, and S. Kusumoto,
“Incremental Code Clone Detection: A PDG-based
Approach,” Proc. 18th Working Conference on Reverse
Engineering (WCRE), pp. 3–12, 2011.

[23] Y. Higo, S. Kusumoto, “Code Clone Detection on
Specialized PDGs with Heuristics,” Proc. 15th European
Conference on Software Maintenance and
Reengineering(CSMR), pp. 75–84, 2011.

[24] A. Goto, N. Yoshida, M. Ioka, E. Choi, K. Inoue, “How to
Extract Differences from Similar Programs? A Cohesion
Metric Approach,” Proc. 7th International Workshop on
Software Clones(IWSC), pp. 23-29, 2013.

[25] R. Komondoor and S. Horwitz, “Using Slicing to Identify
Duplicationin Source Code,” Proc. 8th International
Symposium on Static Analysis(SAS), pp. 40-56, 2001.

[26] L. Chen, Y. Chen, L. Tu. “A Fast and Efficient Algorithm
for Finding Frequent Items over Data Stream”, Journal of
Computers, volume 7, issue 7, pp. 1545-1554, 2012.

[27] K.M. Tang, C. Y. Dai, L. Chen, “A Novel Strategy for
Mining Frequent Closed Itemsets in Data Streams”,
Journal of Computers , volume 7, issue 7, pp. 1564-1573,
2012.

[28] M. Wörlein, T. Meinl, I. Fischer, and M. Philippsen, “a
Quantitative Comparison of the Subgraph Miners MoFa,
gSpan, FFSM, and Gaston,” Proc. 9th Principles and
Practice of Knowledge Discovery in Databases(PKDD),
Vol. 3721, pp. 392-403, 2005.

[29] F. Deissenboeck, B. Hummel, E. Juergens et al. “Model
Clone Detection in Practice,” Proc. 4th International
Workshop on Software Clones(IWSC), pp. 57-64, 2010.

Zhengping Liang received his Ph.D.
degree on computer software and theory
from the School of Computer, Wuhan
University, Wuhan, China in 2006. Now
he is an associate professor in the
College of Computer Science &
Software Engineering, Shenzhen
University, Shenzhen, China. His
current research interests include
software analysis, requirements

engineering and computational intelligence, etc.

Yiqun Cheng received his BS.c. from
the Jiangxi Normal University in 2010.
Now he is an MS.c. student at the
College of Computer Science &
Software Engineering, Shenzhen
University, Shenzhen, China. His
research interests include model clone
detection and analysis.

2132 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER

