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Abstract—Image decomposition technology is a very useful 
tool for image analysis. Images contain structural 
component and textural component which can be 
decomposed by variational methods such as VO (Vese-
Osher) and OSV (Osher-Sole-Vese) models. OSV model is a 
powerful tool for image decomposition but the minimization 
is a hard problem because of solving the 4th order partial 
differential equations with complex finite difference scheme 
for Laplacian of curvature. In this paper we proposed an 
improved OSV model with general diffusion regularization. 
The general diffusion terms can be TV(Total Variation), 
Nonlinear diffusion(Perona and Malik) and Charbonnier 
regulerizers. Additionally, we also use L1 norm as data term 
inspired by TV-L1 method. We also use Split Bregman 
method for the easy implementation of the improved OSV 
model. Experiments show the proposed method is a valid 
method for image decomposition.    

Index Terms—image decomposition, OSV model, Split 
Bregman method, TV-L1, general diffusion regularization 

I.   INTRODUCTION  

Image decomposition technology can decompose the 
image into structural component, textural component, 
noise and other image components. The decomposed 
texture part is very useful in image analysis such as 
texture segmentation, texture discrimination and other 
applications. 

The variational image decomposition methods are the 
popular ones. Total Variation (TV) model [1] is the basic 
nonlinear variational model of image diffusion. It laid the 
foundation for variational method of image processing 
and computer vision. Although it can separate noise from 
image, the texture part can't be decomposed by it. Meyer 
[2] established modeling the texture component as having 
a small norm in a suitably defined Banach space [3]. But 
Meyer didn't give the realization method. Le [4] proposed 
Besov space  to describe the oscillation part of the image. 
Vese [5] proposed a VO model which approximates 

Meyer’s theoretical model, that is, they proposed an pL  
approximation to the norm 

G
⋅ , meanwhile, they gave the 

corresponding Euler-Lagrange equations. Osher [6] 
extended VO model, and presented a variational model 
for image decomposition which based on the total 
variation and the norm 1H − . The authors show that this 
new model is simpler than VO model, however, the 
decomposition model based on this function suffers from 
low running time because the Euler-Lagrange equation is 
a fourth-order nonlinear PDE, its difference format is 
complex. Aujol [7] proposed two norms of Sobolev and 
Besov norms and split the image into three components, 
they are structure, texture and noise parts. Chan [8] 
introduced high order diffusion term to reduce the 
staircase effect and introduced the dual variables which 
can rapidly implement the decomposition of the image 
texture and structure information of the OSV model. Ng 
[9] introduced a decomposition model to restore blurred 
images with missing pixels. They used the total variation 
norm and its dual norm to regularize the cartoon and 
texture respectively. Then they recommended an efficient 
numerical algorithm based on the splitting version of 
augmented Lagrangian method to solve the problem. 

In addition, to enhance the quality of image diffusion 
for classical ROF model, Osher [10] extended the ROF 
model to an iterative regulation method based on the 
Bregman Distance. They added the noise after diffusion 
to the original image to image diffusion again and 
repeated this process. This algorithm improved the 
quality of regularized solutions in terms of texture 
preservation, and reduced the influence of penalty 
parameter in the diffusing process. Although the 
computational efficiency has been greatly improved, it 
was still complex for implementation. To simplify 
implementation and improve computational efficiency, 
Wang [11] splitted the classical TV model into an 
alternating iterative process by simple divergence 

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2105

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2105-2111



operation and shrinkage operator of soft threshold 
formula through the introduction of auxiliary variable. 
Goldstein [12] proposed Split Bregman method of ROF 
model by combining split algorithm [11] and Bregman 
iteration [10]. Zhao [12] proposed using Split Bregman 
method for solving OSV model. There were many other 
methods and applications for signal and image 
decomposition [17, 18, 19].  

In this paper, we propose a general diffusion 
regularization of OSV method and using Split Bregman 
method by introducing auxiliary variables and Bregman 
iteration parameter for solving the equation.  We devote 
to decompose an image f  into two well-structured 
component u  and oscillating patterns (both textures and 
noise) v .   

The organization of this paper goes as follows. In 
Section 2, we will introduce the original OSV model 
briefly. Then the Split Bregman method of OSV model 
with general diffusion regularization is designed in 
Section 3. Then some numerical examples are shown in 
Section 4. Section 5 is concluding remarks. 

II.  ORIGINAL OSV MODEL  

In [2], Meyer proposed the Banach space G as:  

( ) ( ) ( ){ }1 2 1 2x yG v v g x, y g x, y , g ,g L∞= = ∂ + ∂ ∈ Ω          
(1) 

The norm is: 

        { }
1 2

2 2
1 2 1 2* ( , )

inf x yg g g L
v g g v g g

∞=
= + = ∂ + ∂            

(2) 

Here, Ω  is an open and bounded domain. Given an 
image f defined on Ω , Meyer's decomposition model 
becomes: 

 { }*
min ( ) ,

u
E u u v f u vλ

Ω
= ∇ + = +∫                    (3) 

In the model, u  is structural component or smooth 
part of the image, v  is oscillating component containing 
texture and noise information. But in practice, model (3) 
is difficult for implementation. Vese [6] overcomed this 
difficulty by proposing an pL approximation to the norm 

*
:  

( )

( )1 2

2
1 2

1
, , 2 2

1 2

, ,

min
p

p pu g g

G u g g u dxdy f u g dxdy

g g dxdy

Ω Ω

Ω

⎧ ⎫= ∇ + − −∇⋅
⎪ ⎪⎪ ⎪
⎨ ⎬⎡ ⎤⎪ ⎪+ +⎢ ⎥⎪ ⎪⎣ ⎦⎩ ⎭

∫ ∫

∫

λ

μ
   

(4) 

where, ( )1 2g g ,g= ， 2 2
1 2g g g= + ，

( ) ( ) ( ) ( )2
1 2 1 2x yv x, y g x, y g x, y , g ,g L R∞= ∂ + ∂ ∈ . By 

experiments, the authors use the value 1p = , and they 
show there are no obvious difference for different values 
of p, with1 10p≤ ≤ . Osher [7] used pL  approximation 

to the norm 2 2
1 2

L
g g

∞
+ and chose 2p =  which 

corresponds to the space ( )1H Ω . Then he proposed the 
famous image decomposition model called OSV model 
based on the negative norm 1H −  follows: 

( ) ( )( ) 211min
2u

E u u dxdy f u dxdy−

Ω Ω

⎧ ⎫= ∇ + ∇ Δ −⎨ ⎬
⎩ ⎭∫ ∫λ       

(5) 

Equation (5) is complex because of the fourth order 
term of partial differential equations and low efficiency 
of computation. 

 Aujol [8] used the dual variable p , and defined the 
dual form of the TV norm in the following:  

, 1
max  ( )
p p

u dxdy u div p dxdy
Ω Ω≤
∇ =∫ ∫                       (6) 

Hence, OSV model can be transformed as: 

  2, 1 1

( , )  ( )
min max 1 ( )( )

2
u p

E u p u div p dxdy

u f dxdy

Ω

≤ −

Ω

⎧ ⎫=
⎪ ⎪
⎨ ⎬

+ ∇ Δ −⎪ ⎪
⎩ ⎭

∫

∫λ
p

        

(7) 

where 1 2( , )p p p= . 

This problem can be solved by the method in [8]. Thus, 
the final iterative method is: 

0 10
1

i , jk
i , j

k

i , j
i , j

f
p ( div( ) )

p , p
f

( div( ) )

τ Δ
λ

τ Δ
λ

+

⎛ ⎞∇
− +∇⎜ ⎟⎜ ⎟

⎝ ⎠= =
∇

+ +∇

p

p

          (8) 

1 1k ku f divpλ+ += + Δ                              (9) 

The convergence condition for (8) is proved in [9].  

III.  OSV MODEL WITH GENERAL DIFFUSION 
REGULARIZATION AND SPLIT BREGMAN ALGORITHM  

The OSV model using total variation as diffusion 
term. There are many other diffusion term such as PM 
[14] diffusion term and Charbonnier term [15], they also 
give good metric in edge preserving and noise removing. 
So we proposed a general diffusion term for OSV model. 
Additional, the famous ROF model has some drawbacks 
such as staircase effects, loss of geometric characteristics, 
and so on. Chan [16] proposed TV-L1 model by changed 
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the data term from L2 norm to L1 norm as u f dxdy
Ω

−∫ . 
This model can be effectively reduce the loss of contrast 
and geometric feature, but its calculations are more 
complex than the traditional TV model. In this paper, we 
also use TV-L1 term as data term for our general OSV 
model. Thus, the proposed decomposition model 
becomes:  

 ( ) ( )( )11min ( )
u

E u u dxdy f u dxdyϕ
λ

−

Ω Ω

⎧ ⎫= ∇ + ∇ Δ −⎨ ⎬
⎩ ⎭∫ ∫   (1

0) 

 The diffusion term of ( )uϕ ∇  has several patterns.  

When diffusion term is TV norm, then 

( )u uϕ ∇ = ∇                                  (11) 

When diffusion term is PM norm, then 

( )
2

2
21

u
u Logϕ μ

μ

⎛ ⎞∇
∇ = +⎜ ⎟⎜ ⎟

⎝ ⎠

                         (12) 

When diffusion term is Charbonnier, then 

( )
2

2
22 1 1

u
uϕ μ

μ

⎛ ⎞∇⎜ ⎟∇ = + −
⎜ ⎟
⎝ ⎠

                        (13) 

We use Split Bregman method for solving equation 
(10). With alternating optimization method, we introduce 
the auxiliary 
variables 1 11 12 2 3 31 32( , ) , , ( , )T Tw w w w w w w= = and 
Bregman iteration parameters 1 2( , )Tb b b= , when the 
following energy functional gets its minimization, 

1w u≈ ∇ ， ( )( )1
2 2w u f w u f−≈ Δ − ⇒ Δ = − ，

3 2w w≈ ∇ . Then equation (10) became the following 
form 

( )

( ) ( )
1 2 3

21
1 2 3 1 3 1

1

, , ,
2 2

2 3 2
2 3

1 1( , , , ) ( )d d
2

min
1 1

2 2

k

u w w w

E u w w w w x y w dxdy w u b dxdy

u f w dxdy w w dxdy

Ω Ω

Ω Ω

ϕ
λ θ

θ θ

+

Ω

⎧ ⎫= + + −∇ −⎪ ⎪
⎪ ⎪
⎨ ⎬
⎪ ⎪+ − −Δ + −∇⎪ ⎪⎩ ⎭

∫ ∫ ∫

∫ ∫

   

(14) 

where 

                    1k k k kb b u w+ = +∇ −                               (15) 

One way of minimizing (14) amounts to solving the 
following minimization problems: 

1w , 2w and 3w  being fixed, we search for u as solution of:  

( ) ( )
2 21

1 1 2
1 2

1 1min ( )
2 2

k

u
E u w u b dxdy u f w dxdy

Ω Ωθ θ
+⎧ ⎫

= −∇ − + − −Δ⎨ ⎬
⎩ ⎭

∫ ∫  (1

6) 
u , 2w and 3w  being fixed, we search for 1w  as solution of:  

( )
1

21
2 1 1 1

1

1min ( ) ( )
2

k

w
E w w dxdy w u b dxdy

Ω Ω
ϕ

θ
+⎧ ⎫

= + −∇ −⎨ ⎬
⎩ ⎭

∫ ∫     (17) 

u , 1w and 3w  being fixed, we search for 2w as solution of: 

( ) ( )
2

2 2
3 2 2 3 2

2 3

1 1min ( ) d d
2 2w

E w u f w x y w w dxdy
Ω Ωθ θ

⎧ ⎫
= − −Δ + −∇⎨ ⎬

⎩ ⎭
∫ ∫     

(18) 
u , 1w  and 2w being fixed, we search for 3w as solution of:  

( )
3

2
4 3 3 3 2

3

1 1min ( ) w d d
2w

E w x y w w dxdy
Ωλ θ

⎧ ⎫
= + −∇⎨ ⎬

⎩ ⎭
∫   (19) 

With variational method, the corresponding Euler-
Lagrange equations respectively are:  

( )1 12
2 1

1

k k k k ku f w u b w
θ
θ

+ += + Δ + Δ +∇ ⋅ −∇ ⋅           (20) 

1
1 11 1 1

1 1 1
1

'( ) k
k k k

k

w w
w u b

w
ϕ

θ
+

+ + +
+

= ∇ + −                    (21) 

( ) 12 2
2 2 3

3 3

k kw w u f w
θ θ
θ θ

+Δ Δ − Δ = Δ − Δ − ∇ ⋅               (22) 

1
1 1 3 3

3 2 1
3

k
k k

k

w
w w

w
θ
λ

+
+ +

+
= ∇ −                              (23) 

For TV term, equation (21) becomes: 

1
1 1 1 1

1 1 1
1

k
k k k

k

ww u b
w

θ
+

+ + +
+

= ∇ + −                    (24) 

For PM term, equation (21) becomes:           

1
11 1 1 1

1 1 1
1 1
2

2

(1 )

k k
k k k

k k

w ww u b
w w

θ

μ

+
+ + +

+
= ∇ + −

+

                (25) 

For Charbonnier term, equation (21) becomes:  

1
11 1 1 1

1 1 12
1

1
2

2

1

k k
k k k

k
k

w ww u b
ww

θ

μ

+
+ + +

+
= ∇ + −

+

        (26) 

In this paper, (20) uses the form of explicit iterative, 
(22) uses the form of semi-implicit iterative, (23) and (25) 
use a generalized shrinkage formula: 

  
1 1

1 1 1
1 1 1 1 1

( '( ),0)
k k

k k k
k k

u bw Max u b w
u b

θ ϕ
+ +

+ + +
+ +

∇ +
= ∇ + −

∇ +
 

(27) 
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For different diffusion terms, we replace the 
corresponding terms.  

For TV term, equation (27) becomes: 
1 1

1 1 1
1 1 1 1

( ,0)
k k

k k k
k k

u bw Max u b
u b

θ
+ +

+ + +
+ +

∇ +
= ∇ + −

∇ +
    (28) 

For PM term, equation (27) becomes:  
1 1

11 1 1
1 1 1 1

1
2

2
( ,0)

(1 )

k k k
k k k

k k k

w u bw Max u b
w u b

θ

μ

+ +
+ + +

+ +

∇ +
= ∇ + −

∇ +
+

      

(29) 

For Charbonnier term, equation (27) becomes: 
1 1

11 1 1
1 1 1 12

1
2

2
( ,0)

1

k k k
k k k

k k
k

w u bw Max u b
u bw

θ

μ

+ +
+ + +

+ +

∇ +
= ∇ + −

∇ +
+

   

(30) 
1

1 1 3 2
3 2 1

2

,0
k

k k
k

w
w Max w

w
θ
λ

+
+ +

+

∇⎛ ⎞= ∇ −⎜ ⎟ ∇⎝ ⎠
                 (31) 

The following describes the algorithm: 
(1) Initialization: 0u f= ,   

    0 0 0 0 0 0 0
11 12 2 31 32 1 2 0w w w w w b b= = = = = = = ; 

(2) Iterations:  
1k k k kb b u w+ = +∇ −  

( )1 12
2 1

1

k k k k ku f w u b w
θ
θ

+ += + Δ + Δ +∇ ⋅ −∇ ⋅  

( ) 12 2
2 2 3

3 3

k kw w u f w
θ θ
θ θ

+Δ Δ − Δ = Δ −Δ − ∇ ⋅  

1 1
1 1 1

1 1 1 1 1
( '( ),0)

k k
k k k

k k

u bw Max u b w
u b

θ ϕ
+ +

+ + +
+ +

∇ +
= ∇ + −

∇ +
 

1
1 1 3 2

3 2 1
2

,0
k

k k
k

w
w Max w

w
θ
λ

+
+ +

+

∇⎛ ⎞= ∇ −⎜ ⎟ ∇⎝ ⎠
 

(3) Stopping criterion: we stop if   
1max( )k ku u+ − ≤ ε  

IV.  NUMERICAL EXPERIMENTS 

All results of experiments in this paper are 
implemented on PC (Intel(R) Core 2 Duo, CPU E7400 
2.80GHz, Memory 2.00GB) using matlab 7.0. To verify 
the effect of the proposed model, we test our method on 
three gray images shown in Fig.1. The first is a gray 
image which is a combination of four different Brodatz 
textures, the second a famous image called 'Babala' and 
the third is the famous image “Lena” corrupted by a 
Gauss noise ( 15=σ ). 

 
(a)                                     (b)                                      (c)  

Figure 1: Three original images for image decomposition: (a) Brodatz 
textures image. (b) Clean Barbara gray image containing structure and 

texture components. (c) Noisy observed Lena image, 15σ = . 

Results are shown in Fig.2, Fig.3 and Fig.4. Texture 
image v  is obtained from f u−  (the gray value of v is 
too small to display clearly, so the corresponding figure 
shows the decomposed texture added by 150). The choice 
of λ  controls the texture components: the bigger the 
parameter λ  is, the less the texture contained in u ; the 
smaller the parameter λ is, the less the texture contained 
in v . In the experiments, we set 0.2λ = . 

     
               (a) u                                                   (b) u                                

     
                 (c) 150+v                                       (d) 150+v                         

     
                   (e) u                                               (f) u                                 
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           (g) 150+v                                         (h) 150+v                            

Figure 2: The structural part u and texture part v using the orignal OSV 
model(a,c), OSV model with TVL1 norm(b,d), the OSV model with 

PM method(e,g), and the OSV model with Charbonnier (f,h). 

From Fig.2, we can see the original OSV model has 
less decomposition ability than our proposed methods. 
The texture information in Fig. 2 (d), Fig.2 (g) and Fig.2 
(h) are more clarity than that in Fig.2 (c). 

     
               (a) u                                             (b) u                              

     
              (c) 150+v                                  (d) 150+v                       

     
              (e) u                                             (f) u                                

     
           (g) 150+v                                        (h) 150+v                        

Figure 3: The structural part u and texture part v using the orignal OSV 
model(a,c), OSV model with TVL1 norm(b,d), the OSV model with 

PM method(e,g), and the OSV model with Charbonnier (f,h). 

At the edge of the turban and scarf at the bottom of the 
chin in Fig.3 (a) are still remained the texture, yet, the 
texture in Fig.3 (b), Fig.3 (e) and Fig.3 (f) are all 
disappeared.  

     
                  (a) u                                                    (b) u                                  

     
               (c) 150+v                                          (d) 150+v                         

     
            (e) u                                              (f) u                                   
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            (g) 150+v                                        (h) 150+v                           

Figure 4: The structural part u and texture part v using the orignal OSV 
model(a,c), OSV model with TVL1 norm(b,d), the OSV model with 

PM method(e,g), and the OSV model with Charbonnier (f,h). 

In the experiments of Fig.4, the noise is also 
decomposed in the process of decomposing textures. The 
denoising effect of our proposed methods are better than 
the orignal OSV model. From the details of textural part, 
we can see our proposed models have superiority in the 
decomposition of the texture and other details. 

From above experiments, we can see that the proposed 
general diffusion terms for OSV model have achieved the 
goal of texture decomposition. The general diffusion 
terms with TV norm, PM norm and Charbonnier have 
small difference but are all superior than the original 
OSV model in the ability of texture decomposition. The 
decomposed texture part using our methods are much 
more richer than the original one.  

To verify the efficiency of our proposed methods, we 
compare the run time of each experiments. Results of 
time trials for the experiments mentioned above are 
shown in Table 1, and all the units are second(s). 

TABLE I.   

COMPARISON OF OPERATION TIMES OF THREE METHODS 

Solving method 
CPU time 

of each 
iteration 

Total CPU time 

Fig 1(a) Fig 1(b) Fig 1(c)
Orginal-OSV 

model 0.125 9.406 21.75 18.16 

OSV model with 
TV norm 0.043 2.313 3.110 3.907 

OSV model with 
PM norm 0.051 3.250 5.078 4.079 

OSV model with 
Charbonnier  0.057 3.631 5.712 4.324 

It can be shown from table 1, Split Bregman method of 
our proposed method has less time consuming than 
original method. 

V.  CONCLUSION 

In this paper, we propose modified OSV models with 
general diffusion terms. Then the Split Bregman method 
is introduced to enhance the computational efficiency. 
Experiments show the validity and efficiency of proposed 
method. However, there are lots of parameters in the 
model and the parameter value influences the test results 
largely, so the next step is to establish a parameter 
adaptive algorithm to eliminate the influence of man-
made factors on the parameter values. 
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