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Abstract—In order to improve forecasting accuracy of 
cooling load, this paper applies support vector machine 
(SVM) model with modified parallel cat swarm optimization 
(MPCSO) to forecast next-day cooling load in district 
cooling system(DCS). By extracting the Eigen value of the 
input historical load data, principal component analysis 
(PCA) algorithm is used to reduce the complexity of the data 
sequence. Based on cats’ cooperation and competition, an 
MPCSO algorithm is proposed to optimize the hyper 
parameters for the SVM model. Finally, the SVM model 
with MPCSO (namely MPCSO-SVM) is established to 
conduct the short-term cooling load forecasting. Numerical 
example results show that the proposed model outperforms 
the existing alternative models. Thus, the proposed model is 
effective and applicable to cooling load forecasting. 
 
Index Terms—load forecasting model, support vector 
machine, parallel cat swarm optimization, principal 
component analysis 
 

I.  INTRODUCTION 

Load shifting in ice-storage district cooling system 
(DCS) is achieved through energy storing and releasing 
in the form of ice. In the power troughs hours, energy is 
stored by produce ice and it is released by melting the ice 
in the peak hours. To do so, the ice production and the 
operation strategy adopted by the chillers should be 
determined by the ice cooling demands that are subject to 
dynamic variation. Thus, it is crucial to accurately predict 
the cooling load such that the system can operate in a 
smooth and economical way. Every day, it needs to 
predict the cooling load for the next day, which is called 
short-term cooling load prediction. With historical 
cooling load data, this is done by statistical analysis in 
considering some key factors, such as temperature and 
humidity. 

Currently, there are mainly two categories of 
techniques for cooling load prediction: mathematics and 
knowledge-based ones [1-4]. The first one is based on 
mathematical determination approach, such as regression 
analysis and time series method. Regression analysis 
method formulates the cooling load prediction problem 

by an empirically mathematical function of the main 
parameters that affect the cooling load, such as 
temperature, humidity [5, 6]. Generally, such a method is 
suitable for long-term forecasting with large samples. For 
instance, Yoshida [7] applies this method to predict air-
conditioning load based on an ARX model derived from 
building load simulation. Results show that its average 
prediction error is 29% in summer and 12% in winter. 
Based on the continuity of time and the cooling load 
inertia, time series method can be used to predict the 
future cooling load [8-12]. Therefore, it is applicable to 
short-term forecasting of cooling load if the load 
variation is small. In [13], a modified seasonal 
exponential smoothing method is used to predict the 
cooling load of office buildings such that the average 
error is 8.8%. Nevertheless, due to the nonlinearity, time-
varying, and uncertainty of the cooling load, although the 
mathematical determination approach has been used to 
predict cooling load, the complex relationship between 
predicted data cannot be described by strict mathematical 
equations. Moreover, by using such a method, even if a 
model is established, it is very challenging to solve it due 
to that one needs to identify the parameters in the model.  
Another disadvantage is that, by such methods, it requires 
to process a large number of sample data, leading to 
computationally inefficiency. 

Artificial neural network (ANN) and support vector 
machine (SVM) belong to the knowledge-based 
intelligent models. It is known that SVM can be used to 
approximate any sufficiently complex nonlinear 
relationship well and is adaptable to unknown or 
uncertain systems. Ferrano [14] uses ANN to predict the 
required ice production for the thermal storage system in 
a building. It is shown that, for cooling load prediction, 
ANN is better than the traditional approaches in terms of 
both prediction accuracy and computational efficiency 
[15, 16]. However, its error rate is too high such that it is 
not applicable to real-life applications. To improve the 
prediction accuracy, modified ANN techniques are 
presented by combining with robust filter, wavelet, and 
fuzzy theory [17-26]. It is reported that, in forecasting a 
building air conditioning load, compared with back 
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propagation neural network (BPNN), the root mean 
square error and the average relative error obtained by 
radial basis function neural network (RBFNN) are 
reduced by 36% [27]. Although, to some extent, ANN 
and modified ANN can improve the prediction accuracy, 
they require large number of samples for learning and are 
not computationally efficient. 

With the structure risk minimization criterion, a 
support vector machine (SVM) has some advantages over 
an ANN model. SVM can learn with small and high-
dimensional samples, also, it can avoid a local minimum 
solution. Hence, it has been widely applied to forecasting, 
such as power grid load forecasting, natural gas usage 
trend forecasting, and etc. [28] Besides, it has been 
applied to predict energy consumption in a building [29, 
30]. In addition, it has high prediction accuracy. It is 
reported that, for building air conditioning load prediction, 
the root mean square error obtained by SVM is about 
50% lower than that obtained by BP neural network [31]. 
Nevertheless, prediction accuracy by using SVM is 
sensitive to its parameters. To solve this problem, in 
recent years, swarm intelligence and bionic algorithm are 
used to optimize the parameters of SVM [32-36]. The 
applicability of different algorithms for parameter 
optimization of SVM in building cooling load prediction 
is evaluated by Li [37-39]. It is shown that the prediction 
accuracy obtained by using an optimized SVM is 
improved.  

Due to that a DCS works for 24 hours every day, the 
variation range of the cooling load is large. Hence, it is 
very difficult to predict the next day load [17, 40, 42-48]. 
To further improve the prediction accuracy of the 
unsteady cooling load in a DCS, support vector machine 
(SVM) model with modified parallel cat swarm 
optimization (MPCSO) is proposed in this paper. Its 
forecasting ability is studied by a case problem in 
Guangzhou, China. In this study, 4 months cooling load 
data from Jul.1 to Oct.31 are used for testing the 
proposed MPCSO-SVM forecasting model. 

 The rest of this paper is organized as follows. Section 
2 presents the method of SVM parameters optimization 
with MPCSO. Section 3 provides the prediction modeling 
processes based on MPCSO-SVM. Section 4 illustrates a 
real case that reveals the forecasting performance of the 
proposed MPCSO-SVM model with comparing to the 
existed forecasting models. The conclusions are given in 
Section 5. 

II.  SVM PARAMETER OPTIMIZATION WITH MPCSO 

SVM is widely used for non-linear regression. 
However, the regression quality depends on the SVM 
regression parameters [49-53]. To improve the regression 
forecasting accuracy, an MPCSO is presented to optimize 
the SVM regression parameters. 

A.  SVM Parameter Selection 
To use SVM for the short-term cooling load 

forecasting, it needs a training data set denoted 
as ( ),i ix y , 1, 2, ,i n= , where  represents the days 

during which the data are collected. In ( ),i ix y , M
ix ⊂ R is 

the M-dimensional cooling load forecasting feature 
extracted from the historical operating data, 
while iy ⊂ R there is the corresponding target output, the 
real value of the cooling load from the historical 
operating data. Then, the cooling load regression 
forecasting problem can be formulated as 

    ( ) ( )f x x bω ϕ= ⋅ +⎡ ⎤⎣ ⎦                 (1) 

where ( )f x is the regression estimation function which 
constructed through learning by using the cooling load 
training data set, ω is weight vector, b is the threshold 
value, and ( )xϕ is the nonlinear function that maps the 
input cooling load prediction feature space to a high-
dimensional feature space which is the only hidden space. 
This regression problem is equivalent to solve the 
following optimization problem.  
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where
2ω is the weight vector norm called confidence 

risk, which is used to constrain the model structure 
capacity in order to obtain better generalization 
performance; ξ and *ξ are two positive slack variables 
which measure the deviation ( )( )i iy f x− from the 
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experience risk. To decide the balance between 
confidence risk and experience risk, penalty 
coefficient C , cost of error, is used. Insensitive loss 
coefficientε , the width of the tubes, is one of the key 
factors in experience risk. By constructing the Lagrange 
function, the dual problem can be given as 
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where α and *α are Lagrange multiplier coefficients 
obtained by solving the dual optimization problem, 
and ( ) ( ) ( ),i j i jK x x x xϕ ϕ= × is the kernel function. It is 

a nonlinear function that maps the input feature space to a 
high dimensional space for regression forecasting 
calculation. The most widely used kernel function is the 
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radial basis function. This is because that it can well map 
the historical data to the high-dimensional feature space 
in a nonlinear way with just a width parameter to be 
optimized. With δ being the width, the radial basis 
function is 

    ( )
2

2,
i jx x

i jK x x e δ

−
−

=                      (4) 

Finally, the regression forecasting function is 

 ( ) ( ) ( )*

1
,

n

i i i
i

y f x K x x bα α
=

= = − +∑    (5) 

The parameters that determine the regression quality 
are the penalty coefficient C , the insensitive loss 
coefficient ε , and the width of radial basis function 
kernel functionδ . The penalty coefficient determines the 
forecasting model training error in the proportion of the 
objective function. The insensitive loss coefficient 
controls the regression function such that it is within the 
insensitive domain width of cooling load historical data. 
Hence, it affects the number of support vectors. The 
width of radial basis function controls radial scope of the 
kernel function and it affects the SVM regression 
complexity. Owing to the importance of the parameters, 
they require to be optimized. The MPCSO is used to 
optimize these SVM regression parameters next. 

B.  SVM Parameter Optimization with MPCSO 
In this subsection, we present an MPCSO to search the 

optimal penalty coefficient bestC , insensitive loss 

coefficient bestε and the width of radial basis function 

kernel function bestδ in the SVM prediction parameters 

space ( ), ,C ε δ . 
Cat Swarm Optimization (CSO) is first proposed by 

Chu and Tsai[54, 55] via observing the behavior of cats 
in daily life in 2006. It is mainly applied to solve the 
optimization problem and the satisfied results have been 
achieved. Parallel Cat Swarm Optimization (PCSO) [56] 
and Enhanced Parallel Cat Swarm Optimization (EPCSO) 
[41] are proposed by Tsai in 2008 and 2012, respectively. 
These methods can obtain higher accuracy and faster 
computation speed in cluster analysis, expression 
recognition, and multi-objective optimization [57-61]. 

Strong curiosity to moving objects and the outstanding 
skill of hunting are the two distinctive features of a cat. 
These two behavioral traits of cats are modeled by CSO: 
seeking mode and tracing mode, which reflects the 
cooperation between “cats”. However, in order to further 
improve the CSO optimization speed and prediction 
accuracy, PCSO absorbs the advantage of parallel 
computing to improve the tracing mode such that a 
parallel tracing mode is adopted. PCSO establishes a 
plurality of CSO to search the best parameters in the 
prediction parameter space independently and 
simultaneously by dividing the “cat swarm” into some 
groups. At the same time, it adds information exchanging 
mode such that the CSOs can exchange information 

occasionally, which reflects the cooperation between 
groups. Hence, PCSO is particularly suitable for multi-
parameter optimization and multi-threaded computing, 
because it makes full use of computer resources and 
obtain the optimal result quickly. When PCSO is running, 
the “cats” are randomly distributed in the prediction 
parameter space. Inevitability, it results in a state such 
that there more “cats” in some areas and less in others. 
Hence, one obtains the optimal parameters in the more 
“cats” areas, because lots of optimization is executed in 
the more “cats” areas. This process reduces the SVM 
prediction accuracy and robustness of optimal parameters. 
Thus, an MPCSO algorithm is proposed to solve the 
problem so as to sprinkle the “cats” evenly in the 
prediction parameter space to lead the PCSO to search the 
best parameters evenly in the whole SVM prediction 
parameter space ( ), ,C ε δ . 

By MPCSO, the procedure for the parameter 
optimizing of SVM is as follows. 

Figure 1. The flow chart of prediction parameters optimization with 
MPCSO-SVM. 

Step 1: Create N cats, adjust N and sprinkle the 
adjusted N cats into the 3 dimensional SVM prediction 
parameter space ( ), ,C ε δ evenly by the Even 
Distribution Process and divide the adjusted N cats into G 
groups. 

Step 2: Randomly generate the Velocities for each 
dimension CV ,Vε andVδ of each cat, which should be in 
the predefined range. Set the Motion Flag of each cat to 
make them move into the Parallel Tracing Mode or the 
Seeking Mode according to the predefined value of MR, 
where MR [ ]0,1∈ denotes the ratio of cats working in 
Seeking Mode and Parallel Tracing Mode. 

Step 3: For each cat, take location coordinates 
( ), ,i i iC ε δ into the Fitness Function of SVM, calculate 
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the fitness values respectively, and record the location 
coordinates and the fitness values.  

Now, the structure of cats in the cat swarm has been 
built as 

 
Cat(i)={ 

  Location[ ], ,C ε δ  , 

  Velocity[ ], ,C ε δ  , 
  Fitness, 
  Motion Flag, 
  Group 

} 
 
Step 4: Move the cats into the Seeking Mode or the 

Parallel Tracing Mode according to the status of the 
Motion Flags. Select the cat which has the best fitness 
value from each group to update the corresponding group 
record, and select the group which has the best fitness 
value from the whole cat swarm to update the whole 
space record. 

Step 5: Re-pick a number of cats and set them into 
Seeking Mode or Parallel Tracing Mode according to MR. 

Step 6: Check whether the number of iterations 
reaches a predefined ECH (a threshold to exchange the 
information of groups). If the condition is satisfied, move 
into the Information Exchanging Mode. 

Step 7: Check whether the process satisfies the 
termination condition. If yes, output location coordinate 
of the whole space record, which represents the best 
SVM prediction parameters ( ), ,best best bestC ε δ , and stop the 
MPCSO. Otherwise, go to Step 3. 

C.  Even Distribution Process 
Even Distribution Process can change the number of 

cats N, and sprinkle the “cats” evenly in the SVM 
prediction parameter space ( ), ,C ε δ to achieve the 
objective of seeking the best parameters in the whole 
space evenly and increasing the robustness of PCSO. 

The detailed steps are as the follows: 
Step 1: Calculate the cube root of the predefined 

number of cats N, and round it to the positive direction. 
Step 2: Record the rounded number D and let the cube 

of D be the new number of cats N.  
Step 3: In the SVM prediction parameter 

space ( ), ,C ε δ , each dimension is divided into D+1 
equal parts such that the space is divided into (D+1)3 
equal parts, and the endpoints of each equal part, 
excluding the points on the boundary of the space, are the 
location coordinates of the cats. 

Now, the cats have been sprinkled evenly in the SVM 
prediction parameter space ( ), ,C ε δ . 

D.  Seeking Mode 
In the Seeking Mode of MPCSO, one of the cat’s 

behaviors is simulated such that the cat keeps alertly 
looking around for its next movement during a period of 
resting. There are three essential factors need to be 

predefined in the Seeking Mode, they are Seeking 
Memory Pool (SMP), Seeking Range of the selected 
Dimension (SRD), and Counts of Dimension to Change 
(CDC). 

The detailed steps for the Seeking Mode are shown in 
Fig.2. 

 
Figure 2. The flow chart of seeking mode in MPCSO-SVM.

Step 1: Create j copies of the cat’s current position, 
where j=SMP-1 and retain the present position as one of 
the candidates.  

Step 2: For each copy, according to CDC, plus or 
minus the SRD percent of the present location and replace 
the old ones with the following equation: 

 
( ) ( ) ( ), ,, 1 1 ,

, ,
j d j dj L t rand SRD L t

d C ε δ

∀ = + × × −

=
             (6) 

 
where j is the j-th copy of the current location, d is the 
dimension of the prediction parameters’ space and rand is 
a random variable in the range[ ]0,1 . ( ), 1j dL t −  is the 
last location coordinate of j copy d dimension and 

( ),j dL t is the updated value. 
Step 3: Calculate the fitness values of all candidate 

points respectively. If all the fitness values are not exactly 
equal, calculate the selecting probability Pi of each 
candidate point as 

 

 
max min

, 0i b
i

FS FS
P where i j

FS FS
−

= < <
−

     (7) 

 
If the goal of the fitness function is to find the 

minimum value, then let maxbFS FS= . Otherwise, 

let minbFS FS= , where maxFS denotes the largest FS in 

the candidates and minFS denotes the smallest one. 
Step 4: Select the copy which has the best fitness 

value from the j copies and record its corresponding 
location coordinate. 

Step5: Compare this copy’s fitness value with the 
original fitness value. If the copy’s fitness value is better 
than the original one, move the cat to the new position, 
otherwise, keep the cat stay on the original position. 
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E.  Parallel Tracing Mode 
The Parallel Tracing Mode applies the group’s 

recorded location coordinate which has the best fitness 
value to update the location coordinate and velocity of the 
cat in the group. It can direct the cat to approach the 
corresponding group’s best location coordinate and 
search the location coordinate on the path. 

The parallel tracing mode is described in Fig.3. 
Parallel Tracing Mode

Update the cat’s velocity 
with the group’s record

Check if the velocities are in
predefined range of velocity

Set equal to 
the limit

Update the position with 
the updated velocity

Return

Y

N

Figure 3. The flow chart of Parallel tracing mode in 
MPCSO-SVM. 

Step 1: Update the velocity for every dimension 
( )dV t for the cat at the current iteration according to 

following equation. 
 

 

( ) ( )
( ) ( ),

1

1 1 ,

, ,
best

d d

G d d

V t V t

r c L t L t

d C ε δ

= − +

⎡ ⎤× × − − −⎣ ⎦
=

 (8) 

 
where ( ), 1

bestG dL t − is the d-dimension location 
coordinate of the group which the cat belongs to and has 
the best fitness value at the previous iteration. 

( )1dL t − is the d-dimension location coordinate of the 

cat at the previous iteration. ( )1dV t − is the d-dimension 
velocity of the cat at the previous iteration. c is a constant 
and r is a random value in the range of[ ]0,1 . 

Step 2: Check if the velocities are in predefined range 
of velocity. In case the new velocity is over-range, it is 
set equal to the limit. 

Step 3: Update the position of cat according to the 
following equation. 

 
    ( ) ( ) ( )1d d dL t L t V t= − +            (9) 

F.  Information Exchanging Mode 
Information Exchanging Mode forces the groups to 

exchange their information and achieves the group 
cooperation. It predefines a parameter ECH to control 
when this mode is executed. The information exchanging 
mode is applied once per ECH iteration. It consists of the 
following four steps (shown in Fig.4). 

Figure 4. The flow chart of the information exchanging mode in 
MPCSO-SVM. 

Step 1: Pick up a group of cats sequentially and sort 
the cats in this group according to their fitness values. 

Step 2: Randomly select a best group record from an 
unrepeatable group. 

Step 3: The location coordinate of the cat whose 
fitness value is the worst in the group is replaced by the 
selected group record’s location coordinate. 

Step 4: Repeatedly perform Steps 1-3 several times to 
let every group receives a best location coordinate from 
the others. 

III.  THE FORECASTING PROCESSES OF MPCSO-SVM 
METHOD 

The modeling process of short-term cooling load 
forecasting based on MPCSO-SVM method is shown in 
Fig.5. 

Figure 5. The short-term cooling load forecasting model flow chart. 
 
This modeling processes consist of the following steps: 

selecting the cooling load forecasting features, historical 
data pre-treating, the main forecasting features extracting 
by PCA (Principal Component Analysis) method, SVM 
parameter optimization with MPCSO, SVM training to 
obtain the short-term cooling load forecasting model 
based on MPCSO-SVM. 
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A.  Selection of the Cooling Load Forecasting Features 
It follows from the results obtained in [4, 13, 20, 27, 31] 

that the closer the days during which the data are 
collected are to the days during which cooling load is to 
be predict, the more the prediction accuracy is impacted. 
In addition, the environment temperature and humidity 
are also the predominant influencing factors. Therefore 
this paper selects 14 features as the inputs of the proposed 
SVM model, which are the cooling load of day 1 and 2 
before the day to be predicted, the maximum and 
minimum temperature & humidity of day1 and 2 before 
the day to be predicted, the maximum and minimum 
temperature & humidity of the day to be predicted. The 
selected cooling load forecasting features are showed in 
Fig. 6. 

The cooling load of 1 day
before the day to be predicted

The cooling load of 2 day
before the day to be predicted

The maximum temperature of 1 
day before the day to be predicted
The maximum temperature of 2

day before the day to be predicted
The minimum temperature of 1 

day before the day to be predicted
The minimum temperature of 2

day before the day to be predicted

The maximum humidity of 1 day 
before the day to be predicted

The maximum humidity of 2 day 
before the day to be predicted

The minimum humidity of 1 day 
before the day to be predicted

The minimum humidity of 2 day 
before the day to be predicted

The maximum temperature 
of the day to be predicted

The minimum temperature 
of the day to be predicted

The maximum humidity of 
the day to be predicted

The minimum humidity of 
the day to be predicted

The short-term cooling 
load forecasting model

The cooling load of the 
day to be predicted

Figure 6. The selected cooling load forecasting features. 

B.  Historical Data Pre-treating 
Historical forecasting feature data pre-treating includes 

data cleansing, data structure adjustment, and data 
normalization. Data cleansing corrects obvious mistakes 
in the data and fills in missing ones by doing the 
arithmetic mean of the two adjacent data. Data structure 
adjustment makes the data fit to train the SVM model. 
This paper applies the following function to normalize 
the training data set and predicting set. 

   
( ) ( )max min min

min
max min

y y x x
y y

x x
− × −

= +
−

      (10) 

where x is the original data, maxx and minx are the 
minimum and maximum value of the original data, 
respectively. y , maxy and miny are the expected 

normalized value of x , maxx and minx respectively. 

C.  Main Forecasting Feature Extracting by PCA 
The larger the sample dimension, the more 

computational time of SVM spends. To solve the problem, 
PCA is applied to extract the principal components of the 
forecasting features and reduce the number of dimensions 
accordingly. PCA decrease the number of dimensions of 
data with the information loss minimization by selecting 
maximal variance samples [62]. Then, the feature 

extracting can be eventuated to the eigenvalue computing 
of covariance matrix. 

The steps of extracting the principal components of 
forecasting features by PCA are shown as follows. 

Step 1: Calculate the mean, variance matrix, and 
scatter matrix of the forecasting feature matrix. 

Step 2: Calculate the variance matrix’s eigenvalues 
and corresponding eigenvectors. 

Step 3: Sort the eigenvalues in the descending order. 
Select the largest n eigenvalues and corresponding 
eigenvectors. In which, n must be set by the contribution 
value which is the ratio of the sum of the n eigenvalues 
and the sum of all the eigenvalues. Optimum contribution 
value is more than 90%. 

Step 4: Calculate the product of forecasting feature 
matrix and the difference of eigenvector matrix and the 
average. Then, the n-dimensional matrix with the number 
of dimensions being reduced is obtained. 

 
Figure 7. The flow chart of extracting the main forecasting features by 

PCA. 

D.  MPCSO-SVM-based Short-term Cooling Load 
Forecasting Model 

After extracting the main forecasting features of 
historical data, the feature data and the MPCSO 
optimized SVM parameters are imported to SVM, then 
the SVM is trained to generate the MPCSO-SVM-based 
short-term cooling load forecasting model. Therefore the 
forecasting model consists of three sub-modules: 
database module, prediction module, and result 
displaying module. 

Cooling 
load 

historic
al data 

sets Extracting the 
main forecasting 
features by PCA

Optimizing the 
SVM parameters 

with MPCSO

Training the 
SVM

The forecasting 
model 

Features to be 
predicted

Graphical 
display

Prediction 
result

Database 
module

Prediction 
module

Results displaying 
module

Figure 8. The structure of the MPCSO-SVM based short-term cooling 
load forecasting model. 

1) Database module stores all the data needed by 
MPCSO-SVM-based short-term cooling load forecasting 
modeling, i.e., the historical data, the forecasting result, 
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and the real operation data. When a new forecasting 
process is finished, all the data are recorded in the 
database module. In this way, the database is updated 
constantly. 

2) Prediction module is the core of the short-term 
cooling load forecasting model. It consists of forecasting 
feature selection, historical data pre-treating, feature 
extracting of historical data by PCA, SVM parameter 
optimization by MPCSO, and SVM training to generate 
the MPCSO-SVM based short-term cooling load 
forecasting model. When the prepared forecasting 
features are input, an excellent forecasting result is 
expected. 

3) Results displaying module is mainly used for 
showing the forecasting results and the cooling load real 
values by data visualization technology. 

E.  Evaluation Index 
In order to test the prediction accuracy of the short-

term cooling load forecasting model, relative error ( REE ), 

root mean square relative error ( RMSREE ), and average 

relative error ( AREE ) are applied to evaluate the 
precision of prediction in this paper. 

    
'

100%i i
RE

i

y yE
y
−

= ×                 (11) 

 

2'

1

1 100%
n

i i
RMSRE

i i

y yE
n y=

⎛ ⎞−
= ×⎜ ⎟

⎝ ⎠
∑      (12) 

    
'

1

1 100%
n

i i
ARE

i i

y yE
n y=

−
= ×∑    (13) 

where iy is the actual cooling load values, '
iy is the 

corresponding predictive cooling load values, n is the 
number of days in the testing set. 

Mean square error ( MSEE ) is selected to be the SVM’s 
fitness function which is 

    ( )2'

1

1 n

MSE i i
i

E y y
n =

= −∑                (14) 

It is applied to calculate the location coordinate 
( ), ,i i iC ε δ of each cat in according with the fitness 
value. 

IV.  CASE STUDY 

A.  Data Preparation 
To verify the effectiveness of the short-term cooling 

load forecasting model based on MPCSO-SVM method 
proposed in this paper, cooling system in a subway 
station district with ice storage air-conditioning 
technology is taken as a case study. A totally 121 days’ 
data set collected from Jul. 3, 2012 to Oct. 31, 2012, is 
used to verity the proposed MPCSO-SVM forecasting 
model. Three months data is collected as the train data set, 
the rest of month data is used as a test set to verify the 
MPCSO-SVM forecasting model. For instance, the 
months’ data from Aug. 1 to Oct. 31 is collected to train 
the model, so the month data from Jul. 3 to Jul. 31 is used 
to test the model. 

The forecasting features which selected from the 
relevant data of Jul. 1, 2012 to Oct. 31, 2012 are 
illustrated in Section III.A. 

B.  Parameter Predefinition for the Model 
There are a few parameters needed to be predefined 

before running the model. They include the range of the 
SVM prediction parameter space ( ), ,C ε δ , the range of 
the optimization velocity, the maximum number of the 
optimization iteration, the number of cats, SMP, SRD, 
MR and ECH. 

The predefined values of these parameters in this case 
are shown in Tab. I. 

TABLE I. 
PARAMETER TABLE. 

The range of the SVM prediction 
parameters space The range of the optimization velocity iter CatNum SMP SRD MR ECH

Cmax Cmin εmax εmin δmax δmin VCmax VCmin Vεmax Vεmin Vδmax Vδmin

103 10-2 1 10-4 103 10-2 25 -25 10-3 -10-3 20 -25 100 200 5 0.2 0.05 5 
 

C.  Prediction Results and Error Analysis 
The 4 months forecasting cooling load results obtained 

by using the proposed model and the 4 months real values 
are respectively shown in Fig. 9. 

In Fig. 9, the red lines represent the every month’s real 
cooling load of the subway station and the black line is 
the forecasting cooling load values. It can be seen that the 
variation range of this subway station’s real cooling load 
values is great, and the linear regression methods are not 
suitable to predict the next day cooling load value. Fig. 9 
shows that when the changes of the real values are very 
large, the forecasting values are much closer to the real 
values. That is to say, the short-term cooling load 
forecasting model based on MPCSO-SVM method 

proposed in this paper is proved to be applicable and 
feasible. In order to show the errors between the real 
values and the forecasting values more clearly, each day's 
relative errors between the real values and the forecasting 
values, root mean square error of each month, and 
average relative error of each month are recorded in Tab. 
II. It shows that the maximum relative error is 17.5391% 
and the minimum is 0.0006% (taken the absolute). In 
other words, the relative errors are less than 18% and the 
median of the relative errors is 2.7706%. The root mean 
square relative errors of the forecasting values 
respectively are 3.5583%, 4.1441%, 5.5473% and 
5.9936%.The average of them is 4.8108%. The average 
relative errors of the four months are 2.8549%, 3.2742%, 
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4.0192% and 4.1937% respectively. The average of them 
is 3.5855%. This implies that the MPCSO-SVM method 
proposed in this paper is applicable to cooling load 
forecasting in DCS. The forecasting values from this 

model can meet the engineering requirements, and 
achieve the objective of storing ice reasonably, using 
energy effectively. 

(a). Comparison about the July’s data.  (b). Comparison about the August’s data. 

(c). Comparison about the September’s data. (d). Comparison about the October’s data. 
Figure 9. Comparison of predicted and actual values. 

 
TABLE II. 

THE SHORT-TERM COOLING LOAD FORECASTING MODEL PREDICTION ERRORS TABLE. 
Date Date Date Date 

ERE 

3-Jul 10.0191% 1-Aug -5.7473% 1-Sep -6.8946% 1-Oct 0.1284% 
4-Jul -3.8270% 2-Aug 2.5341% 2-Sep 3.2892% 2-Oct -2.4023% 
5-Jul -0.3359% 3-Aug -6.4801% 3-Sep 4.1840% 3-Oct -1.3963% 
6-Jul 3.5575% 4-Aug -1.0664% 4-Sep -1.8769% 4-Oct -9.7092% 
7-Jul 1.6085% 5-Aug -0.1061% 5-Sep 1.8819% 5-Oct 1.7174% 
8-Jul -5.3103% 6-Aug -0.0529% 6-Sep -3.3728% 6-Oct 4.4992% 
9-Jul 3.3722% 7-Aug -1.6804% 7-Sep -0.5539% 7-Oct 4.2205% 
10-Jul -0.0006% 8-Aug 5.3647% 8-Sep 2.9951% 8-Oct -8.4477% 
11-Jul -2.7073% 9-Aug -2.5309% 9-Sep -0.4869% 9-Oct -1.6410% 
12-Jul -5.0691% 10-Aug -3.9337% 10-Sep -0.7804% 10-Oct 5.8448% 
13-Jul 4.1576% 11-Aug -4.3284% 11-Sep -0.2596% 11-Oct 1.3848% 
14-Jul 0.1749% 12-Aug -1.5765% 12-Sep 1.1292% 12-Oct 2.3574% 
15-Jul -4.4033% 13-Aug 8.5139% 13-Sep 2.7253% 13-Oct -4.1197% 
16-Jul -2.3021% 14-Aug -10.1740% 14-Sep 14.1250% 14-Oct -5.7192% 
17-Jul 4.7031% 15-Aug -2.4092% 15-Sep 6.7477% 15-Oct -6.9775% 
18-Jul -1.3005% 16-Aug -5.5884% 16-Sep 4.3672% 16-Oct 0.1018% 
19-Jul -4.3924% 17-Aug 0.9222% 17-Sep 4.1129% 17-Oct 3.2536% 
20-Jul -0.3968% 18-Aug -2.9524% 18-Sep 9.0839% 18-Oct 12.5718% 
21-Jul -1.6213% 19-Aug -2.2677% 19-Sep -3.9718% 19-Oct 3.3233% 
22-Jul 3.7071% 20-Aug -0.6418% 20-Sep 4.0764% 20-Oct -9.0653% 
23-Jul 1.4084% 21-Aug -0.1615% 21-Sep -16.4215% 21-Oct 13.1103% 
24-Jul -0.8642% 22-Aug 2.7560% 22-Sep -4.0758% 22-Oct -0.6523% 
25-Jul -2.5389% 23-Aug 0.4715% 23-Sep 0.2332% 23-Oct 0.7010% 
26-Jul 1.6951% 24-Aug 3.8636% 24-Sep -2.2830% 24-Oct -1.6735% 
27-Jul 3.6888% 25-Aug -2.4849% 25-Sep 0.3085% 25-Oct -2.5692% 
28-Jul 4.3167% 26-Aug -3.0599% 26-Sep 8.1119% 26-Oct -0.7809% 
29-Jul -4.1767% 27-Aug 1.7915% 27-Sep 2.8086% 27-Oct -1.1136% 
30-Jul 0.8761% 28-Aug -3.4728% 28-Sep 6.2539% 28-Oct -0.9419% 
31-Jul 0.2618% 29-Aug -7.9320% 29-Sep -0.0675% 29-Oct -1.1499% 

30-Aug -1.2639% 30-Sep 3.0982% 30-Oct -0.8928% 
31-Aug -5.3703% 31-Oct 17.5391% 

ERMSRE 3.5583% 4.1441% 5.5473% 5.9936% 
EARE 2.8549% 3.2742% 4.0192% 4.1937% 
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V.  COMPARATIVE STUDY 

To show the advantages of the short-term cooling load 
forecasting model based on MPCSO-SVM method, 
comparison of the forecast accuracy of the MPCSO-SVM, 
CSO-SVM (SVM forecasting model with cat swarm 
optimization), PSO-SVM (SVM forecasting model with 
particle swarm optimization)[63], and RBFNN (radial 

basis function neural network) [64,65]is made in this 
section. 

The predicted values of the aforementioned methods 
and the real values are shown in the Fig. 10. It can be 
clearly seen that the line of RBFNN method is the most 
far away from the line of the real values. At the same 
time, the lines of other methods are very close and have 
the same trends. That is to say that all of these three 
methods have an excellent prediction performance. 

(a). Comparison about the July’s data. (b). Comparison about the August’s data. 

(c). Comparison about the September’s data. (d). Comparison about the October’s data. 
Figure 10. Comparison of MPCSO-SVM, CSO-SVM, PSO-SVM and RBFNN. 

 

In order to show the errors of all the methods more 
clearly, Tab. III shows each month's relative errors of all 
the four methods. The root mean square relative errors 
and average relative errors of all the methods’ are also 

recorded in Tab. III. From Tab. III, we can find that the 
RBFNN method have the maximum error as shown in Fig. 
10. The other methods’ relative errors are very close such 
that we can’t distinguish clearly from the lines in Fig. 10.  

 
TABLE III. 

PREDICTION ERRORS TABLE. 
July August 

MPCSO-SVM CSO-SVM PSO-SVM RBFNN MPCSO-SVM CSO-SVM PSO-SVM RBFNN 
Maximum of ERE 10.0191% 10.1118% 10.2086% 29.8568% 10.1740% 10.3942% 10.3717% 34.3196%
Minimum of ERE 0.0006% 0.0271% 0.0332% 2.0281% 0.0529% 0.0136% 0.0049% 0.4031% 
Median of ERE 2.7073% 2.7367% 2.6983% 10.1722% 2.5341% 2.7208% 2.6990% 5.4861% 

ERMSRE 3.5583% 3.5688% 3.5779% 13.7240% 4.1441% 4.1669% 4.1669% 13.0963%
EARE 2.8549% 2.8575% 2.8573% 11.4012% 3.2742% 3.2803% 3.2832% 9.6186% 

September October 
MPCSO-SVM CSO-SVM PSO-SVM RBFNN MPCSO-SVM CSO-SVM PSO-SVM RBFNN 

Maximum of ERE 16.4215% 16.5997% 17.5866% 47.1061% 17.5391% 16.3661% 13.6816% 318.1571%
Minimum of ERE 0.0675% 0.2052% 0.1481% 0.2408% 0.1018% 0.0107% 0.2438% 2.4121% 
Median of ERE 3.1937% 3.1437% 3.1422% 8.8715% 2.4023% 3.1827% 4.2032% 51.2033%

ERMSRE 5.5473% 5.5587% 5.8642% 18.0346% 5.9936% 6.0280% 6.2962% 83.8624%
EARE 4.0192% 4.0389% 4.2826% 13.1823% 4.1937% 4.4207% 5.0150% 58.2712%

 

However, from the records in Tab. III, especially, for 
the root mean square relative errors and the average 
relative errors of the MPCSO-SVM, CSO-SVM and 
PSO-SVM, we can find the differences between them. In 
July, the root mean square relative error of MPCSO-SVM 
is 0.0105% lower than CSO-SVM, 0.0196% lower than 
PSO-SVM and 10.1657% lower than RBFNN. In August, 

the root mean square relative error of MPCSO-SVM is 
0.0228% lower than CSO-SVM, 0.0228% lower than 
PSO-SVM and 8.9522% lower than RBFNN. In 
September, the root mean square relative error of 
MPCSO-SVM is 0.0114% lower than CSO-SVM, 
0.3169% lower than PSO-SVM and 12.4873% lower than 
RBFNN. In October, the root mean square relative error 

JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014 2101

© 2014 ACADEMY PUBLISHER



of MPCSO-SVM is 0.0344% lower than CSO-SVM, 
0.3026% lower than PSO-SVM and 77.8688% lower than 
RBFNN. In summary, the average of the MPCSO-SVM’s 
root mean square relative error is 0.0198% lower than 
CSO-SVM, 0.1655% lower than PSO-SVM and 
27.3685% lower than RBFNN. The average relative error 
of MPCSO-SVM is 0.0026% lower than CSO-SVM, 
0.0024% lower than PSO-SVM and 8.5463% lower than 
RBFNN in July. The average relative error of MPCSO-
SVM is 0.0061% lower than CSO-SVM, 0.0090% lower 
than PSO-SVM and 6.3444% lower than RBFNN in 
August. The average relative error of MPCSO-SVM is 
0.0197% lower than CSO-SVM, 0.2634% lower than 
PSO-SVM and 9.1631% lower than RBFNN in 
September. The average relative error of MPCSO-SVM 
is 0.2270% lower than CSO-SVM, 0.8213% lower than 
PSO-SVM and 54.0775% lower than RBFNN in October. 
To sum up, the average of the MPCSO-SVM’s average 
relative error is 0.0639% lower than CSO-SVM, 0.2740% 
lower than PSO-SVM and 19.5328% lower than RBFNN. 
The Fig. 10 and Tab. III can fully explain the MPCSO-
SVM is better than the other three approaches. 

In summary, MPCSO-SVM is the best approach of the 
four methods, because it has the minimum errors. Hence, 
the short-term cooling load forecasting model based on 
MPCSO-SVM method proposed in this paper is feasible 
and highly practical. 

VI.  SUMMARY AND CONCLUSION 

To predict the cooling load by SVM model, the 
selected three prediction parameters, namely the penalty 
coefficient C , the insensitive loss coefficient ε and the 
width of radial basis function kernel functionδ , play a 
key role. An inappropriate penalty coefficient results in 
the phenomenon of under-learning or over-learning. An 
unsuitable insensitive loss coefficient weakens the 
robustness of SVM, because it affects the number of 
support vectors. If the width of radial basis function 
kernel function is not proper, the generalization ability of 
SVM is reduced. The optimization of these SVM 
prediction parameters improves SVM’s prediction 
accuracy, enhances the robustness and generalization 
ability of SVM method. 

In this paper, the short-term cooling load is used as the 
forecast target to verify the usefulness of this proposed 
MPCSO-SVM forecasting method. It is tested by case 
study from a subway station district cooling system and 
preferable prediction results are obtained. For the case 
problem, the average of predicted root mean square 
relative error is 4.8108%, 0.0198% lower than CSO-SVM, 
0.1655% lower than PSO-SVM and 27.3685% lower than 
RBFNN. The average of predicted average relative error 
is 3.5855%, 0.0639% lower than CSO-SVM, 0.2740% 
lower than PSO-SVM and 19.5328% lower than RBFNN. 
These results show that the proposed model is effective in 
the cooling load forecasting. 

In future work, we will study how to further improve 
the SVM’s prediction accuracy, generalization ability, 
and robustness, and reduce the SVM’s training time. All 

of these contribute to further optimize and improve the 
short-term cooling load forecasting. In addition, we will 
promote the MPCSO method and the MPCSO-SVM 
forecasting model such that that it can be applied to wider 
field. 
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