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Abstract—As modern complex systems become increasingly

large, sophisticated, feature-rich and data-intensive, people
have recognized the importance of precisely and unambigu-

ously specifying them with formal methods for a number of
years. This paper advocates the use of Object-Z, a formal

specification language, in the description of complex systems.
Object-Z is an extension to the Z language to facilitate

specification in an object-oriented style. The notation Object-
Z builds on Z’s strengths in modeling complex data and

algorithms, and on its new class structuring’s strengths in
succinctly specifying the various relationships and commu-

nication between objects in a large system. In detail, first
we describe informally the syntax and semantics of Object-

Z, highlighting those features that facilitate decomposing

a large system into a collection of interacting objects and
thus separating concerns. Then, we demonstrate the use

of Object-Z by presenting a case study of a petrol supply
system, illustrating how the system runs by communicating

the constituent objects. Finally, we discuss several issues we
encountered in this exercise, which may serve as feedback

to the development of Object-Z.

Index Terms—Object-Z; object-oriented modeling; formal
methods; system specification

I. INTRODUCTION

With the rapid development of information technology,

modern complex systems are getting increasingly large,

sophisticated, feature-rich and data-intensive. Ranging

from gigantic ones like space shuttles to everyday ser-

vices like Automatic Teller Machines, these systems are

regularly required to accomplish more, faster and on a

broader scale, to adapt dynamically to changing work-

loads, scenarios and objectives, and to achieve guaranteed

levels of performance and dependability. Satisfying such

demanding requirements in the presence of the variabil-

ity and heterogeneity that characterize complex systems

poses numerous challenges to both their developers and

their users.

Among the various technologies that support com-

plex systems, formal methods have been advocated as

a principled approach due to its power of precise and

unambiguous specification of key features and standards

[1], [2]. In particular, Z is a model-oriented specification

language with powerful features for describing complex

data structures and their operations [3], [4]. Object-Z
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extends the Z language to facilitate specification in an

object-oriented style [5]. In such a style, the system

comprises a collection of underlying objects, each of

which has predefined structure and behavior. The system

runs by communicating the objects. Hence object-oriented

specification languages clarify the large specification and

facilitate separation of concerns.

This paper presents a case study of specifying a petrol

supply system in Object-Z. Such a system involves objects

like the petrol company, petrol stations, pumps, cus-

tomers, etc. Typical behaviors include that the company

offers petrol to its stations and the customer fuels his

vehicle at a pump in a station. Such complex object struc-

tures and their operations naturally lend themselves to the

specification of Object-Z, which is good at decomposing

large systems.

The rest of the paper is organized as follows. Section II

reviews formal specification languages and Object-Z’s

applications. Section III gives an overview of Object-Z.

In particular, the major constructs used in the case study

are introduced, including class constructs, secondary at-

tributes, object containment and several operation expres-

sions. Section IV provides a detailed specification of the

petrol supply system, illustrating how the above items

can be employed to capture the structural relationship

between objects and to specify communication between

objects. Finally, Section V concludes this paper with some

remarks.

II. RELATED WORK

A. Formal Specification Languages

In general, formal specification languages can be di-

vided into the following categories based on the particular

specification paradigm they rely on.

History-based specification languages specify a system

by characterizing the admissible histories over time. The

properties of interest are specified by temporal logic

assertions about system objects in past, current and future

states. Time structures can be discrete [6] or continuous

[7].

State-based specification languages characterize the ad-

missible system states at some arbitrary snapshot. The

properties of interest are specified by invariants constrain-

ing the system objects at any snapshot, as well as pre-

/post-assertions constraining the application of system
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operations at any snapshot. Languages such as Z [8],

VDM [9] or B [10] rely on this paradigm. Object-oriented

variants, such as Object-Z, have been proposed as well.

Transition-based specification languages characterize

the required transitions from state to state. The properties

of interest are specified by a set of transition functions

in the state machine transition. For each input state and

triggering event (unlike the precondition which is neces-

sary, triggering event is sufficient), the transition function

gives the corresponding output state. Languages such as

Statecharts [11] or SCR [12] rely on this paradigm.

Functional specification languages specify a system

as a structured collection of mathematical functions and

they come in two classes. In algebraic specification, the

functions are grouped by object types that appear in their

domain. The properties of interest are then specified as

conditional equations that capture the effect of composing

functions. Languages such as PLUSS [13] rely on this

paradigm. In higher-order specification, the functions are

grouped into logical theories. Languages such as PVS [14]

rely on this paradigm.

Operational specification languages characterize a sys-

tem as a structured collection of processes that can be

executed by some abstract machine. Early languages such

as Petri nets or process algebras [15], [16] rely on this

paradigm.

B. Object-Z’s Applications

As long ago as the early days of Z and Object-

Z, both of them have been applied to a wide range

of applications, such as programming languages, com-

munication protocols, and mobile phone systems [17],

[18], [19]. Their recent applications include specifying

oil and gas seismic survey, multi-agent systems, wireless

network routing protocol, train control systems, control

architectures for remotely operated vehicles, and software

development [20], [21], [22], [23], [24], [25], [26]. In

the following, we review some of latest representative

applications, illustrating how they help make the system

reliable.

In [21], Object-Z was used to specify asynchronous

multi-agent systems (AMAS). Since such systems consist

of multiple autonomous agents with asynchronous updates

and communications, they are often designed from the

point of view of local computations and the interactions

of autonomous agents. However, some of the system

functionality can only be proposed from the global point

of view. To guarantee the system’s functionality by the

local behavior of the agents, the authors employed Object-

Z with bounded fairness constraints for the specification

framework.

In [22], Object-Z was used to specify and reason about

Ad hoc On-Demand Distance Vector (AODV) routing

protocol in wireless networks. To formalize the route

discovery process, the network is decomposed into a

collection of nodes and the network topology is defined

by relations between the nodes. Thus the broadcast com-

munication can be modeled by operations which change

class name

visibility list

inherited classes

local types

state

initial state

operations

Figure 1. The class construct of Object-Z.

local variables of the sender and receivers. In this way,

the authors proved the loop freedom property for the

established routes based on the specification.

Although formal specifications help develop reliable

software, lack of enough knowledge and high cost of-

ten force developers to mainly use semi-formal (visual)

methods in practical large-scale software development. In

[26], the authors proposed to transform formal Object-

Z and semi-formal UML into each other using a set of

bidirectional formal rules. UML facilitates the interactions

among stakeholders and makes the software development

flexible. Since Object-Z are able to detect the inconsis-

tencies of software, as demonstrated in the multi-lift case

study, the transformation of formal and visual models into

each other through the iterative and evolutionary process

helps develop the highly reliable yet flexible software

applications.

III. OBJECT-Z

In this section, we brief the major constructs of Object-

Z. We assume the reader has basic knowledge of Z.

A. Class and Object

In the strongly typed object Z, every object is of

a type, called “class”. The class construct encapsulates

all relevant features and acts as a template from which

objects can be produced. The class construct is defined in

Figure 1, where

• class name is the name of the class.

• visibility list specifies the interface of the objects of

the class and their environment. When it is omitted,

it means all features are visible.

• inherited classes denote those classes whose features

are inherited in this class.

• local types have the syntax of Z global type.

• state is an anonymous (with the same name as the

class) constant state schema that must be satisfied

throughout the life time of the object. Constants and

variables declared in state schema are attributes of

the class.

• initialstate specifies the conditions to be met by the

object when it is born.

• operations denote those operations through which

object can change its state. They have the syntax

of Z operation schema.
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Circle

radius : R+

area : R+

area = π ∗ radius2

Change

∆(radius, area)
radius? : R+

area! : R+

radius′ = radius?
area! = area′ = π ∗ radius′2

Figure 2. The Circle class.

Attributes, initial states and operations are the key

features of the class. At any particular time, any object of

the class has a state, i.e., an assignment of some values

to the attributes. This state must conform to the constant

state schema in the class definition. The state transition

of the object can only occur through those specified

operations.

An exemplar class construct of Circle is shown in

Figure 2, which has two attributes radius and area, and

one operation Change. The constant state schema, area =
π ∗ radius2, is maintained throughout the life time of

any object of class Circle. With operation Change, class

Circle changes its attributes and communicates with the

environment. As to the first goal, all attributes to be

changed, namely, radius and area, are explicitly included

in the operation’s ∆ list. We use the unprimed identifier

(e.g. radius) to denote the attribute value before the

operation and the primed identifier (e.g. radius′) to denote

the attribute value after the operation. As to the second

goal, we use the decoration “base name+?” (e.g. radius?)

to denote the input from the environment, which will be

assigned to the class attribute with the same base name

(e.g. radius′← radius?). Similarly, we use the decoration

“base name+!” (e.g. radius!) to denote the output to the

environment, which will receive a value from the class

attribute with the same base name after the operation (e.g.

radius!← radius′).

Finally, it is worth noting that a : A only declares a

variable reference a to some object of class A. a’s value

is the identity of that object. If that object has changed,

e.g., its attribute’s value has changed, a does not change.

a changes only when it refers to another object. This

is particularly significant for modeling aggregates. For

instance, rooms : P Room declares that rooms is a set of

references to objects of class Room (P denotes power set).

rooms will not change when its member room changes.

room will change only when it refers to a different set of

rooms.

Circle

radius : R+

∆
area : R+

area = π ∗ radius2

Change

∆(radius)
radius? : R+

radius′ = radius?

Figure 3. The Circle class with area as secondary attribute.

B. Secondary Attributes

There may be some dependency among the class at-

tributes [27]. For example, as shown in Figure 2, class

Circle has two attributes radius and area, for which

area = π ∗ radius2 is always maintained. In this case,

area is a secondary attribute that depends on radius.

Attributes like area add no further information to the

specification in that it is derivable from the primary

attributes like radius. In principle, class attributes/state

variables can only change via those operations whose

∆ list explicitly includes them. However, to improve

readability and convenience, secondary attributes are im-

plicitly included in every ∆ list, denoting they will be

changed in such operation schema. As illustrated in Fig-

ure 3, area is introduced by a ∆ declarator, suggestive of

implicit inclusion in every ∆ list. When the input radius?
is available in the environment, the attribute radius′ is

equated to it, and implicitly area′ is updated according to

area′ = π ∗ radius′2 as well.

C. Object Containment

Sometimes we want to emphasize that an object can

only be contained by another object. For example, on

campus, one room can only be in one building and cannot

be shared by two or more buildings. We can denote this

notion by

Room

...

Building

rooms : P Room c©

...

This means that rooms, a set of references to objects of

class Room, is directly contained in the object of class

Building. In general, two properties are implied in the

use of symbol c© to denote object containment [28].
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• Any object cannot be directly contained by two

distinct objects.

• Any object cannot directly or indirectly contain

itself.

Formally, let O denote the class of all object identities,

then we can define the relation of directly-contain, dcon,

as

dcon : O↔ O

dcon ∈ O 7→ O

∀ o : O • ¬ o dcon
+

o

The first constraint says that dcon is a partial function in

that for any object a in O, we can have at most one image

dcon(a) that directly contains a. The second constraint

says that for any object o in O, (o, o) 6∈ dcon+, where

dcon+ is the transitive closure of dcon.

D. Operation Expressions

In the specification for the petrol supply system, four

binary operators are frequently used to construct new

operations from old ones. They are

• Conjuction operator ∧: It conjoins constraints and

equates variables with the same name.

• Parallel operator ‖: Like conjuction, it is communica-

tive and supports communication in both directions.

It conjoins constraints and equates input and output

variables with the same base name. The inputs with

matching output in the other operation are hidden.

However, to make this operator associative, those

matching outputs are not hidden. As in conjuction,

outputs with the same name are equated, so are those

residual inputs with the same name.

• Sequential operator o
9: It is one-way operator, i.e.,

communication is from left to right. The outputs

from the left operand are equated with the inputs

with the same base names from the right operand and

both are hidden. Residual inputs with the same base

names are hidden, so are those residual outputs with

the same base names. Hence, sequential operator is

non-communicative and non-associative.

• Choice operator 2: It indicates a non-deterministic

choice of operation. If neither precondition of the

operand is met, the operation fails. If only one

operand’s precondition is met, the choice is deter-

ministic. If both operands’ preconditions are met, the

environment selects an operand to proceed. There is

no communication between the two operands, be-

cause at any time at most one operand is performed.

IV. SPECIFYING PETROL SUPPLY SYSTEMS

A. The System Overview

This section demonstrates the use of Object-Z to the

description of a petrol supply system. The class con-

structs, object containment and operation operators are

very useful in specifying the relations among different

objects in such a system.

Figure 4. A typical petrol station.

As illustrated in Figure 4, a petrol supply system can

be informally described as follows. A petrol company

owns a number of petrol stations. Each petrol station

consists of a number of petrol pumps. Each pump can

be reset by a supervisor, after which it can pump out

petrol from a common store, recording at each stage the

volume and cost of petrol pumped so far. When pumping

is finished, the total cost is recorded by the supervisor and

subsequently paid by the customer. Each pump in a petrol

station sells petrol at the same price, although this price

may vary between stations. The common store can be re-

stocked by the petrol company at any time. The company

supplies petrol at the same cost to each station. Records

are kept of the total volume of petrol supplied to each

station, as well as the outstanding amount owed by each

station. As the city becomes increasingly crowded, more

and more stations are established in densely populated

areas like business and residential districts. Hence the sta-

tion is discouraged from maintaining a high outstanding

amount. The amount owed to the company by the station

is paid when requested by the company.

Some additional requirements are

• New petrol pumps can be added to a station.

• New stations can be added to the system.

• The wholesale price of petrol can change.

• A station can change its retail price of petrol.

After preliminary examination, it is intuitive to extract

the following underlying objects, which communicate

with one another as in Figure 5.

• Customer: At a pump in a station, he asks for a

certain volume of petrol. While stock lasts, he knows

the cost after pumping.

• Supervisor: He resets the pump and perhaps monitors

pumping. He is not included in our system, because

we assume there is one supervisor in each station

and his role can be replaced by the station.

• Pump: It needs at least two attributes, volume and

cost about the pumped petrol. If pumping fails, e.g.,

the customer’s demand is greater than the stock in the

common store, the pump is reset to zero, informing

the customer of the failure.

• Station: Each station contains some pumps that are

directly contained only by that station. It can change

its retail price and must pay the outstanding amount

owed to the company when requested. New pumps

can be added to it.

1710 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER



�

�������

���	
���� � � � � ���������

��������

��������

��������

���	
���

�
�����

������

�����

�����

�����

��
������
��
�����

	��	��
��
�����

	��	�

	��	�

Figure 5. The overview of a petrol supply system.

• Company: The company directly contains some sta-

tions which cannot be shared. It also contains a store

that supplies petrol to its stations. It keeps records,

defined below, for each station. It can change the

whole sale price and ask any station for the amount

owned. New stations can be added to it.

• Record: There is exactly one record object for each

station. It has three attributes, the station identity, the

total volume provided to that station so far, and the

outstanding amount owed by that station.

B. Pump

Class Pump needs at least two attributes: vol, recording

the pumped volume, and cost, recording the cost of the

pumped petrol. It also needs an operation Pumping, which

takes the input vol? from the customer, and outputs the

cost cost! equated with cost′ obtained from the constraint

cost = rprice ∗ vol

where rprice denotes the retail price determined by the

station. Because all pumps in the station share the same

value of the retail price, to avoid storing one price copy

in each Pump object, we can specify cost as a secondary

attribute depending on vol and store only one price copy

in class Station. This gives classes Pump and Station in

Figure 6.

At first glance, this concise specification works fine;

each time a customer asks for pumping, the pump will

provide the petrol and output the cost according to the

constraint defined in class Station. However, there is a

pitfall that would cause contradictions. On one hand, if

the station changes the price via operation ChangRprice,

cost will also change instantly according to the new

price in the constraint, even without any new pumping.

This is inconsistent with our definition that cost stores

the cost of the last pumping. On the other hand, since

cost is defined as an attribute of class Pump recording

the cost of the last pumped petrol, it will only change

via operation Pumping of class Pump. Besides, such

requirement is more object-oriented in that attributes can

only change via the operations in the same class. After

further investigation, we find that such a contradiction is

caused by the improper definition of cost as secondary

attribute. As introduced previously, a secondary attribute,

derivable from the primary attributes, adds no further

information to the specification. In our case, however,

when the price is changed by the station, cost becomes

primary in that it stores the last pumping cost which is

no longer derivable from the current values of rprice and

vol.

Therefore, we redefine cost as primary attribute and add

an attribute rprice for each pump, as shown in Figure 7.
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Pump

vol : R+

∆
cost : R+

Pumping

∆(vol)
vol?, cost! : R+

vol′ = vol?

cost! = cost′

...

Station

pumps : P Pump c©
rprice : R+

∀ p : pumps • p.cost = rprice ∗ p.vol

ChangRprice

∆(rprice)
rprice? : R+

rprice′ = rprice?

Pumping =̂ p? : pumps • p?.Pumping

...

Figure 6. The Pump and Station classes with cost as secondary attribute.

When the stock in the store meets the demand of the

customer (specified in class Company), Pumping will be

performed, outputting the cost based on the current price.

Otherwise, operation Reset is performed, setting both vol

and cost to zero, indicating such failure. Therefore, at any

time instant, vol and cost denote the last successful or

failed transaction. If they are positive, they denote actual

volume and cost of the last pumping. If they are both

zero, it means the last customer’s demand is greater than

the stock, provided that the customer never asks for petrol

of zero volume and the station never sets its retail price

to zero. Operation ChangRprice changes the local copy

of the price. As we will see later, this operation will only

be activated when the station decides to change the price.

Finally, INIT initializes the pump by setting vol and cost

to zero. As for initial price, it will be equated with the

price stored in the station when the new pump is added.

C. Station

A station directly contains some pumps. As shown in

Figure 8, it has two attributes, pumps, representing its

pumps, and rprice, representing its retail price. The notion

of direct containment is denoted by pumps : P Pump c©.

Operation AddPump adds a pump to the station, given

that the selected pump, p?, is not currently in the station.

Pump

vol : R+

rprice : R+

cost : R+

Pumping

∆(vol, cost)
vol?, cost! : R+

vol′ = vol?

cost! = cost′ = rprice ∗ vol?

Reset

∆(vol, cost)
cost! : R+

vol′ = cost′ = cost! = 0

ChangRprice

∆(rprice)
rprice? : R+

rprice′ = rprice?

INIT =̂ vol = cost = 0

Figure 7. The Pump class.

Besides, it also initializes the new pump and equates the

new pump’s rprice with the station’s rprice. Operation

ChangRprice changes the station’s retail price. Also, it

can change all pumps’ prices via their own operations

ChangRprice, for all input variables with the same name

rprice are equated. When the station is asked by the com-

pany to pay the outstanding money, it performs PayOwed

and outputs owed! that must be equal to the amount in its

record (defined in class Record). INIT sets pumps empty.

Pumping selects a pump (actually the pump is selected by

the customer, see class Customer) and promotes Pumping

of class Pump to class Station. Reset is similar to Pumping

in that it promotes Reset of class Pump to class Station

and it happens when transaction fails.

D. Store

The store provides petrol to every station when re-

quested, provided its stock meets the demand. As shown

in Figure 9, it has one attribute, stock, denoting the current

stock. A successful transaction is represented by Pumping

that receives the demand, vol?, and deduces it from the

stock. There is no explicit check, i.e., checking whether

stock meets demand. This check is defined in the class

Company. Actually, this check is implicitly required in

the declaration of stock : R+. Because we declare stock

is a non-negative real number, such constrain also applies

to stock′, which implies

stock − vol? > 0
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Station

pumps : P Pump c©
rprice : R+

AddPump

∆(pumps)
p? : Pump

p? 6∈ pumps ∧ pumps′ = pump∪ {p?}

∧p?.INIT ∧ p?.rprice = rprice

ChangRprice

∆(rprice)
rprice? : R+

rprice′ = rprice? ‖ ∀ p : pumps • p.ChangRprice

PayOwed

owed! : R+

INIT =̂ pumps = ∅

Pumping =̂ p? : pumps • p?.Pumping

Reset =̂ p? : pumps • p?.Reset

Figure 8. The Station class.

Store

stock : R+

Pumping

∆(stock)
vol? : R+

stock′ = stock − vol?

Restock

∆(stock)
vol? : R

+

stock′ = stock + vol?

INIT =̂ stock = 0

Figure 9. The Store class.

Although for readability and clarity, we add such check

in class Company, there is a choice here. In the extreme,

we can give the specification in the most “tedious” form

where there exists much redundancy in constraints. At

the other extreme, we can do it in the most “concise”

form where the set of constraints is minimal in that no

constraint can be inferred by others. In practice, we may

need some balance. Ultimately this may depend on the

specification reader. Restock adds to the store some petrol

of volume vol? determined by the company. INIT initializes

the store by setting stock to zero.

Record

station : Station

total, owed : R+

Trans

∆(total, owed)
vol?, wprice? : R+

total′ = total + vol?

owed′ = owed + wprice? ∗ vol?

PayOwed

∆(owed)
owed? : R+

owed? = owed ∧ owed′ = 0

INIT =̂ total = owed = 0

Figure 10. The Record class.

E. Record

As shown in Figure 10, class Record records the total

volume pumped so far and the outstanding amount of

money owed by the station. The former is represented by

total and the latter by owed. When a successful transac-

tion completes, the corresponding modification is made

to the record. That is, adding the volume of the current

transaction to the original total and the corresponding cost

wprice? ∗ vol? to the original owed. wprice? is input here

but it is renamed later with the actual whole sale price

wprice defined in class Company. PayOwed corresponds

to the same name operation in class Station. It receives

owed? that must be equal to the money owed by that

station and sets the new owed to zero. INIT just initializes

the record by setting owed to zero.

Obviously, every station can only appear in at most

one record. This is not embodied in the class construct of

Record. We cannot modify the declaration of station as

station : Station c©, since stations are already directly con-

tained in the company (defined later in class Company).

Alternatively, instead of Record, we can define a new

class Records that contains attribute records as a partial

function

records : Station 7→ (Total× Owed)

where Total ::= R+ and Owed ::= R+. This property

is captured by the requirement of partial function, though

it becomes less object-oriented and inconvenient to ref-

erence attributes total and owed. Eventually, we decide

to specify this one to one mapping between stations and

records in the state schema of the Company class.

F. Company

Now we come to the most complex class of Company.

As shown in Figure 11, it directly contains a set of
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Company

�(INIT, AddStaRec, ChangeRprice, ChangWprice, AddPump, PayOwed, Restock, Trans)

records : P Record c©
stations : P Station c©
store : Store c©
wprice : R+

∪{r : records • r.station}= stations

# ∪ {r : records • r.station}= #records

AddStaRec

∆(stations, records)
s? : Station

r? : Record

s? 6∈ stations ∧ stations′ = stations∪ {s?}

r?.station = s?∧ r?.INIT ∧ records′ = record ∪ {r?}

ChangeWprice

∆(wprice)
wprice? : R+

wprice′ = wprice?

INIT =̂ stations = records = ∅∧ store.INIT

AddPump =̂ s : stations • s.AddPump

ChangeRprice =̂ s : stations • s.ChangeRprice

PayOwed =̂ s : stations • [r : records | r.station = s] • s.PayOwed o

9 r.PayOwed

Restock =̂ store.Restock[vol : R+/vol?]

Reset =̂ s? : stations • s?.Reset

Pumping =̂ store.pumping ‖ s? : stations • s?.pumping ‖ [r : records | r.station = s?] • r.Trans[wprice/wprice?]

Success =̂ vol? : R+ • vol? 6 store.stock

Failure =̂ vol? : R
+ • vol? > store.stock

Trans =̂ Failure ‖ Reset 2 Success ‖ Pumping

Figure 11. The Company class.

stations, a set of corresponding records, a store and a

changeable whole price. Attribute stations and records

denote the set of stations and the set of records directly

contained by the company. The notion of directly contain

is again captured by the symbol c©. So is attribute store.

wprice represents the whole price. All stations contained

in the company must have corresponding records in the

records and this is embodied in the constraint in state

schema

∪{r : records • r.station}= stations

Any station occurs exactly once in the records and this is

captured by

# ∪ {r : records • r.station}= #records

Otherwise,

# ∪ {r : records • r.station}< #records

Operation AddStaRec adds a station and a corre-

sponding record to stations and records respectively,

provided this station is not contained in the company.

ChangWprice simply changes the whole sale price to

wprice?. INIT initializes the company by setting stations

and records empty. AddPump lets the company select

a station which then adds a pump. Restock, defined

as store.Restock[vol : R+/vol?], promotes such operation

from the store to the company level, in which variables

are renamed. That is, the original vol?, the input to the

store, is renamed with vol : R+, a value provided by

the company. PayOwed enables the company to select a
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Customer

Ask

vol!, cost? : R+

p! : Pump

s! : Station

p! ∈ s!.pumps

Figure 12. The Customer class.

station s, ask it to pay the owed money and then modify

its record.

Operation Reset, Pumping, Success, Failure, and Trans

together specify a successful or failed transaction on the

company’s part. Reset promotes such operation from the

level of station to the level of company and it is per-

formed when the customer’s demand exceeds the stock.

Otherwise, Pumping is performed at the company’s level,

which runs three operations in parallel, Pumping in the

store, Pumping in a selected station and Tran in the cor-

responding record that updates itself. Success and Failure

just check whether the stock meets the demand and only

one of them holds at each transaction. A transaction is

defined by Trans that makes a choice with symbol 2

between a successful transaction Success ‖ Pumping and

a failed one Failure ‖ Reset, depending on the current

stock in the store and the customer’s demand.

G. System

On the level of the petrol supply system, there are two

parties, a company and a set of customers. First, we define

class Customer in Figure 12 that is on the other side of

the transaction. The only operation is Ask. It outputs vol!,
the volume to pump, p!, the pump that performs pumping,

and s!, the station that owns the pump. It receives an input

cost?, which is either equal to zero, indicating a failed

transaction, or equal to some positive value, indicating

the cost of the pumped petrol of volume vol! . The only

constraint is that p! must be in the pumps in that station s!.
In fact, this is not necessary, for it is implicitly required

in Pumping and Reset defined in the class Station. It is

rewritten here for clarity.

With both classes Company and Customer ready, as

defined in Figure 13, the petrol supply system com-

municates them through operation Trans. The selected

customer indicates a pump of a station and asks for

a certain amount of petrol through Ask . On the other

side, the company performs Trans. By the definition of

‖, inputs are equated with the outputs with the same

base name on the other side. Hence p?, s? and vol?
in the expanded version of Trans on the company’s

side are equated with the corresponding variables on the

customer’s side. cost? on the customer’s side is equated

with cost! on the company’s side that is ultimately defined

in the state schema constraint of class Pump. Since there

is no need to communicate with the environment, p!, s!,
vol!, and cost! are hidden. Other operations just promote

the corresponding operations in Company to System.

V. CONCLUDING REMARKS

In this paper, we presented a brief overview of Object-

Z and then demonstrated its use on a case study of

a petrol supply system. Considering the complexity of

modern systems, structured specification is essential in

that it decomposes the concerns to its constituent objects.

Object-Z extends the Z language by including a class

construct that enables it to specify in object-oriented

environment. The notion of object reference makes it

simple to express object aggregates. Furthermore, its ex-

pressive power is greatly enhanced by introducing notions

like object containment and operation expressions like

conjunction operator.

Although the case study is not large, our exercise

of Object-Z on it has provided some feedback to the

development of Object-Z. Below, we highlight some of

them, which are worth further investigation.

• What is the suitable degree of constraint redundancy

in such a specification? If we write the specification

in the most succinct mode, it may be unreadable to

humans, not to mention model checking by humans.

Therefore, we need computer programs to automat-

ically check models by executing the specification

and deriving implicit constraints when necessary

[29], [30]. On the other hand, if we write the spec-

ification too tedious, it may cause a waste of com-

putation, for the same constraint is checked multiple

times in multiple places by the machine [31], [32].

Apparently we need some tradeoff between human-

readability and machine-efficiency.

• In the visibility list, it is more appropriate to let some

features accessible to a limited set of classes, rather

than all of other classes. For instance, Restock in

class Store should be visible only to class Company.

So we need another construct, whose function is

similar to “friend list” in C++.

• The process semantics of Object Z means that

process execution is single-threaded, operations are

atomic in that the duration of operations is zero. For

instance, the operation Pumping of class Pump is

either initiated and executed successfully or never

initiated at all. In practice, however, the pumping

may fail halfway. Because the process control logic

is tightly coupled with class structure, it is difficult

to use Object-Z to model real-time reactive systems.

Hence we may need to combine Object-Z with other

process-oriented languages like Communicating Se-

quential Processes (CSP) [15], where data and algo-

rithmic concerns are handled by Object-Z style and

process control, timing, and communication concerns

are treated in the CSP style [33], [34].

• In the case study, specification is written manually

and may vary much from person to person. Besides,

in practical large-scale software development, few

people grasp enough knowledge in the complex

mathematical concepts of formal methods. Hence,
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System

�(INIT, AddStaRec, AddPump, ChangeRprice, ChangWprice, PayOwed, Restock, Trans)

company : Company

customers : P Customer

INIT =̂ company.INIT

AddStaRec =̂ company.AddStaRec

AddPump =̂ company.AddPump

ChangeRprice =̂ company.ChangeRprice

ChangeWprice =̂ company.ChangeWprice

PayOwed =̂ company.PayOwed

Restock =̂ company.Restock

Trans =̂ cust : customers • (cust.Ask ‖ company.Trans) \ {p!, s!, vol!, cost!}

Figure 13. The System class.

we need tool support that aims at providing transla-

tion between human modeling languages and formal

methods. Ideally, the tool accepts the user’s speci-

fication in natural languages and then automatically

generates an “optimal” formal specification. Further-

more, the tool could even allow the user to describe

their models graphically without knowing the under-

lying syntax and knowledge of Object-Z. Of course,

many issues arise here, such as natural language

understanding [35] and specification refinement [36],

[34]. Unlike the above translation tool between the

two extremes (e.g. least-formal methods like natural

language and formal methods like Object-Z), a more

practical approach may start with bridging the gap

between semi-formal methods like UML and Object-

Z [37], [26]. The translation should be two-way in

that it not only transforms the description in UML

to Object-Z specification to ensure the reliability of

software, it also transforms Object-Z specification

back to UML to facilitate the interactions among

stakeholders.
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