

Towards A Framework for Service-Oriented

Architecture Metadata Management

Malik M. Umar
Senior Software Engineer

SecureKey Technologies Inc.

Toronto, Ontario M2P 2E9, Canada

e-mail: UmarMalik@hotmail.com

Mohammad Alshayeb

Information and Computer Science Department

King Fahd University of Petroleum & Minerals

Dhahran 31261, Saudi Arabia

e-mail: alshayeb@kfupm.edu.sa

Abstract—Service-Oriented Architecture has gained

considerable attention in construction of enterprise level

business solutions. Although this architectural approach

provides many benefits, it comes at the cost of increased

complexity. This research focuses on the development of a

metadata framework using semantic web technologies of

XML, Resource Description Framework (RDF) and Web

Ontology Language (OWL). The resultant framework is in

the form of an Enterprise Services Ontology and Enterprise

Services Profile. These ontologies provide the foundation

that has been employed to develop a proof-of-concept

Services Repository to prove that a semantic service

repository can be a viable means of addressing complexity

and management problems faced by enterprise scale Service

Oriented Architecture (SOA) implementations.

Index Terms—Service-Oriented Architecture, Metadata

Management, Enterprise Services Ontology and Enterprise

Services, acceptance criteria

I. INTRODUCTION

To varying degrees, most enterprises are using IT to

improve business process, boost productivity, and

increase customer satisfaction, all while holding down

costs. At the same time, conventional wisdom holds that

enterprise software strategies are no longer about

installing new application silos [1]. Today, the

application software business is about leveraging existing

applications, data assets, and services, by integrating

them to create a more seamless whole that serves the

business [2]. Simply put, application integration,

interoperability, and security are the most significant

obstacles to the long-term vision of a business-driven,

utility-oriented computing environment.

Just as the enterprise itself is becoming more virtual,

the application platform is becoming more virtual as well

[3, 4]. In the past, application silos met business needs

because the application context they addressed was

relatively self-contained. Today, however, organizations

are going virtual in multiple dimensions. For critical

systems that support business process, the application

context is no longer a self-contained universe [1]. The

typical business application context is growing to serve

large numbers of customers, to integrate partners and

suppliers and to enable an increasingly mobile workforce.

One of the most significant developments in moving to

virtual enterprise has been the advent of Service-Oriented

Architecture [5, 6] based on Web Services [1, 7-9].

Although the idea of Service-Oriented Architecture (SOA)

has been around for some time, it has truly reached its

potential for realization with the advent of Services based

on XML over HTTP, commonly known as Web Services.

Web Services is an industry accepted standard for

implementing distributed components as services [5, 9].

Use of Web Services to implement a services based

architecture has the unique advantage of open

interoperability, which is highly desirable trait for a

flexible architecture. SOA is a refinement of ideas

previously presented in the distributed computing and

modular programming. A Service-Oriented Architecture

facilitates construction of applications using existing

services. The main objective of this form of application

architecture is to assist in creation of ad-hoc applications,

developed primarily using existing functionality. The

ultimate promise of SOA is that cost of application

development is steadily reduced as most of the software

required already exists and only orchestration is required

to produce a new application.

As with any new technology there is a refinement

process required to attain its full potential. SOA based on

web services brings with it a new set of challenges that

need to be addressed. This work is dedicated to

improving the controls and management of Enterprise

scale SOA, by controlling Enterprise Service metadata.

Service-Oriented Architecture based on Web Services

has evolved to become architecture of choice for

organizations to deal with challenges of cost, time,

quality and interoperability. Although the properties of

Web Services are ideally suited for a Service-Oriented

Architecture and promote rapid application development,

1718 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1718-1736

they also have certain overheads and drawbacks that need

to be considered. Some of the limitations and

shortcomings of a Web Service based SOA include:

 Systems developed via Web Services require

consumer and provider to agree on semantics in

advance [10].

 Web services lack an established mechanism for

distributing service implementation information.

 Applications built on multiple layers of services

represent a challenge for Enterprise Architects, to

identifying critical junctions and dependencies.

These shortcomings of Web Services based

Architectures represent unique challenges for business

analysts, architects and enterprise application designers.

With the advent of web services as a viable platform

independent technology, realization of a service-oriented

architecture embodying the properties of platform

independence, dynamic invocation and self-containment

has become possible. Services available for attaining

various types of functionality can be discovered by means

of Universal Description, Discovery and Integration

(UDDI) registries [11] and applications can quickly be

built by utilizing pre-built services. New services can

even be dynamically composed [12] based on user

request. UDDI provides a simple mechanism for service

consumer to look-up services from the registry, based on

key word or category.

This level of indirection between the service consumer

and provider allows for flexibility, but at the same time

increases application architectural complexity. Because

of this middle level of indirection, there is no mechanism

available to identify all the consumers of a service. This

might not affect applications that are acting as

information aggregators but would have significant

impact if the application relies on coarse-grained business

services, which in turn are dependent on other services.

Dependency information becomes especially critical

while architecting new solutions or maintaining existing

services infrastructure. This is especially true for large

enterprise architectures that are composed of a

heterogeneous collection of systems, interacting to

provide business functionality.

Complexity cannot be eliminated in a dynamic

evolving environment so the focus has to be diverted to

managing this change and complexity, to balance the

need of business for dynamism and the Enterprise

Architect’s need for stability. Mechanisms have to be

developed to retain information about the service-

oriented architecture, the relationship among services,

their reliability, changeability and dependencies. These

and other pieces (service configuration) of SOA metadata

would give the Architects the following benefits:

 High-level service oriented view of the enterprise

software systems

 Identification of interdependencies within services to

discover critical services

 Assess risk and impact of change in the service

ecosystem

 Centralized repository for all scattered service related

information

 Support in managing daily operations and planning

upgrades

Complexity and lack of transparency are major

problems for enterprise architectures. A detailed literature

review of current registry and repositories such as

Description, Discovery and Integration (UDDI)

&ebXML[13, 14], reveals that these technologies address

the problems only partially. This work is aimed at

alleviating the shortcomings of a Web Services based

SOA, by harnessing advantages offered by semantic web

technologies.

The main objective of this paper is to devise a

framework that caters for persisting important dynamic

and static metadata related to Web Services, thereby

addressing the problems discussed above. Furthermore,

we intend to develop a Web Services ontology containing

the most pertinent information, based on our literature

review. Finally using the theoretical basis of our web

services metadata management framework, devise a

registry-repository hybrid, as a proof of concept.

II. LITERATURE REVIEW

Service-Oriented Architecture is a vast area of research

and development to address some of its shortcomings and

emerging requirements. Major work being done on SOA

can be broadly classified into two categories: SOA

Governance and SOA Infrastructure.

A. SOA Governance

In order for enterprises to effectively adopt SOA and

prevent the problems that plagued its predecessors from

resurfacing, it is incumbent on SOA practitioner to use

governance strategies different from traditional IT

governance model. SOA governance is a key to the

successful adoption of SOA. A governance model built

and operated to govern the life cycle of services is

essential for an SOA to deliver the benefits that make

SOA attractive. Next, we examine the most important

works in this area that are enhancing SOA governance

practices and augmenting its implementations.

A.1. Policy Management

MacKenzie et al. [15] defined service policy as a set of

assertions that express intent on the part of a participant,

which could be applied to many aspects of a Service-

Oriented Architecture, such as quality of service,

manageability security etc. The correctness service policy

ensures the correctness of system behavior. The

enforcement of service policy thus far is limited to the

runtime behavior of services.

To provide policy enforcement during design time,

Zhou et al. [16] proposed the use of logical policy model

expressed as UML as input and to produce a physical

service policy model mapped to physical system topology.

Furthermore, this process would also generate service

deployment model that describes the relation among

policy artifacts, and guides and automates the deployment

of policies in runtime environment.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1719

© 2014 ACADEMY PUBLISHER

A.2. Service Development Process

The Service Development Process in SOA also falls

under the umbrella of Governance. Services developed as

a part of an Enterprise SOA should adhere to best

practices and principles of this architectural style and

development governance strategies ensure this.

Lianjun[17] proposed a Business Services Modeling &

Analysis (BSMA) technique to help architects in defining

the elements in each of the SOA layers and making

critical architectural decisions at each level. The BSMA

modeling process consists of the following stages:

identifying business goals & artifacts, identifying

business services, allocating business service

functionality and component interaction & information

analysis.

Information gathered during these phases is aggregated

by System Dynamics tool to generate various impact

scenarios of introducing the service and its interaction

with the service ecosystem.

B. SOA Infrastructure & Web Services

Web Service registry and repositories are an integral

part of any enterprise class SOA implementation [5-7, 18,

19] and there has been considerable effort in enhancing

their capabilities to address problems of management and

complexity. There are two main standards for Web

Service registry-repository; namely UDDI &ebXML.

UDDI is considered the industry standard and has the

most wide spread adoption. ebXML is gaining

momentum but still lacks major vendor adoption and

support.

C. Web Service Registry & Repositories

Current UDDI specifications mainly focus on service

registry and discovery by service consumers. There is

room for improvements, to address some of the problems

of service metadata management. Following is a review

of significant research efforts in this area.

C.1. Service Discovery

Discovery of appropriate services by interested

consumers is one of the most challenging areas in the

wide scale adoption of Web Services. UDDI provides a

limited set of attributes that can be interrogated to select a

service. These include service name (given by service

provider), key reference (unique id) and category bag

(business categories to which the service belongs). These

do not provide sufficient information for service selection

and often requires a Service to be selected at design time

rather than dynamically being selected at runtime.

To overcome these deficiencies with service discovery

ShaikhAli et al. [20] prescribed modifications to UDDI,

by extending bussinessClass to include additional

arbitrary properties. They further propose to enhance the

UDDI querying mechanism to cater for conditional logic.

These changes extended the UDDI while preserving

backward compatibility, at the same time providing better

matching capabilities. .

The service discovery problem is tackled by Liu et al.

[21] by means of a graph search based on service

discovery algorithm [22]. This approach also involves

adding auxiliary data structures, shown inTable Iand

UDDI APIs to the traditional UDDI without affecting the

original capabilities.

TABLE I.

ATTRIBUTES TO SUPPORT SERVICE DISCOVERY IN A

MODIFIED UDDI [21]

Field name Field type
Field
length

Is

primary

key?

Is
Null?

BUSSINESS_KEY VARCHAR 255 Yes No

SERVICE_KEY VARCHAR 255 Yes No

LINK TEXT No Yes

NAME VARCHAR 255 No No

Lee et al. [23] used a slightly different approach, by

proposing a framework to include the Web Services

Description Language (WSDL) file in the service search

query and give a match ranking, along with possible

alternatives. This adds another dimension to service

search query including within it the communication

interface exposed by the service. With the above

mentioned approaches service discovery improvements

are attained, but service discovery based on semantics is

still lacking. Furthermore, these techniques do not

naturally lend to automated discovery and selection

C.2. Quality of Service (QoS)

Quality of Service in the context of Web Services

refers to non-functional properties of Web Services such

as performance, reliability, availability and security [24].

These attributes play an important role in the selection of

Web Services and may influence selection of one service

over another.

The UDDI model does not provide any facility to

accommodate QoS attributes. Similar to data structure

changes proposed by ShaikhAli et al. [20] and Liu et al.

[21] Liu [24] proposed linking a Service Attribute

Schema with UDDI registry to retain QoS data.

Liu [25] proposed another important change that is the

modification of the service registration process with the

UDDI to incorporate solicitation of QoS data by the

service provider.

C.3. Web Service Semantics

UDDI or ebXML provide an efficient mechanism for

web services to be registered for discovery and WSDL

publishes the communication contract of services. What

is lacking in this setup is the nonfunctional data

pertaining to the service and the semantics behind it.

Dogac et al. [26] proposed modification to ebXML

Registry Information Model RIM [13] to support

semantics by storing OWL ontology in the ebXML

registry, while at the same time persevering backward

compatibility. The technique proposed used ebXML

Classification Hierarchies [13] to represent OWL

Ontologies. Although Dogac achieved the stated goal of

adding semantics to ebXML registries, but this was

accomplished at the cost of design ambiguity and use of

ebXML constructs in a manner they were not intended to

be used by authors of the standard.

1720 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Roh et al. [27] described modifications to the

architecture of the ebXML registry to accommodate

OWL ontologies. Roh proposes a new information model

called the semantic information model (SIM) for the sole

purpose of storing semantic data, leaving the ebXML

registry model unchanged. SIM consists of classes

designed specifically to model OWL classes & their

attributes. The limiting factor in this approach is clients

would require being aware of ebXML search and

retrieval mechanism to get the semantic data.

UDDI provides the tModel framework for extensibility

and flexibility. tModel are pointers to external resources

and consist of a tModelKey (unique identifier) keyValue

and keyName (descriptive name). Luo et al. [28]

proposed the use of the tModels to represent all

constructs of OWL. The translation from OWL ontology

to a UDDI tModel hierarchy is achieved through an

external client side component, eliminating the need to

modify UDDI. Feng et al. [29] provided an extension to

UDDI on service semantics facet.

Baker et al. [30] proposed a new approach within

existing SOA methodologies that supports source-

codesemantic flexibility via an intermediary Meta Data

Layer (MDL), providing a layer of separation between

the source code and the service. Virgilio[31] proposed a

description of WSDL documents into a metamodel

representation of Semantic Models that allows

interoperability at different levels of abstraction.

From research into modification of registries to support

semantic capabilities that the possible approaches to solve

this problem fall under two categories:

 Use or modification of registry/repository internal

annotation framework to accommodate ontologies

[26-28].

 Storing ontology information in external databases

and redirecting queries to external matching modules

[32].

C.4. Web Ontology Language – Services (OWL-S)

OWL-S [33] has gained the status of a standard for

defining web service semantics. It consists of a core set of

markup language constructs for describing the properties

and capabilities of Web Services in a computer

interpretable form. It is essentially an ontology for

services built on top of Web Ontology Language (OWL)

[34]. OWL-S is designed to facilitate the discovery,

invocation, composition and interoperation of web

services. We have already reviewed the major works to

facilitate service discovery [26-28, 32]. Here we review

the important developments related with service

invocation, composition and interoperability with OWL.

To overcome the deficiencies in the semantic modeling

of dynamic service composition with OWL-S, Li et al.

[35] researched the use of AI planning and Description

Logic DL. The proposed solution extends the OWL-S

model by providing a service composition mechanism

that takes into account user preferences. This solution

relies on representation and reasoning capabilities of DL

along with modeling faculties of action state

transformation of AI planning.

OWL-S facilitates the invocation of services by means

of Service Groundings [34]. A service can support

multiple grounding meaning it can support various

protocols and mechanism for its invocation

simultaneously. To further enhance this facility of OWL-

S Gannod et al. [36] proposed a general framework that

takes inputs during the service design (MDA artifacts) to

construct the OWL-S profile and grounding. Bingxian

and Xie[37] proposed a method to describe process

model of OWL-S based semantic web service with

PNML and OWL.

The objective of this framework is to use design

artifacts to generate OWL-S grounding and in the second

phase use service groundings as the contract against with

service realization occurs.

III. ENTERPRISE SERVICES METADATA MANAGEMENT

FRAMEWORK

This section provides a foundation framework for

developing an Enterprise Services Metadata repository

using Semantic Web technologies. In developing this

framework, we made use of Web Ontology Language

(OWL) and resource description framework (RDF).

Using semantic Web markup allows us to persist

enterprise services metadata in a format that is readable

by both machines and humans. Furthermore, this

approach also facilitates use of existing well-established

ontologies in developing a rich framework for enterprise

services metadata management.

To create the enterprise services metadata management

framework we developed an ontology that is an extension

of OWL-S (Web ontology language for services). OWL-

S allows us to make the most of existing capabilities of

this ontology whilst at the same time having metadata

that is required by enterprise repositories. Figure 1shows

the hierarchy of various semantic markup languages and

position of this work in the scheme or markup languages.

The following section describes how the OWL-S

ontology has been modified to accommodate our

objectives. OWL-S is based on three sections, which are:

1. Service profile

2. Service grounding

3. Service model

These three sub-ontologies can be used to describe any

software services not necessarily web services. The

service profile represents what service does, service

model describes how a service works and service

grounding deals with how to access the service. The

following section presents the modification of the service

profile to incorporate metadata for enterprise services.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1721

© 2014 ACADEMY PUBLISHER

A. Enterprise Service Profile

This section presents a detailed description for an

Enterprise Service Profile, based on the OWL-S Profile

(as shown in Figure 1), incorporating significant metadata

elements for managing an Enterprise Services

Architecture shown in Figure 2 and Figure 3. In the

following sections, all the elements of this new profile are

discussed along with their RDF/OWL representation in

graphical format.

Figure 2. Enterprise Service Profile Ontology extending from Profile

Ontology

XML
eXtensible Markup

Language

RDF Schema

RDF
Resource Description

Framework
XML Schema

DAML
DARPA Agent Markup

Language

OIL
Ontology Interface

Layer

DAML+OIL

OWL
Web Ontology

Language

OWL- S
Web Ontology

Language for Services

ESO
Enterprise Service

Ontology

Highlighted area shows the
main contribution

Figure 1.Semantic Markup Language Hierarchy

1722 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Figure 3. Enterprise Service Profile with associated metadata attributes

Attribute Name: Service provider (actor)

Definition: Service Hosting Entity

Description: Service Provider is the hosting entity where

the service resides. In the context of an Organization, this

unit is providing a runtime environment for the service.

The provider in not necessarily the owner of the service

and to successfully invoke the service at runtime the

permission of the Owner may be required. For more

detail on Owner & Permissions see the relevant sections

in this section (Requested By, Role & Security).

Following is a list of properties for Service Provider. See

Figure 4 for a graphical representation.

1. Name

2.Type

3.Phone

4.Fax

5.Email

6.Web Address

7.Physical Address

Figure 4. Enterprise Service Profile attributes - Service Provider

Attribute Name: Role

Definition: Business role for accessing service

Description: To invoke ES services, the service client

must be within a certain role as mandated by the service

developer. This role can have an associated realm for

with the role is valid, such as Active Directory, LDAP or

some Enterprise Identity Management System as shown

in Figure 5.

Rationale: This attribute is required for security and

enforcing business rules.

Figure 5. Enterprise Service Profile attributes – Role

Attribute Name: Requested By

Definition: Original or primary service customer

Description: Enterprise Services are created based on the

request of a proponent - usually the primary user of the

service. This is an important criterion in maintaining

enterprise services architecture and to identify primary

user, hence it has been included in the Enterprise Service

Profile. To represent this we will make use of the Default

Actor ontology (Part of OWL-S). Complete attributes of

this class can be seen in Figure 6.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1723

© 2014 ACADEMY PUBLISHER

Figure 6.Enterprise Service Profile attributes - Requested By

Attribute Name: Provided By

Definition: Service Developer

Description: Although the requester and provider share

the same range (as shown in Figure 6), namely the Actor

Class form ActorDefault ontology. Having booth these

types as part of the Enterprise Service Profile mandates

that information about these elements be provided. This is

necessary to identify primary consumer and developer of

the service as this is an important criteria in service

selection for prospective service clients.

Rationale: Inclusion is necessary to identify the builder

or a particular service. In enterprise environments, service

provider (host), request and developer are usually distinct

entities.

Figure 7. Enterprise Service Profile attributes - Geographic Radius

Attribute Name: Geographic Radius

Definition: Country or group of countries for which the

service is applicable

Description: To define the geographic radius of a service

to which it is applicable. This attribute has been defined

as optional because a service provider may not restrict the

use of a service within an area. Figure 7 shows that the

range for this attribute has been defined using the

Country ontology

Rationale: Some services are only valid or legally usable

within a given geographic region. Inclusion of this

attribute informs the service consumer of this limitation.

Attribute Name: Geographic Location

Definition: Location where the service resides

Description: Similar to geographic radius, location

represents the location(s) where the service is hosted.

Rationale: Services that are located in very distant

locations incur a network communication penalty.

Inclusion of this attribute will allow consumers to select

the most appropriate service based on network delay

tolerance.

Attribute Name: Platform

1724 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Definition: Service hosting environment

Description: Although the platform that a service is

usually not of interest to clients but that is not the case

with Enterprise Services clients. A service may be

selected for use within the enterprise based on the type &

version of its host platform.

Properties of this class include:

1. Platform Name (J2EE, SAP, .NET etc.)

2. Version

See Figure 8 given below for graphical representation of

this class.

 Figure 8.Enterprise Service Profile attributes – Platform

Figure 9. Enterprise Service Profile attributes - Has Dependency

Attribute Name: Dependencies (#hasDependency)

Definition: Other services which are required for this

service to execute.

Description: Enterprise web services can be compound

in nature and depend on other services to complete their

functionality. Dependency information provides a clearer

picture of the overall implementation and relationship

between services. Dependencies can be defined by

referring to the Service ontology of the underlying

services Figure 9 show the complete relationship between

this attribute and ontology (Service) from which it is

derived.

Rationale: Enterprise architects and other stakeholders

responsible for managing the SOA infrastructure require

this information to perform development and

maintenance tasks.

Attribute Name: Cost

Definition: Cost of invoking service

Description: This is the cost of invoking the service.

Service providers can charge for invoking their services.

Cost has been introduced as a simple type here, but it is

not necessary the cost is only in monetary terms. For

example internal service may not incur a cost in dollars to

execute, but may have other associated costs such as grid

resource utilization, bandwidth consumption, persistence

usage etc.

Attribute Name: Security

Definition: Security requirements for accessing service

Description: Security is a critical aspect of any

Enterprise Service and there are many characteristics of

security implementation that a client might be interested

in. Such as protocol used for security, credentials,

security algorithm, security assurance etc. To augment

the Enterprise Service Profile Ontology we make use of

the NRL ontology. The NRL ontology provides the

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1725

© 2014 ACADEMY PUBLISHER

necessary basis for attaching the necessary metadata and

draws on an existing well-established ontology.

There are two main aspects of security namely:

1. Security Objective

2. Security Concept

These two categories provide a basis for organizing all

characteristic of web services security.

Security Objective has the following sub classes

1. Confidentiality

2. Availability

3. User Authentication

4. Message Authentication

5. Authorization

6. Message Integrity

7. Key Management

8. Replay Prevention

9. Trust

10. Host Trust

11. Covert Channel Prevention

12. Separation

13. Traffic Hiding

14. Anonymity

The Security Ontology defines following Security

Concepts that support one or more security objectives

defined above.

1. Security Mechanism

a. Service Mechanism

b. Host Mechanism

c. Network Mechanism

d. Application Mechanism

2. Security Policy

a. Commercial Policy

b. Military Policy

3. Security Protocol

a. Signature Protocol

b. Authentication Protocol

c. Net Security Protocol

d. Encryption Protocol

e. Key Management Protocol

Attribute Name: Communication Through

Definition: Intermediary or gateway for service access

Description: Enterprise Web service interaction with

the client can be either direct or in some instances the

services interact with clients via intermediaries, such as

Enterprise Service Bus. This requirement is usually due

to security and non-repudiation purposes. As Figure 10

shows the range for this attribute is defined as OWL

Thing, therefore, it is not restricted and the user of this

ontology can define required values for this attribute.

Rationale: Included in Enterprise Service Profile to

give complete path access path information from

consumer to service.

Figure 10. Enterprise Service Profile attributes - Communication Through

Attribute Name: Transaction Guarantee

Description: Non-trivial services can involve simple or

complex transactions. The guarantee pertaining to the

transaction has to be stated by the service provider, as

this is an important criterion for service selection based

on client’s transaction and security requirements. More

details regarding service transactions are listed in the

Service Process Model Ontology.

Rationale: This attribute has been added to support

service selection based on consumer’s transaction

guarantee requirements.

Attribute Name: Quality Rating

Definition: Service ranking

Description: This attribute signifies the quality rating

achieved by the service. Similar to the communication

through attribute the range for quality rating has not

been restricted, thus allowing the uses to employ their

custom or a well-established ontology for this purpose.

Rationale: This property has been included in

Enterprise Services Profile to cater for quality

requirement criteria, which is a basis for selection of

services. This property can also refer to a custom

ontology or a globally accepted ontology for quality

ratings

B. Ontologies & Description Languages Applied

The Enterprise Service Profile ontology described

above builds upon a number of other ontologies along

with syntax from RDF & OWL-S. These are given

inTable II.

1726 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

TABLE II.
ONTOLOGIES USED FOR BUILDING ENTERPRISE SERVICE ONTOLOGY (ESO)

Ontology

/Language Name
Description URI

1. NRL Security
Security Ontology for Annotating
Resources

http://chacs.nrl.navy.mil/projects/4SEA/NRLOntologyFiles/securityM
ain.owl

2. Service W3C Ontology for describing services http://www.daml.org/services/owl-s/1.1/Service.owl

3. Process W3C Ontology for describing process http://www.daml.org/services/owl-s/1.1/Process.owl

4. Profile
Ontology to describe the profile

exposed by a service
http://www.daml.org/services/owl-s/1.1/Profile.owl

5. Actor Ontology for describing http://www.daml.org/services/owl-s/1.1/ActorDefault.ow

6. Country
Static list of countries in OWL

notation
http://www.daml.org/services/owl-s/1.1/Country.owl

7. RDF Resource Description Framework http://www.w3.org/1999/02/22-rdf-syntax-ns

8. RDF Schema Adds data type to RDF http://www.w3.org/2000/01/rdf-schema

C. Enterprise Service Ontology

To incorporate the Enterprise Service Profile the

Service ontology is extended by introducing the new

Enterprise Service Ontology. This ontology extends the

Service ontology and provides a placeholder for holding

metadata information. By building on the existing Service

ontology we can still continue to make use of Service

Model and Service Grounding which are mature

ontologies that are relevant in the Enterprise Services

environment as well.

This section discusses the Enterprise Service Ontology

design and the incorporation of the Enterprise Service

Profile within it. Figure 11 shows the OWL definition for

our Enterprise Service, extending from the Service class.

In the subsequent section, the above illustrated

framework will be paired with a mechanism to persist and

disseminate Enterprise Profile information.

Figure 11. Enterprise Service Ontology XML Description

Similar to the Service ontology the relationship

between EnterpriseService&EnterpriseServiceProfile is

established by defining the former as an attribute

(presents) of the latter as shown in Figure 12 and Figure

13. Another point to note is there is no restriction on the

number of profiles a service presents.

D. Framework Components

The proposed framework for metadata management is

a combination of three elements. The first component of

this framework is the Enterprise Service and Service

Profile ontologies. These provide the schema that is to be

used for persisting metadata. In the previous section,

details of its attributes for these ontologies are discussed

in detail. The other component of the Enterprise Metadata

Management Framework are the mechanism that is

prescribed for using the framework and the last

component is the design of the Semantic Object Model

and a registry repository that has been employed in

building the proof-of-concept semantic metadata

repository.

Figure 12. Enterprise Service Ontology

Figure 13. Enterprise Service Ontology - Attribute Definition

IV. RDF/OWL-S BASED ENTERPRISE METADATA

REPOSITORY DESIGN

Service Repositories are the accepted mechanism of

storing metadata information in a SOA. Both UDDI and

ebXML provide limited ability to store metadata

pertaining to services that are registered with them [7, 8,

13]. To validate that Enterprise Service Ontology

described in the previous section we implement a

<!--Enterprise Service -->
<owl:Classrdf:ID="EnterpriseService">
 <rdfs:label>EnterpriseService</rdfs:label>
 <rdfs:comment>See comments
above</rdfs:comment>
</owl:Class>
<owl:Classrdf:about="#EnterpriseService">
 <rdfs:subClassOfrdf:resource="&service;Service"/>
</owl:Class>

<!-- Presenting a profile -->
<owl:ObjectPropertyrdf:ID="presents">

<rdfs:comment>
 There are no cardinality restrictions on this property.

</rdfs:comment>
<rdfs:domainrdf:resource="#EnterpriseService"/>
<rdfs:rangerdf:resource="&eprofile;#EnterpriseServiceProfile"/>
<owl:inverseOfrdf:resource="#presentedBy"/>

</owl:ObjectProperty>
<owl:ObjectPropertyrdf:ID="presentedBy">

<rdfs:comment>
There are no cardinality restrictions on this property.

</rdfs:comment>
<rdfs:domainrdf:resource="&eprofile;#EnterpriseServiceProfile"/

>
<rdfs:rangerdf:resource="#EnterpriseService"/>
<owl:inverseOfrdf:resource="#presents"/>

</owl:ObjectProperty>
<owl:ObjectPropertyrdf:ID="isPresentedBy">

<rdfs:comment>deprecated form</rdfs:comment>
<owl:equivalentPropertyrdf:resource="#presentedBy"/>

</owl:ObjectProperty>

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1727

© 2014 ACADEMY PUBLISHER

repository that uses this ontology as a schema to store

metadata for web services.

Extending the Service ontology to incorporate required

characteristic for Enterprise level services provides the

necessary foundation in the form of a framework that can

be used to construct an Enterprise Service Metadata

Repository (ESR). Here we detail the process with design

specifications that was used to build upon the previously

discussed Enterprise Service & Enterprise Service Profile

ontologies a functioning proof-of –concept. The resulting

product fulfills the two core functions of a metadata

repository; namely to persist and disseminate service

metadata and provides a semantic object model that can

be used to build integration with other components in an

SOA.

A. Use Cases for Enterprise Service Repository

The proposed repository will have essentially three

main objectives:

 Persisting service metadata

 Disseminating service metadata

 Access metadata semantic object model (MSOM)

Table III through Table V detail use cases pertaining to

these objectives. To better illustrate the use case,Figure

14 shows the visual representations of the use cases.

TABLE III.

USE CASE 1 - PERSISTING SERVICE METADATA

Use Case

Name:

Persisting service metadata

Actors: Service Developer/Provider

Description: The service provider stores the ontology of a

newly created service in the enterprise service

repository. This will allow repository users to
search for services based using the metadata

defined in service ontologies. The service

provider gives the location of the enterprise
service, profile, model and grounding ontology.

The repository reads the files and stores them

according to their relationship using URI as
unique identifies.

Preconditions User has privileges to update the service

repository
Ontology files have proper unique resource

identifies and are well formed.

Post

conditions:

Service metadata is available for retrieval and

querying.

Normal

Flow:

Service provider selects the option to register a

new service with the repository.

Enterprise Service Repository (ESR) prompts the
user for location of ontology files.

User enters the location of files and selects

register.
Repository verifies the ontology files.

Verified (well-formed) ontologies are stored and

user is notified with that the operation is

successful.

Alternative

Flow:

None

Exceptions: Ontology Verification Fails

If the ontology verification fails at step 4, the user

is notified of regarding the failure and the
operation is aborted.

TABLE IV.

USE CASE 2 - DISSEMINATING SERVICE METADATA

Use Case

Name:

Disseminating service metadata

Actors: Service consumer

Description: Service consumer requests Enterprise Service
Ontology using the URI for a service previously

registered with the repository. ESR matches the

URI to stored ontologies and serves it to the
customer.

Preconditions Service consumer has privileges to access the

service repository.

Service consumer has the URI for the required
ontology.

Post

conditions:

None.

Normal

Flow:

Service consumer selects the option to retrieve
specific ontology related with a service.

Enterprise Service Repository (ESR) prompts the

user for appropriate URI.
ESR matches the URI to a stored ontology.

ESR serves the required ontology.

Alternative

Flow:

None

Exceptions: URI Match Fails

URI provided by the user does not match any

stored ontology and ESR returns an error.

TABLE V.

USE CASE 3 - ACCESS METADATA SEMANTIC OBJECT MODEL

Use Case

Name:

Access metadata semantic object model

Actors: Service Developer/Provider & Service Consumer

Description: Service developer or consumer requests access to

service semantic object model.

Preconditions 1. Service consumer has privileges to access
the service repository.

Post

conditions:

None.

Normal

Flow:

1. Service developer or consumer requests
access to semantic object model by

providing a URI or Ontology Id.

2. Repository parses the ontology and converts
to in memory object model.

3. Semantic is exposed for read only or

read/write access (either by RPC or RMI).

Alternative

Flow:

None

Exceptions: URI Match Fails

1. URI provided by the user does not match
any stored ontology and ESR returns an

error.

1728 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Figure 14. Use Cases for Enterprise Service Repository

B. Domain Model for ESR Ontologies

Using the information in use cases given in Table III to

Table V, we depict a domain model for our ontology

repository. The objective is to retain all necessary

information of the domain, so that it is easy to

comprehend and useful in defining the remaining aspects

of the system functionality. Furthermore using this

apparatus, we will relate the objects in the system domain

to one another and define important concepts and terms.

Figure 15. Domain Model for ESR Ontologies

The domain model given in Figure 15 shows the main

objects in our proposed enterprise domain. The objective

of this model is not to give an all-encompassing design,

but rather highlight the most pertinent elements. From

first view it might be perceived that the Service Producer

and Consumer and similar but they have different

relationship with the Ontology class, furthermore on

detailed analysis further attributes will become apparent

that will differentiate these two classes.

Attributes of the ontology class that warrant attention

are URI and ontologyType. URI is used to uniquely

identify ontologies and type is one of the four possible

types. parentId is employed to identify the Container

ontology for service profile, model and grounding

ontologies. The information regarding the child

ontologies is not persisted in the parent because it is

contained in the serialized XML format stored as

ontologyData attribute.

B.1. Metadata Semantic Object Model

In order to expose service metadata we create a

metadata semantic object model (MSOM). The abstract

structure of this data model is shown in Figure 16. The

actual object model at runtime differ as inner classes are

generated from paring the stored ontology and using the

class definitions and annotation in the Enterprise Profile,

Model, Ground and Process.

The MSOM has been introduced to the design of the

Enterprise Service Registry as it provides a convenient

mechanism to interact, modify and serialize the ontology.

Furthermore, for some clients the interaction with the

service using RPC or RMI provides a performance edge

over simple XML messaging.

Access
metadata

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1729

© 2014 ACADEMY PUBLISHER

C. Sequence Diagram

The objective of including sequence diagrams in to

show the interaction of various objects in the system and

the duration of their lifetime. Each sequence diagram

provides an overview of the communication required to

accomplish single use case. The sequence diagram in

Figure 17 corresponds to the use cases inTable III and

Table IV is given here along with relevant elucidation.

Figure 16. Metadata Semantic Object Model

Figure 17. Sequence Diagram (Persisting Service Ontology)

The front-end object in this sequence in Figure 17

handling incoming and outgoing communication for the

repository is termed as the ESR Manager. This object will

be primarily responsible for implementing this use case

working with other entities depicted in the domain model.

The ESR Manager receives the message that includes

Service Provider identification along with the XML files

(Service Ontology) to be stored; it parses the files using

XML/OWL parsers and on successful completion

forwards the data to the Ontology Data Access Object to

store to the database. Once this transaction is successful,

the Service Provider is notified by means of a return

message.

D. Activity Diagram

Activity diagrams are the object-oriented equivalent of

flow charts and data flow diagrams from structured

development. The objective of including Figure 18 is two

folds; firstly, to illustrate the flow logic of the

corresponding use case, secondly to relate various

responsibilities to objects identified in the domain model

(Figure 15) and the sequence diagram (Figure 17). The

main features of note within this activity diagram are that

responsibility of controlling the entire use case is handled

by the ESR Manager object and the use case may

terminate prematurely if either the ontology is not valid

or provider profile is not available. On further detailed

design, ESR Manager may be decomposed into multiple

objects that corresponds to fulfill ESR Manager’s tasks.

ESR Manager

Store Ontology

ontologyData

Parse Results

Service Provider

Get Provider Profile

Provider Data

XML/OWL Parser Ontology DAO

Service Provider & Ontology Data

Operation Status

Operation Results

1730 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Figure 18. Activity Diagram (Persisting Service Ontology)

E. ESR Architecture

It is essential to emphasize significant architectural

aspects of our proposed Enterprise Service Repository to

fully comprehend the end product.

The ESR is based on a layered architecture. The

foundation is provided by a server based runtime

environment, facilitating application development, this

can be either .NET framework or Java Enterprise Edition.

The ESR core relies on XML and OWL parsers to parse

incoming and outgoing ontology data. Furthermore, all

interaction with the persistence system is facilitated

through the DMBS connectivity layer that abstracts the

physical implementation of the DBMS from the class

model used by the ESR Core. ESR Architecture is shown

in Figure 19.

F. Implementation Approach & Technologies

The implementation approach for our proposed

Enterprise Service Repository was developed keeping in

mind the following objectives.

 Modular design – to foster change and shield from

its impact

 End products should support and comply with

existing standards (HTTP, SSL, XML, WSDL etc.)

 Use open source software and frameworks (XML

& OWL parsers, RDBMS, Development Platform).

F.1. Implementation Approach

To develop our proof-of-concept Enterprise Services

Repository for Service Ontologies we have decided on a

modular approach to development, as the domain model

described earlier although sufficient for the first

implementation is in no way complete. Future addition of

objects and attributes is expected; therefore, any approach

should cater for change with minimal impact on the

existing ESR implementation.

To achieve the goal of modularity the ESR core will be

implemented independent of the interactions with the

various parses and the database. This will be achieved by

means of an interface layer, for dealing with XML and

Ontology parses and the Database.

The service consumers and providers will interact with

the ESR by means of Hyper Text Transfer Protocol

HTTP. This is the most prevalent and wide adopted

protocol for communication on the web, ensuring

communication with large segments users within the

Enterprise Ecosystem and outside. Another advantage of

using this protocol is that necessary required

underpinnings for its use are already available in most

Application Development Platforms.

Recieve service register request

Get service provider profile

Parse Ontology

Store Ontology

Provider profile available?

Start

Ontology valid? End

ESR Manager

XML/OWL Parser

Ontology DAO

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1731

© 2014 ACADEMY PUBLISHER

Figure 19. ESR Architecture components and interactions

V. RESULTS & FINDINGS

Adhering to the proposed design outlined for a

RDF/OWL-S based Semantic Metadata Repository a

functioning proof-of-concept repository was developed.

This repository satisfies the design goals and

requirements set forth for an enterprise metadata

management framework and proves its viability. The

implementation of this ESR has purposefully been kept

austere as the main objective of this work was to provide

the framework for metadata management and the

semantic repository is used as means to that end.

Important findings and observations made during this

exercise are given in the subsequent sections.

A. Working of Semantic Metadata Repository

The end product of this exercise is enterpriser service

repository (ESR) that can be used to store metadata

pertaining to services and support the development and

governance of services in an Enterprise Services

environment. Working of the main aspects of the ESR is

explained here by depicting the interaction between

participating system components.

Figure 20.ESR Component Model

RDBMS

XML Parser

OWL Parser

D
B

M
S C

o
n

n
e

ctivity Layer

ESR Core

Platform Services (J2EE, .NET etc)

D
o

m
ain

 M
o

d
el

ESR
 A

cce
ss C

o
n

n
ecto

rs

X
M

L/H
TTP

R

P
C

R

M
I

Enterprise Service Repository

Metadata Semantic
Object Model

Line shows components
built as part of ESR
implementation

1732 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

The ESR has been developed on top of a J2EE Web

(Apache Tomcat) server that provides the typical services

that are required for interaction with clients using HTTP

protocol. Implementation details of the components for

the ESR shown in Figure 20 and their working are given

below.

1. ESR HTTP Connector - these are essentially Java

HTTP Servlets that handles all incoming requests to

the ESR by clients. The Servlets that are invoked

depend on the type of request that is to persist

service profile or perform some form of query on the

repository (as described in use cases).

2. ESR Manager – this is the controller for the entire

repository. It has been implemented as a Java class

and it choreographs the parsing, storage, retrieval of

semantic object model for OWL-S ontologies stored

in the system.

3. Parser/Validator – set of XML, OWL-S and

SPARQL parsers

4. Domain Model – provides an abstract layer on top

the DB persistence components and handles object-

relation mapping.

5. Semantic Object Model – represents an in-memory

model of the service metadata stored in the DB. This

model can be used for queries and modification to

the service profile, grounding, process or model.

6. DB Access – these are utility classes that handle the

interaction with the underlying relational database.

B. ESR Position in Enterprise SOA

An Enterprise Service-Oriented Architecture is based

on a number of components, such as service bus,

middleware, mediation service, registries and repositories.

These work together for proper functioning and delivery

of services. This framework for enterprise service

metadata management and the subsequent proof-of-

concept repository fits within the SOA infrastructure,

without any impetus mismatch with existing components.

The positing of this ERS is shown in Figure 21.

To integrate with existing web service registries we

rely on the works of Paolucci et al. [38, 39], practical

implementation of which has been demonstrated in the

form of OWL-S 2 UDDI converter. This tool supports

the conversion of OWL-S profile to be advertised within

a UDDI.

Another important aspect of a service lifecycle is the

phases prior to its deployment. These include inception,

design, development and testing. Traditionally web

service registries and repositories have been only used to

store information about production ready services, but

with a repository built on semantic web standards support

for complete service lifecycle can be provided, from

inception to post production support. Therefore, the ESR

provides enhancements to SOA governance and to

service life cycle management.

Figure 21. ESR position in Enterprise Services environment

Position of ESR in SOA
Infrastructure

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1733

© 2014 ACADEMY PUBLISHER

C. Registry Repository Feature Comparison

The predominate registry/repository are UDDI and

ebXML.

TABLE VI.

REGISTRY/REPOSITORY COMPARISON MATRIX

Category/

Feature
ebXML UDDI Semantic ESR

Service
Description

Standard

WSDL 1.1
WSDL

1.1

WSDL 1.1, OWL-S

1.0

Object-

Oriented API
Yes No

Yes. API to access
metadata stored in

ontologies as objects

Object-
Oriented

Information

Model

Yes No
Yes. Provides

semantic object model

Extensible

API
Yes No

Yes. Based on open
standards can be

extended to provide

additional features

Registry Yes Yes

No. Can be used in

conjunction with

UDDI or ebXML
registry

Repository

Yes

Integrated

registry-
repository

Any type of

electronic
content

supported

No

Yes. Supports internal
storage or links to

external electronic

resources.

Predefined
queries

Yes Yes Yes

User-defined

queries
Yes No

Yes. User can define

SPARQL queries

Ad hoc
queries

Yes Yes Yes

SQL query

syntax
Yes No

No. Support for SQL

can be provided by

allowing direct access
to OWL models stored

in the ESR database

SPARQL
query syntax

No No Yes

Semantic

query
No No Yes

XML query
syntax

Yes Yes Yes

Predefined
taxonomies

Yes Yes Yes

User-defined

taxonomies
Yes Yes

Yes. Through
extension of

Enterprise Service

Profile

Classification

of artifacts
Yes Yes Yes

Classification

of metadata

objects

Yes No Yes

User Defined

Security
Yes No

Yes. Supports user

defined fine grained

security via service
profile.

From Table VI, we can note the following important

points of comparison between, ebXML, UDDI and

Semantic ESR:

1. SQL query support – although it is not currently

supported by ESR this capability can easily be

introduced as ontologies are persisted in a

relational database.

2. Registry support – this feature can be added to

the ESR by either building a registry module or

integrating with an existing registry, such as

UDDI.

3. SPARQL, semantic queries – these are only

supported by ESR allowing data to be searched

based on semantics specified by the clients

D. Advantages of Semantic ESR

Although tangible benefits and advantages of a

RDF/OWL-S based repository can truly be realized after

in field use and testing, still merger of Enterprise Service

Profile ontology with traditional repository functions

offers many advantages. Some of the most apparent and

unique of these advantages are given below.

D.1. Service Discovery

Registry repositories provide the capability to search

for registered services. This search often involves human

intervention and is usually limited to searching within the

limited registered info pertaining to the service.

Enterprise Service ontology supports search by

automated agents as well as humans. Furthermore, the

search is not limited just to syntax but also supports

semantics.

D.2. Service Reuse

Semantic ESR has been designed to maximize service

reuse, by providing a very flexible search mechanism

(SPARQL) and supporting service life cycle management.

As the service ontology contains not only profile

information, but also model, process and grounding more

detailed searches are possible, promoting service reuses.

D.3. Service Governance

Marinating and monitoring an Enterprise SOA is

another aspect where ESR can provide many advantages

such as:

1. Service dependencies are registered within the

service profile. Providing information about

critical service within the enterprise architecture.

ebXML and UDDI do not provide an explicit

capability for this purpose.

2. Detailed service security requirements are

captured in the service profile. Supporting

service selection to be done on the basis of

security requirements of the consumer.

3. Support for persisting and managing all

electronic artifacts related to a service. This

feature is supported by ebXML but not by UDDI.

VI. CONCLUSION AND FUTURE WORK

Service-Oriented Computing and Service-Oriented

Architecture have become an integral part of many

organizations. Large businesses rely on these

technologies to run their day-to-day operations. They also

gain a competitive advantage by leveraging existing

1734 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

investment in services by reuse, thereby reducing time-to-

market of new products and services. Along with these

new technologies comes the challenge of complexity of

services infrastructure and it governance. Enterprise

registry & repositories represent an effective of tackling

these growing pains of an SOA. The focus of this work

has been to improve the capability of repositories by

capturing service metadata using semantic web standards

of RDF & OWL.

In this research, we proposed an Enterprise Service

ontology and Enterprise Service Profile ontology. This is

essentially an extension of the Service ontology [34],

modified to capture metadata of an enterprise web service.

The Enterprise Service Profile caters for capture of

metadata attributes, which are significant in supporting

service discovery, reuse and governance. These include

service provider info, access role, security requirements,

runtime platform, dependencies and quality ratings to

name a few. The Enterprise Service Profile does not

restrict the user to only these metadata elements, yet it

provides typical attributes of interest in most

organizations. Domain specific customized profiles can

be created by extending the Enterprise Service Profile.

We also designed and implemented a rudimentary

repository built on the proposed metadata management

framework. This includes UML design artifacts (Use

cases, sequence, activity and object diagrams) and overall

architectural pattern. The findings from implementing

the proof-of-concept are also detailed along with a

comparison with UDDI and ebXML.

Building semantic aware applications is a new and

exciting field of research and we have tried to push its

boundaries with this effort. Still much remains to be done

if semantic web technologies are to realize their full

potential in the enterprise. The future direction of this

research include: study of other constituents (model,

process and ground) of service ontology to incorporate

enterprise related metadata. We also plan to integrate

semantic ESR with service development tools to address

the capture of metadata from inception to delivery, with

minimal developer intervention and use of automated

agents to update service profile based on events in the

SOA.

ACKNOWLEDGEMENT

The authors acknowledge the support of King Fahd

University of Petroleum and Minerals in the development

of this work.

REFERENCES

[1] A. Arsanjani, B. Hailpern, J. Martin, and L. Tarr, "Web

Services: Promises & Compromise," 2002.

[2] D. Linthicum, Enterprise Application Integration:

Addison-Wesley Professional, 2000.

[3] D. Georgakopoulous, H. Schuster, A. Chichocki, and D.

Baker, "Managing process and service fusion in virtual

enterprises," Information Systems, ACM, vol. 24, pp. 429-

456, 1999.

[4] L. M. Chamarinha-Matos, H. Afsarmanesh, C. Gartia, and

C. Lima, "Towards an architecture for virtual enterprises,"

Journal of Intelligent Manufacturing, Springer

Netherlands, vol. 9, pp. 189-199, 2004.

[5] P. M. Papazoglou and D. Geogakopoulos, "Service

Oriented Computing," Communications of the ACM, vol.

46, pp. 25-28, 2003.

[6] M. P. Papazoglou, "Service-oriented computing: concepts,

characteristics and directions," in Proceedings of the

Fourth International Conference on Web Information

Systems Engineering, 2003, pp. 3-12.

[7] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi,

and S. Weerawarana, "Unraveling The Web Services Web:

An Introduction to SOAP, WSDL, and UDDI," Internet

Computing, IEEE, vol. 6, pp. 86-93, 2002.

[8] C. Peltz, "Web services orchestration and choreography,"

Computer vol. 36, pp. 46-52, 2003.

[9] G. Alonso, Web Services: Concepts, Architecture and

Applications: New York: Springer, 2004.

[10] M. Burstein, C. Bussler, T. Finin, M. N. Huhns, M.

Paolucci, A. P. Sheth, S. Williams, and M. Zaremba, "A

semantic Web services architecture," IEEE Internet

Computing, IEEE, vol. 9, pp. 72-81, 2005.

[11] O. S. w. site. UDDI Specifications. Available:

http://www.oasis-open.org/specs/index.php#uddiv3.0.2

[12] A. Hibner and K. Zielinski, "Semantic-based Dynamic

Service Composition and Adaptation," in IEEE Congress

on Services, 2007, pp. 213-220.

[13] O. S. w. site. ebXML Registry Services Specification.

Available: http://www.oasis-

open.org/specs/index.php#ebxmlrimv3.0.

[14] B. Hofreiter, C. Huemer, and W. Klas, "ebXML: status,

research issues, and obstacles," in Proceedings. Twelfth

International Workshop on Research Issues in Data

Engineering: Engineering E-Commerce/E-Business

Systems, 2002, pp. 7-16.

[15] M. MacKenzie, K. Laskey, F. McCabe, P. Brown, and R.

Hamilton, "Reference Model for Service Oriented

Architecture 1.0," 2006.

[16] C. Zhou, P. Liu, E. Kahan, N. Wang, and Z. Xue, "Context

Aware Service Policy Orchestration," in IEEE

International Conference on Web Services, ICWS 2007, pp.

936-943.

[17] L. An and J.-J. Jeng, "Business-Driven SOA Solution

Development," in IEEE International Conference on e-

Business Engineering, ICEBE 2007, 2007, pp. 439-444.

[18] D. Nickull, L. Reitman, J. Ward, and J. Wilber, "Service-

Oriented Architecture Technical Whitepaper," 2005.

[19] E. Newcomer, Understanding Web Services: XML, WSDL,

SOAP and UDDI: Addison-Wesley, 2002.

[20] A. ShaikhAli, O. F. Rana, R. Al-Ali, and D. W. Walker,

"UDDIe: an extended registry for Web services," in

Symposium on Applications and the Internet Workshop,

2003, pp. 85-89.

[21] J. Liu, J. Liu, and L. Chao, "Design and Implementation of

an Extended UDDI Registration Center for Web Service

Graph," in IEEE International Conference on Web

Services, ICWS, 2007, pp. 1174-1175.

[22] B. W. O. S.C. Oh, E.J. Larson, and D.W. Lee. BF "Web

Services Discovery and Composition as Graph Search

Problem”. ," in Proceedings of the IEEE International

Conference on e-Technology, e-Commerce and e-Service

(EEE), Hong Kong, China, 2005.

[23] K.-H. Lee, M.-y. Lee, Y.-Y. Hwang, and K.-C. Lee, "A

Framework for XML Web Services Retrieval with

Ranking," in International Conference on Multimedia and

Ubiquitous Engineering, MUE '07, 2007, pp. 773-778.

[24] A. Mani, Nagarajan A., "Understanding quality of service

of Web services," 2002.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1735

© 2014 ACADEMY PUBLISHER

[25] J. Liu, N. Gu, Y. Zong, Z. Ding, S. Zhang, and Q. Zhang,

"Service registration and discovery in a domain-oriented

UDDI registry," in The Fifth International Conference on

Computer and Information Technology, CIT, 2005, pp.

276-282.

[26] A. Dogac, Y. Kabak, and G. B. Laleci, "Enriching ebXML

registries with OWL ontologies for efficient service

discovery," in Proceedings. 14th International Workshop

Research Issues on Data Engineering: Web Services for e-

Commerce and e-Government Applications, 2004, pp. 69-

76.

[27] Y. Roh, H. Kim, H. S. Kim, M. H. Kim, and J. H. Son,

"Semantic Business Registry Information Model," in

International Conference on Convergence Information

Technology, 2007, pp. 2142-2145.

[28] J. Luo, B. Montrose, A. Kim, A. Khashnobish, and M.

Kang, "Adding OWL-S Support to the Existing UDDI

Infrastructure," in International Conference on Web

Services, ICWS '06, 2006, pp. 153-162.

[29] Z. Feng, R. Peng, B. Li, K. He, C. Wang, J. Wang, and C.

Zeng, "A Service Registry Meta-model Framework for

Interoperability," in 2011 Tenth International Symposium

on Autonomous Decentralized Systems, 2011, pp. 389-398.

[30] T. Baker, D. Lamb, A. Taleb-Bendiab, and D. Al-Jumeily,

"Facilitating Semantic Adaptation of Web Services at

Runtime Using a Meta-Data Layer," in Developments in E-

systems Engineering (DESE), 2010, pp. 231 - 236

[31] R. D. Virgilio, "Meta-Modeling of SemanticWeb

Services," in 2010 IEEE International Conference on

Services Computing, 2010, pp. 162-169.

[32] J. Colgrave, R. Akkiraju, and R. Goodwin, "External

Matching in UDDI," in Proceedings of International

Conference on Web Services (ICWS 2004), San Diego,

California, USA, 2004.

[33] A. Ankolenkar, M. Burstein, J. Hobbs, O. Lassila, D.

Martin, D. McDermott, S. McIlraith, S. Narayanan, M.

Paolucci, T. Payne, and K. Sycara, "DAML-S: Web

Service Description for the Semantic Web," in

Proceedings of the First International Semantic Web

Conference (ISWC), Sardinia (Italy), 2002.

[34] P. F. Patel-Schneider, P. Hayes, and I. Horrocks, "OWL

Web Ontology Language Semantics and Abstract Syntax,"

2004.

[35] Y. Li, X. Yu, L. Geng, and L. Wang, "Research on

Reasoning of the Dynamic Semantic Web Services

Composition," in IEEE/WIC/ACM International

Conference on Web Intelligence, WI 2006, 2006, pp. 435-

441.

[36] G. C. Gannod, R. J. Brodie, and J. T. E. Timm, "An

interactive approach for specifying OWL-S groundings," in

Ninth IEEE International Enterprise Computing

Conference, EDOC 2005, pp. 251-260.

[37] B. Ma and N. Xie, "From OWL-S to PNML+OWL for

Semantic Web Services," in 2010 Second International

Conference on Computer Modeling and Simulation, 2010,

pp. 326-328.

[38] M. Paolucci, T. P. Kawamura, and K. TR. Sycara,

"Importing the Semantic Web in UDDI," in E-Business

and Semantic Web Workshop on Web Services, 2002.

[39] N. Srinivasan, M. Paolucci, and K. Sycara, "Adding OWL-

S to UDDI, implementation and throughput," in

Proceedings of the First International Workshop on

Semantic Web Services and Web Process Composition

(SWSWPC 2004), 2004.

Malik Muhammad Umar received

Bachelor of Science degree in

Information and Computer Science from

Hamdard University, Karachi, Pakistan

in September 1999 and his MS in

computer science from King Fahd

university of petroleum and minerals in

2008. He worked for Ferozons (PVT)

Ltd. as a Software Engineer, till 2002.

He then joined Saudi Aramco in 2002 as

a Technical Consultant progressing to become Technical

Architect in two years, currently he works as Senior Software

Engineer at SecureKey Technologies Inc in Canada. His

research interests include, Service-Oriented Architecture,

Design Patterns and Enterprise Application Integration.

Mohammad Alshayeb is an associate

professor in Software Engineering at the

Information and Computer Science

Department, King Fahd University of

Petroleum and Minerals (KFUPM),

Dhahran, Saudi Arabia. He received his

MS and PhD in Computer Science and

certificate of Software Engineering from

the University of Alabama in Huntsville.

He worked as a senior researcher and

Software Engineer and managed software projects in the United

States and Middle East. He is a certified project manager (PMP).

His research interests include Software quality, software

measurement, and metrics, and empirical studies in software

engineering.

1736 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

