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Abstract—Soft subspace clustering are effective clustering 
techniques for high dimensional datasets. Although several 
soft subspace clustering algorithms have been developed in 
recently years, its robustness should be further improved. In 
this work, a novel soft subspace clustering algorithm 
RSSKM are proposed. It is based on the incorporation of 
the alternative distance metric into the framework of k-
means type algorithm for soft subspace clustering and can 
automatically calculates the feature weights of each cluster 
in the clustering process. The properties of RSSKM are also 
investigated. Experiments on real world text datasets are 
conducted and the results show that RSSKM outperformed 
some popular clustering algorithms for text mining, while 
still maintaining efficiency of the k-means clustering process.  
 
Index Terms—k-means, soft subspace clustering, text 
clustering 
 

I.  INTRODUCTION 

Recently, subspace clustering has become an effective 
data mining tool for high dimensional text data. It pursues 
two tasks, locating the subspaces in which clusters can be 
found and discovering the clusters from different 
subspaces. According to the ways in which the subspaces 
are identified, subspace clustering can be classified into 
two categories. The first category, which is called hard 
subspace clustering, is to locate the exact subspaces of 
different clusters [1][2][3][4]. In the algorithms of this 
category, the membership of a feature belonging to one 
cluster is identified by a binary value. The second 
category is called soft subspace clustering. The methods 
in this category cluster data objects in the entire data 
space but assign different weights to different features of 
clusters in the clustering process, based on the importance 
of the features in identifying the corresponding clusters 
[5][6]. 

Subspace clustering techniques need to compute the 
cluster memberships of data objects and the subspace of 
each cluster simultaneously [14], which throws a key 
challenge to researchers. Up to now, many subspace 

clustering algorithms have been developed and have 
become effective and powerful methods in clustering 
high dimensional text data. However, most of them are 
still sensitive to noisy data. In this study, we will develop 
a novel robust k-means type clustering algorithm under 
the framework of soft subspace clustering. By 
incorporating the alternative distance metric to compute 
dissimilarities of data items along with each feature [7], 
the robust statistics is incorporated into the soft subspace 
clustering algorithms, which makes the algorithm suitable 
for the high dimensional sparse data and insensitive to the 
noise in the dataset. 

II. RELATED WORKS 

Recently, many soft subspace clustering algorithms 
have been proposed. Generally speaking, most of them 
can be unified as the problem of finding the local 
minimum of the objective function 
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The second term Η is a penalty term which is used to 
enhance the performance of the clustering algorithm. 
According to different forms of H, many soft subspace 
clustering algorithms are proposed in literatures, typical 
representatives of them are AWA [5], FWKM [8], FSC 
[9][10], EWKM[11], and COSA [12]. 

By inspecting these algorithms, it is clear that all the 
cluster centers along with each feature are computed as 
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Eq.(2) implies that each data point belonging to cluster i 
has equal weight 1 even though a data point is far away 
from other data points, which makes the cluster center 
heavily affected by the noisy data. In order to make the 
cluster centers more robust, we should give a smaller 
weight to those noisy data and a large weight to those 
compact data in the dataset. In order to achieve this goal, 
we use the following Eq.(3) as the distance function: 

( )2
1 21 expd β= − − −x x  (3) 

Obviously, it satisfies the following conditions [13]: 
(1) d(x,y)>0, ∀ x ≠ y, d(x,x) = 0; 
(2) d(x, y) = d(y, x);  
(3) d(x, y) ≤ d(x, z) + d(z, y),∀ z. 

After incorporating Eq.(3) into the framework of soft 
subspace clustering, Eq.(2) can be modified as: 
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As we expect, it assigns larger weights to the data objects 
which are closer to cluster centers vi and smaller weights 
to those far away from v. Thus algorithm will be more 
robust if the distance function Eq.(3) is utilized. 

III ALGORITHM RSSKM 

By incorporating Eq.(2) into the framework of soft 
subspace clustering, we consider a novel algorithm 
named RSSKM with the following objective function: 
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in which c≥2 is the cluster number, n is the number of 

data points. In Eq.(5), ( )( )21 exp h kh ihx vβ− − −  is used 

to compute the distance between data point xk and cluster 
center vi along with the hth feature. 

Similarly, the objective function of RSSKM can be 
minimized by iteratively solving the following three 
minimization problems: 

(a) Problem P1: Fix W=W*, V=V*, solve the reduced 
problem that minimizes Jm(W*, V*, U) under the 
constraint Eq.(6). 

(b) Problem P2: Fix V=V*, U=U*, solve the reduced 
problem that minimizes Jm(W, V*, U*) under the 
constraint Eq.(7); 

(c) Problem P3: Fix W=W*, U=U*, solve the reduced 
problem that minimizes Jm(W*, V, U*); 

By using Lagrange mulipliers, Problem P1 is solved by 
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In order to compute the cluster centers V with Eq.(8), 
the fix-point iteration should be employed. It is an 
inefficient and time-consuming process. However, 
according to our experiment, we observe that it is enough 
to estimate the cluster centers V with one step, which can 
also achieve ideal results. This improvement makes 
RSSKM convergent to its local minimum value quickly. 

Similar with Problem P1, Problem P2 is solved by 
*

1
1

1

1
ih

s
ih

l il

w
D
D

α−

=

=
⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

 

i =1, 2,…, c, h =1, 2,…, s, 
where ( )( )( )2

1
1 exp

n

ih ik h kh ih
k

D u x vβ
=

= − − −∑ , 

(9)

and Problem P3 is solved by 
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Now, the proposed algorithm RSSKM is given as 
follows: 

Algorithm RSSKM 
Input: The number of clusters c, parameter γ 
Randomly select c cluster centers and set all initial 

weights to 1/s; 
REPEAT 

Update the partition matrix U with Eq.(10)); 
Update the feature weights matrix W with Eq.(9); 
Update the cluster centers V with Eq.(8) using the 

fixed-point iteration; 
UNTIL (the objective function obtains its local 

minimum value); 
Output: The partition matrix U and feature weights 

matrix W. 
After a finite number of iterations, RSSKM algorithm 

converges to the local minimal of the objective function. 
Using Eq.(8), Eq.(9) and Eq.(10), we can show that the 
sequence J(t)(U,W,V) generated by Eq.(5) decreases 
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strictly. Meanwhile, we can also observe that each 
possible partition U only occurs once in the clustering 
process. Thus, RSSKM algorithm converges in a finite 
number of iterations [10]. 

Assuming s is the number of features, n is the number 
of data objects and c is the number of clusters, the 
computational complexity of RSSKM per iteration is 
O(snc). On the other hand, we need O(ns) space to store n 
data points, O(cs) space to store c cluster centers V, O(cs) 
space to store the feature weight matrix W and O(cn) 
space to store the partition matrix U. That is to say, both 
the computational complexity and the storage complexity 
of RSSKM are linearly dependent on the number of data 
objects when the number of features is fixed. Thus, the 
proposed RSSKM algorithm is well suitable for high 
dimensional datasets and to large scaled datasets. 

The proposed RSSKM is different from some previous 
work on soft subspace clustering. In this work, we 
incorporate the alternative distance into the framework of 
k-mean type algorithms for soft subspace clustering, 
which makes the data points far away from the cluster 
centers have smaller weights. Thus RSSKM will be more 
robust and the performance of RSSKM on noisy dataset 
is improved. 

IV EXPERIMENTS 

In this section, we present the clustering results 
obtained by RSSKM on the well-known text datasets 20 
Newsgroups, which was a publicly available dataset from 
website 
http://kdd.ics.uci.edu/databases/20newsgroups/20newsgr
oups.html. In our experiment, the original text data was 
first preprocessed to strip the news messages from the e-
mail headers and special tags and eliminate the stop 
words and stem words to their root forms. Then, 1000 
features were selected according to their IDF (inverse 
document frequency) values. In order to improve the 

performance of the tested algorithms, the dataset was 
further processed using the following tf-idf formulas: 

tfij = ∑k kj

ij

n
n

 

idfi = log { }itdd
D
∋:

 

tfidfij = tfij•idfi 

(11)

where nij denoted the term frequency of term ti in 
document dj, |D| denoted the total number of the 
documents in dataset, { }itdd ∋:  denoted the number of 
documents in which the term ti appeared. 

In our experiment, 6 datasets were established from the 
20 Newsgroups. As can be seen from Table 1, these 
datasets are divided into two series: series A and series B. 
The categories in series A are more semantically different 
than that in series B. The datasets of each series are 
generated incrementally by adding two more categories to 
the former dataset, resulting to name them NG20-A2 (B2), 
NG20-A4 (B4) and NG20-A6 (B6) accordingly. The 
number after the series code shows the number of 
categories in this dataset. For example, A2 denotes a 
dataset in series A with two categories in it. Each 
category contains ndoc documents which were chosen 
randomly from the original 20 Newsgroups dataset.  

In our experiments, we evaluate them by the 
performance index RandIndex, which was computed as 
follows: 

a dRI
a b c d

+
=

+ + +
. (12) 

in which the value of a+b can be interpreted as the total 
pairs predicted in the same cluster and the value of a+d 
can be interpreted as the total pairs in the in the same 
class. 

 

 
TABLE I.    

TWO SERIES OF NEWSGROUP DATASETS 
NG20-A2 ndoc NG20-B2 ndoc 

comp.sys.ibm.pc.hardware (4) 
talk.politics.guns (17) 

500 
500 

comp.sys.ibm.pc.hardware (4) 
comp.sys.mac.hardware (5) 

500 
500 

NG20-A4 ndoc NG20-B4 ndoc 
comp.sys.ibm.pc.hardware (4) 

rec.autos (8) 
sci.electronics (13) 

talk.politics.guns (17) 

500 
500 
500 
500 

comp.os.ms-windows.misc (3) 
comp.sys.ibm.pc.hardware (4) 

comp.sys.mac.hardware (5) 
comp.windows.x (6) 

500 
500 
500 
500 

NG20-A6 ndoc NG20-B6 ndoc 
comp.sys.ibm.pc.hardware (4) 

rec.autos (8) 
rec.sport.baseball (10) 

sci.electronics (13) 
soc.religion.christian (16) 

talk.politics.guns (17) 

500 
500 
500 
500 
500 
500 

comp.os.ms-windows.misc (3) 
comp.sys.ibm.pc.hardware (4) 

comp.sys.mac.hardware (5) 
comp.windows.x (6) 
talk.politics.guns(17) 

talk.politics.mideast(18) 

500 
500 
500 
500 
500 
500 

 
TABLE II.   

PARAMETER SETTINGS OF THE ALGORITHMS 

Algorithms Parameter settings 

RSSKM α=1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3 

W-k-means β = 2; 5; 10; 50; 100; 1000; 104; 105 
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AWA α=1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3 

FWKM 
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TABLE III.   

RI PERFORMANCE FOR DIFFERENT ALGORITHMS 

Datasets RSSKM k-means W-k-means FWKM AWA 

NG20-A2 0.7136±0.0034 0.5099±0.0215 0.4993±0.0001 0.6201±0.0317 0.6037±0.0097

NG20-A4 0.7297±0.0005 0.5000±0.0010 0.4993±0.0002 0.6304±0.0480 0.6002±0.0020

NG20-A6 0.5367±0.0376 0.3491±0.0684 0.3546±0.0101 0.4511±0.0201 0.4437±0.0738

NG20-B2 0.5856±0.0293 0.4121±0.0372 0.2608±0.0040 0.5201±0.1102 0.4994±0.0976

NG20-B4 0.5620±0.0957 0.3685±0.0694 0.3391±0.1130 0.5104±0.0976 0.4896±0.1279

NG20-B6 0.5802±0.0377 0.4489±0.0475 0.2877±0.0038 0.5211±0.1201 0.4990±0.1050

 
In the experiment, the performance of RSSKM was 

compared with four k-means type clustering algorithms, 
namely k-means, W-k-means [14], AWA [5] and FWKM 
[8]. The parameters used in these algorithms are tabulated 
in Table 2. Since the clustering results can be easily 
affected by the initial cluster centers, the random 
selection method for initial centers was used. In our 
experiments, each algorithm was repeated ten times. The 
clustering results were tabulated in Table 3, from which it 
can be easily observed that RSSKM outperforms its rivals 
in most cases. This indicates that the utilization of Eq.(3) 
as the distance function can make RSSKM more robust 
and improve its performance greatly. 

V CONCLUSION 

In this study, by integrating a novel distance metric 
into the learning criterion of the algorithm, a novel robust 
soft subspace clustering algorithm RSSKM is proposed. 
This work involves the following aspects: (1) a novel 
objective function integrating the alternative distance 
metric and soft subspace clustering is proposed based on 
the k-means type clustering algorithms; (2) a novel robust 
soft subspace clustering RSSKM is developed and its 
properties are investigated; (3) experiments on high 
dimensional text datasets are carried out to verify the 
performance of the RSSKM algorithm on high 
dimensional datasets. 

It is necessary to find a suitable value for parameter α 
in RSSKM. In this study, we only set these parameters 
empirically. Our future work involves further theoretical 
study on the parameters, which will be of great 
importance in providing useful and convenient guidelines 
for the real-world applications of the soft subspace 
clustering algorithms. 

This study will be further extended to improve its 
performance by extending the k-means type clustering 
algorithms into the fuzzy clustering version. In addition, 
other ideas such as entropy weighting as well as multi-

view learning can also be integrated. In this way, the 
performance of the robust soft subspace clustering will be 
further improved. 
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