
 

Abstract—Normal communication of deaf people in ordinary 
life still remains an unrealized task, despite the fact that Sign 
Language Recognition (SLR) made a big improvement in 
recent years. We want here to address this problem 
proposing a portable and low cost system, which 
demonstrated to be effective for translating gestures into 
written or spoken sentences. This system relies on a 
home-made sensory glove, used to measure the hand gestures, 
and on Wavelet Analysis (WA) and a Support Vector 
Machine (SVM) to classify the hand’s movements. In 
particular we devoted our efforts to translating the Italian 
Sign Language (LIS, Linguaggio Italiano dei Segni), 
applying WA for feature extractions and SVM for the 
classification of one hundred different dynamic gestures. The 
proposed system is light, not intrusive or obtrusive, to be 
easily utilized by deaf people in everyday life, and it has 
demonstrated valid results in terms of signs/words 
conversion. 

 
Index Terms—Machine intelligence, Pattern analysis, 
Human Computer Interaction, Support Vector Machines, 
Data glove, Sign Language Recognition, Italian Sign 
Language, LIS 

 

I. INTRODUCTION 

imilarly to spoken languages, Sign Languages (SLs) 
are complete and powerful forms of communication, 
and are adopted by millions of people, who suffer from 

deafness, all over the world. SLs are different among 
different regions and states: American Sign Language 
(ASL), Japanese Sign Language (JSL), German Sign 
Language (GSL), Lingua Italiana dei Segni (LIS, the 
Italian Sign Language), etc. However, each single SL 
relies commonly on gesture and posture mimic 
interpretation, which plays a fundamental role in 
non-verbal communication too. SL comprehension is 
generally limited only to a restricted part of population, 
thus deaf people remain restrained apart from social 
interactions with hearing persons, and the 
body-language/non-verbal communication is mainly 
limited to “feelings” rather than consciousness 

understanding. These are the main reasons why a system 
for “Automatic” Sign Language Recognition (A-SLR) is 
welcome and a greater human effort is being devoted to 
realize it [1]. A-SLR could allow deaf people to 
communicate without limitations, could assign suitable 
interpretations to non-verbal communication without 
ambiguities, and could be the basis of a new form of 
human-computer interaction, since the most natural way 
of human-computer interaction would be through speech 
and gestures, rather than the current adopted interfaces like 
keyboard and mouse. Particularly, the integration of 
A-SLR with automatic text writing or speech synthesis 
modules can furnish a “speaking aid” to deaf people. 

Our purpose is to realize a system capable to measure 
human static and dynamic postures, classify them as 
“words” organized into “sentences”, in order to “translate” 
SLs into written or spoken languages. To this aim, a great 
challenge comes from the measure of human postures with 
acquisition devices that are both comfortable and easy to 
use. In particular, we have to focus our attention on hand 
postures and movements since the SL is mostly, even if 
not exclusively, based on them. In fact SL is made of hand 
gestures, body and facial expressions, but the latter is not 
strictly “fundamental”. 

Currently, hand movements are commonly measured by 
motion tracking techniques based on digital cameras. 
These systems offer interesting results in terms of 
accuracy, but suffer from a small active range and 
disadvantages related to portability. In order to overcome 
these problems, new measuring systems have been 
developed, in particular the ones based on sensory gloves 
(i.e. gloves equipped with sensors capable to convert hand 
movements into electrical signals). 

The first sensory gloves on the market [2-3] were 
obtrusive for movements, uncomfortable and capable to 
measure only a very low number of Degrees Of Freedom 
(DOF) of the human hand. Nowadays, commercial 
sensory gloves are quite light, comfortable and capable to 
measure up to 22 DOFs [4], covering flex-extension and 
abdu-adduction movements of the fingers and spatial 
arrangement of the wrist. However, the cost remains 
generally too high (tens of thousands of dollars) to be 
widely applied in everyday scenarios. Thus, new sensory 
gloves have been created by research groups all over the 

Conversion of Sign Language to Spoken 
Sentences by Means of a Sensory Glove 

 
Pietro Cavallo 

Electronic Engineering Department, University of Tor Vergata, Roma, Italy 
Email:p.cavallo85@gmail.com 

 
Giovanni Saggio 

Electronic Engineering Department, University of Tor Vergata, Roma, Italy  
Email: saggio@uniroma2.it 

 
 

S

 

Manuscript received August 27, 2013; revised January 21, 2014;
accepted January 23, 2014. 

2002 JOURNAL OF SOFTWARE, VOL. 9, NO. 8, AUGUST 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.8.2002-2009



 

world [5], proposing different raw fabric materials 
(stretchable, washable, light, comfortable to don), 
different kind of sensors to convert postures into electrical 
signals (based on optics, magnetic fields, inertia principles, 
etc.), different front-end electronic solutions, and so on. 

Here, we designed and realized a sensory glove based 
on both bend and inertial sensors sewn onto a Lycra 
support. The overall system is explained in details in 
section IV.A. 

The electric values coming from the sensors are 
processed by an ad-hoc designed electronic circuitry that 
is connected to a personal computer where digital data are 
on-line processed to obtain a classification of the 
measured gestures. 

By means of the glove and the hardware, we measured 
the static and dynamic postures of the hands of two 
persons who performed the signs belonging to the LIS 
(Linguaggio Italiano dei Segni, i.e. the Italian sign 
language). Thanks to feature extraction and gesture 
classification, we “translated” in real-time a stream of LIS 
signs into Italian words and sentences, which can be 
converted into speech via commercially available 
synthesizer software. 

Apart from sign language translation, our data glove 
could have a great impact on Human-Computer 
Interaction applications, being the user able to translate its 
actions and gestures into computer commands. 

This is an interesting application, especially with new 
devices coming up in the next future (e.g. smart glasses) 
which need a natural way of interaction. 

It also has great potential for video games and for all 
those scenarios where nonverbal communication can 
improve the way people interact with machines. 

We are strongly convinced that a glove system is much 
more user friendly and natural to use, especially when 
interfaced to a smartphone via wireless/Bluetooth 
connection, while a camera-based system suffers indeed of 
a restricted visual field, and it is not portable in everyday 
life.  

A-SLR can be considered close to speech recognition 
algorithms, even though speech recognition only deals 
with one signal while A-SLR has to handle multiple 
signals, i.e. hand shape, orientation, position and 
movement. In addition, the commercial inertial sensors (as 
the ones we used for the glove) have in general “noisy” 
problems that must be taken into account. 

For the “recognition” of the hand’s kinematic, we 
adopted wavelet analysis: the dynamic components of the 
gestures were described by wavelet coefficients and then 
furnished to a Support Vector Machine (SVM) module for 
the classification process. Three different chunking 
methods were first considered and then implemented in 
order to truncate the signs contained in a continuous 
sentence. 

The remainder of this paper is organized as follows. 
Section II reviews the state of the art. In Section III there is 
a brief introduction to the Italian Sign Language. In 
Section IV, details of our system are given: the sensory 
glove (subsection A); the acquisition data circuitry 
(subsection B); proposition of three different chunking 

methods (subsection C); feature extraction and gesture 
classification (subsections D and E). In section V the 
experimental results are given. The conclusions are drawn 
in the last section. 

II. RELATED WORKS 

The most commonly adopted method to measure human 
movements relies on “motion tracking” procedures, which 
usually involves optical techniques (e.g. Optotrak Certus 
@ www.ndigital.com, OptiTrack @ 
www.naturalpoint.com/optitrack). E. J. Muybridge was a 
pioneer of optical analysis of movements, by investigating 
about human and animal movements through photograph 
sequences [6]. Even though the method at the beginning 
was inevitably inaccurate, nowadays the optical system 
has reached complete maturity, but with the drawbacks of 
high costs, the need to arrange a scenario with cameras, 
and the need for a high computational workload. As time 
passed, other methods were invented such as magnetic 
based tracking systems (see the 3D Space Fastrak as an 
example, www.polhemus.com), hybrid systems 
combining inertial sensors with an optical marking system 
(MoCap), or mechanical based system consisting of an 
exoskeleton made of lightweight aluminum rods that 
follow the motion of the user's bones (see the Gypsy 7 
Torso Motion Capture System, www.metamotion.com). 
Finally, we must mention wearable sensor systems 
consisting of sensors located on the human body as the 
sensory gloves. 

These gloves are quite precise to measure finger joints 
angles with a resolution of the order of one degree, but 
with the drawback of the imperfect space tracking of the 
hand, i.e. the location of the hand in the 3D surroundings. 
In previous works [7-10] the most adopted way to carry 
out the tracking was to use magnetic field devices such as 
the well known Polhemus Fastrak [11]. Even though it 
provides accurate information about trajectory and 
orientation of the object to be tracked, the cost is fairly 
high. In addition, it has a limited action range and it is not 
portable at all. 

In [12] and [13] space tracking was carried out by using 
accelerometers. These kinds of inertial devices require 
little energy to work, are comparatively cheap and small 
enough to be integrated in a glove. Unfortunately, for the 
Fastrak previously discussed, the signals obtained from 
the accelerometers are more difficult to process and with 
lower spatial resolution.  

According to our knowledge, only few works are related 
to inertial devices in A-SLR applications; in [12], they are 
used to track hand movements to recognize a set of 3 
gestures; in [13] the authors carried out the classification 
of 17 different trajectories (not related to any sign 
languages), using fusion features based on Wavelet 
analysis to represent the trajectories. We here extend the 
work of [13], using Wavelet coefficients as well to 
represent the dynamic components of the gestures, but 
analyzing a larger set of 100 gestures belonging to a real 
sign language (i.e. LIS), and using an innovative low-cost 
acquisition device.   

Regarding the classification part, in literature different 
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fourth levels (129 + 66 + 34 + 18 coefficients) and the 
approximation wavelet coefficients at the fourth level (18 
coefficients) were computed. In order to reduce the 
dimensionality of the feature vectors, the following 
statistics over the set of the wavelet coefficients were used 
to represent each of the six IMU signals, as done in [23]: 

 
(1) Energy of each sub-band. 
(2) Maximum coefficient for each sub-band. 
(3) Minimum coefficient for each sub-band. 
(4) Mean of the coefficients for each sub-band. 
(5) Standard deviation of the coefficients for each 

sub-band. 
 
From our experiments, these 25 features turned out to be 

sufficient to obtain a good representation of the signal 
without requiring too much computational power. 

Summing everything up, a sign was represented by a 
feature vector of 315 components (25 features by 6 
components for each of the 2 IMUs plus 15 angle values 
for bending sensors). 

E. Classification 
The automatic classification of a sign was made by a 

Support Vector Machine (SVM), in order to find the 
hyper-plane that maximizes the separation between 
classes [24]. 

Let us assume we have two linearly separable classes
}1,1{ +−∈ky . Each training example Nk

x ℜ∈  
belongs to a class. A separation hyper-plane between the 
classes can be written as:   

0b)xw(y
kT

k >+          k =1,…, m  (3) 
The aim of an SVM is to maximize the minimum 

distance between the training examples and the separating 
hyper-plane, also called margin of separation. We can 
rewrite (3) rescaling the weights w and the bias b as 

1)( ≥+ bxwy
kT

k             k =1,…,m       (4) 

Therefore, the margin of separation is 1/|| w || and 
maximizing it is equivalent to minimize the Euclidean 

norm of the weight vector w . The optimum hyper-plane 
will be then found in terms of weights and bias (Fig. 8). All 
the points 

k
x that satisfy the constraints (4) with the 

equality sign are called support vectors. 
By means of Lagrange Multipliers we are able to 

consider only these vectors to find the optimal wand b. 
We used a Soft Margin SVM that introduces a tolerance to 
classification errors. A constant C controls the trade-off 
between the maximization of the margin and the 
minimization of the error. 

As SVM was originally designed for binary 
classification, it cannot deal directly with multi-class 
classification problems, which is usually solved by 
decomposition of the problem into several two-classes 

ones. In this context we utilized a One vs All strategy [25] 
where a set of binary classifiers are constructed comparing 
each time one class to the rest. 

We adopted a linear kernel, and we set the C parameter 
to a value of 25 through a validation test. 

V. EXPERIMENT RESULTS AND DISCUSSION 

The experiments were performed with two subjects, the 
first expert and the second inexpert of the LIS language. 
The adopted experimental procedure can be summarized 
as: 
 

• To wear the glove 
• To calibrate the system   
• To record 100 signs 15 times per sign. 

 
A “session” was the fulfillment of all previous steps. 

Two sessions for each subject were recorded in two 
different days in order to test the adaptability of the system 
to glove repositioning. 

Since the piezoresistive sensors are subject to a linear 
shift of the response function due to temperature change or 
different repositioning of the glove, a simple calibration 
was performed each time the user started using the 
software. The calibration consisted in continuously 
recording the gesture of opening and closing the hand for 
ten seconds, in order to find the minimum and maximum 
values to correctly identify the range of response for each 
sensor. To avoid noisy outliers the median of several 
maximum and minimum values was considered instead of 
one single value. 

We trained the SVM with 10 examples of a sign and 
tested it with the remaining five. The evaluation of the 
performances of the system was referred to as percentage 
accuracy according to the following formula:  

ݕܿܽݎݑܿܿܣ  ൌ ௧௬	௦௦ௗ	௫௦்௧	௫௦ ∗ 100%      (5) 
 

 
 

Fig. 8: Optimal separating hyper-plane corresponding to the SVM 
solution. The support vectors lie on the dashed lines in the caption. 
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