
Knowledge Sharing in Virtual Community Based
on RDF Triple Publication and Retrieving To

Process SPQRQL Query

Yun Zhao
School of Information Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China

Email: shilyze@gmail.com

Huayou Si
School of Computer Science and Technology, Hangzhou Dianzi University, Hangzhou 310018, China

Email: sihy@hdu.edu.cn

Qing Lang
School of Information Engineering, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China

Email: langqing@zjfu.edu.cn

Abstract—Web ontologies, which usually appear as RDF
graphs, are used to represent knowledge in web. In recent
years, with the wide application of Semantic Web, large
numbers of such web ontologies have appeared on the
Internet, especially, in some virtual knowledge communities.
These web ontologies are usually distributed in different
sites and provide an amount of knowledge to query. But, it
has become a pressing issue that, given a semantic query,
how to efficiently gather the related knowledge from these
web ontologies located in different sites to process it. To
address this issue, in this paper, we propose a P2P-based
approach to publish RDF triples in sharable web ontologies
and freely sharing them in an open distributed environment.
Given a query of SPARQL (Simple Protocol and RDF
Query Language), this approach can automatically gather
published RDF triples related to the query to process the
query. As a knowledge sharing approach, our approach can
directly share RDF triples coming from different web
ontologies on different nodes. It overcomes limitations of
those approaches which focus on how to locate related
ontologies for a query. We also conducted three experiments
to evaluate the effectiveness and the efficiency of our
approach. The experimental results demonstrated that it is
effective and efficient.

Index Terms—Knowledge Sharing, RDF triple, RDF graph,
SPARQL Query, Structured P2P

I. INTRODUCTION

Ontology is formal, explicit specification of a shared
conceptualization to represent domain knowledge [1]. In
Semantic Web, ontologies are used to represent
knowledge in web. The ontologies are usually referred to
as web ontologies. These ontologies are based on RDF
(Resource Description Framework) so as to be called
RDF graphs. In recent years, with the wide application of
Semantic Web, large numbers of web ontologies have
been developed and appeared in different sites on Internet.

For example, we can search out tens of thousands of web
ontologies by using Swoogle [2], a web ontology search
engine. These ontologies possess a large quantity of
knowledge to query. They can serve as sources of
knowledge for web-based question answering system,
recommendation system, etc [3, 4]. Especially in some
virtual knowledge communities [5, 6], numbers of OWL
ontologies are also created. In such a community, each
member usually creates one or more ontologies to
represent his/her own knowledge of a given domain.
These ontologies also possess a large quantity of
knowledge to be shared and leveraged by members in the
community for their own purposes.

But, it has become a pressing issue that, given a
semantic query, how to efficiently locate the ontologies,
from which some solutions can be reasoned out for the
query, within a virtual community. In recent years, the
issue has been given a great deal of attention in practice
as well as in research.

Most of current approaches are based on Client–Server
(C/S) structure. In these approaches, all knowledge
resources, such as ontologies, are gathered and stored in
some centralized knowledge servers. Users can query and
utilize knowledge under some sort of centralized control.
These approaches have been considered inappropriate
and ineffective to share knowledge [4, 7] and are not
suitable for the autonomous and dynamic characteristics
of knowledge sharing [8, 9]. So, knowledge sharing in a
decentralized network, especially supported by peer-to-
peer (P2P) technology, is introduced. Given a query,
these approaches either route it to the nodes with related
ontologies to construct solutions for it, or locate the
related ontologies and then send the query to them to
construct solutions respectively. In these approaches,
knowledge sharing is essentially ontology sharing.
Knowledge sharing is based on ontology, not on the
knowledge itself in ontology. So, these approaches do not

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1941

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1941-1951

run well in some cases, such as, though we cannot
construct any solutions for a query from ontology A or
ontology B respectively, yet we can from knowledge
together in ontology A and B; or we can construct more
solutions from knowledge together in ontology A and B
than from ontology A and B respectively. These are
common cases, especially in a virtual community where
some ontologies usually possess some correlative
knowledge.

To address the issue and overcome the limitations of
current approaches, we propose a distributed approach to
directly publish and share RDF triples in web ontology
and implement it based on Chord [10], a structured P2P
protocol. In our approach, if a node has sharable web
ontologies, it can publish all the RDF triples in these
ontologies. If a node receives a query of SPARQL
(Simple Protocol and RDF Query Language) [11], it can
efficiently retrieves the web ontology related to the query
and creates a temporary ontology to process it.

As matter of fact, in this paper RDF triple is viewed as
a minimum and independent unit of knowledge.
Knowledge sharing in our approach is based on each
RDF triple in web ontology rather than an entire ontology.
If necessary, related RDF triples in different ontologies
locating in different nodes can be gathered to process a
query. Our approach overcomes limitations of those
approaches which focus on how to locate related
ontologies for a query. It enables user to automatically
share knowledge for his/her SPARQL query processing
in open distributed environment. We also conducted three
experiments to evaluate the effectiveness and the
efficiency of our approach. The experimental results
demonstrated that our approach is effective and efficient.

The rest of the paper proceeds as follows. Section 2
discusses related basic ideas and outlines our approach.
Section 3 presents the algorithm of RDF triple
publication. Section 4 presents the algorithms of RDF
triple retrieving. Section 5 addresses our experiments to
evaluate our approach. Section 6 presents related work.
Section 7 draws a conclusion.

II. BASIC IDEA AND OVERVIEW OF OUR APPROACH

In this section, first we introduce P2P networks and
their application in our approach. Then we discuss OWL
ontology, SPARQL query, and related basic ideas for
knowledge publication and retrieving. Finally, we present
overview of our approach.

A. P2P Networks and Their Application
Peer-to-peer (P2P) networks are distributed systems,

which consists of large numbers of autonomous nodes
(also called peers) and allows the sharable resources of
each node to be accessed by others in an open distributed
environment. P2P systems usually do not need any
hierarchical organization or centralized control. They
overcome the deficiencies of centralized registration
system and possess the properties, such as fault-tolerance,
self-organization, and scalability [24]. According to
different resource lookup mechanisms, P2P networks can
be classified into two categories: Structured and

Unstructured. Unstructured P2P networks organize nodes
into a random graph and use flooding or random walks on
the graph to query sharable resources provided by some
nodes. In most cases, the routing styles are inefficient in
large-scale network. Structured P2P networks usually
organize the nodes into an orderly graph in a systematic
way. For any sharable resource on any node, they can
assign a given node responsibility for it. Thus, structured
P2P networks can achieve very efficient lookup
mechanism so that they can provide very good scalability.

For example, as a typical structured P2P technique,
Chord [10] uses consistent hashing [13] to assign each
node a key in system. And then, based on the order of the
keys, it organizes the nodes into an orderly ring, where
the node with maximum key connects with the node with
minimal key. For a sharable resource r with a property p
of any node in Chord, first Chord uses the same hashing
to assign property p a key k. Then it locates a node N,
which key is greater than k and closest to k than all the
others. Finally, it saves the property p and the resource r
as a pair <p, r> on the node N. Usually r is URI of the
resource. This process is called resources publication.

Thus, given a property p of desired resources,
according to the key k of property p, Chord can
efficiently locate the node N assumed responsibility for
key k. Then, it takes out all the pairs which involve in the
property p on the node N to further find out the
corresponding resources. The process is called resources
discovery. In fact, Chord's lookup mechanism is very
effective. It can find resource using only log(n) messages,
where n is the number of nodes in the system.

If a node joins Chord, it will be inserted into the
orderly ring according to its key and undertake part of
burdens of the node next to it. If a node leaves, it turns
over what it undertakes to the node next to it. In case of
node failure, each resource is usually published on
several nodes. Chord is provably robust in the face of
frequent node failures and re-joins [16]. It can provide
very good scalability and failure resilience.

Because of Chord with these strengths of resource
publication and retrieving as a structured P2P network,
we apply it to our approach to organize virtual
community for knowledge sharing.

B. RDF Graph and Basic Idea for Triples Publication
Resource Description Framework (RDF) is a

framework for representing information in the Web,
which is designed to represent information in a minimally
constraining, flexible way. The underlying structure of
any expression in RDF is a collection of triples, each
consisting of a subject, a predicate (also called a property)
and an object. This can be illustrated by a node and
directed-arc diagram, in which each triple is represented
as a node-arc-node link. The nodes of an RDF graph are
its subjects and objects. The direction of each arc always
point toward the object. So, a collection of such triples is
called an RDF graph. Each triple represents a statement
of a relationship between the things denoted by the nodes
that it links. The assertion of an RDF triple says that
some relationship, indicated by the predicate, holds
between the things denoted by subject and object of the

1942 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

triple. Therefore, a RDF triple can be regarded as
minimum knowledge unit, which usually present a whole
relationship between things. The assertion of an RDF
graph amounts to asserting all the triples in it. The
meaning of an RDF graph is the conjunction of the
statements corresponding to all the triples it contains

RDF properties are thought of as attributes of
resources and in this sense correspond to traditional
attribute-value pairs. They also represent relationships
between resources. RDF however, provides no
mechanisms for describing these properties, nor does it
provide any mechanisms for describing the relationships
between these properties and other resources. That is the
role of the RDF vocabulary description language, RDF
Schema (RDF-S), which is a semantic extension of RDF.
It specifies mechanisms that may be used to name and
describe properties and the classes of resource they
describe. RDF Schema provides built-in resources and
properties for describing groups of related resources and
the relationships between these resources in domain being
described. So, they are used to determine characteristics
of other resources, such as the domains and ranges of
properties.

In addition, as ontology language based on RDF, OWL
(Web Ontology Language) is used to formally define
meaning to facilitate machine interpretability of Web
content. It is supported by RDF and RDF-S by providing
additional vocabulary along with a formal semantics. So,
web ontologies, which are in compliance with OWL or
RDFS, are all based on RDF data model. They are also
viewed as RDF graph, which consists of the following
four different syntactic ingredients:

• Entities, such as classes, properties, and individuals,
are identified by IRI references. They form the
primitive terms of ontology to express the basic
notions in domain. For example, the class http://
www.example.com/onto.owl#Person can represent
the set of all people. It can be abbreviated as a:
Person, where a: denotes the name space: http://
www.example.com/onto.owl#.

• Literals are used to identify values such as numbers
or dates by means of a lexical representation. A
literal may be the object of a RDF triple, but not the
subject or the predicate.

• Language vocabularies are provided by RDF
Schema or OWL to name and describe entities in
domain being described. They are also identified by
IRI references, such as http://www.w3.org/1999/02
/22-rdf-syntax-ns#type.

• Anonymous entity (also called Blank RDF node) is
not an IRI reference or a literal. In the RDF abstract
syntax, an Anonymous entity is just a unique RDF
node that can be used in one or more RDF
statements, but has no intrinsic name.

An IRI reference used as a predicate identifies a
relationship between the things represented by the RDF
nodes it connects. A convention used by some linear
representations of an RDF graph to allow several
statements (i.e., RDF triples) to reference the same
unidentified resource is to use a blank RDF node

identifier, which is a local identifier that can be
distinguished from all IRIs and literals. When graphs are
merged, their blank RDF nodes must be kept distinct if
meaning is to be preserved.

As mentioned above, web ontology can be viewed as a
collection of RDF triples which compose of entities,
literal, language vocabularies, and blank RDF node,
represented as a subject, a predicate, and an object.
Therefore, for each triple, we can take each entity
appearing in it as an index of the triple. Then, based on
each index of a triple, we publish and retrieve it on
structured P2P network. This is our idea to publish triples
and share them. We discuss it in detail in subsection 2.4.

C. SPARQL Query and Basic Idea for Knowledge Retrieving
As W3C Recommendation, SPARQL [11] is a query

language for RDF graphs. since web ontologies in
compliance with OWL or RDFS [12] are all based on
RDF data model, they are essentially a RDF graphs and
can be queried by SPARQL. Each SPARQL query has a
graph pattern which consists of one or more pattern-
clause. Each pattern-clause usually includes several
entities, which appear in it. For example, given a graph
pattern in Figure 1, all the entities in it can constitute a
collection {dc:book, dc:title, dc:creator, dc:corporation}.

As matter of fact, a graph pattern can be automatically
converted into a semantically equivalent triple pattern.
For example, the result of such conversion is shown from
Figure 1 to Figure 2. The triple in a triple pattern is like
RDF triple except that each of the subject, predicate and
object may be a variable.

{ [a dc:book] dc:title "Semantic Web"; dc:creator ?y.
?y a dc:corporation.
}

Figure 1. Graph Pattern of a SPARQL Query

{
_:b0 <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

dc:book .
 _:b0 dc:title "Semantic Web" .
 _:b0 dc:creator ?y .
 ?y <http://www.w3.org/1999/02/22-rdf-syntax-ns#type>

dc:corporation
}

Figure 2. Triple Pattern of Graph Pattern in Figure 1

Graph pattern is a core component of SPARQL query.
It is used to match a sub-graph of the RDF graph being
queried when RDF terms (included entities, literals, and
language vocabularies) from that sub-graph may be
substituted for the variables in the graph pattern, and the
result, i.e., the solution of the query, is RDF graph
equivalent to the sub-graph.

So, given a SPARQL query, if a RDF graph can be
queried out results for the query, RDF terms appearing in
its graph pattern must be appear in the RDF graph.
Accordingly, given a query, these triples related to the
RDF terms, which appear in the graph pattern of the
query, are usually useful to process the query.

Thus, based on the foregoing idea of RDF triple
publication and retrieving, given a SPARQL query, we
can retrieve related triples for the query based on the

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1943

© 2014 ACADEMY PUBLISHER

entities, i.e., RDF terms, which appear in the query’s
graph pattern.

D. Overview of Our Approach
As mentioned above, we apply structured P2P protocol

Chord to our approach to organize virtual community for
knowledge sharing. First of all, we design two functions
to publish and retrieve triples in web ontology on P2P
network as follows:

• pubTriple(entity, triple), the function is used to
publish a triple based on an entity. As mentioned
above, Chord assigns entity a key and finds a P2P
node based on the key. Then, saves the pair <entity,
triple> on this node.

• retrTriple(entity), the function is used to get all the
triples that are published based on entity by any P2P
node in Chord.

In our approach, the P2P nodes in a virtual community
constitute a Chord P2P network first. When a P2P node
with some sharable ontologies joins, it publishes them as
follows:

1. Given a sharable ontology O in a P2P node, changes
it into a collection of serializable triples as tplSet
according to some strategies. Here, each triple is
regarded as minimum knowledge unit.

2. For each triple tpl in collection tplSet, extracts all
entities appearing in triple tpl as an entity set enSet.

3. For each entity en in set enSet, publishes triple tpl
based on entity en by using function pubTriple(en,
tpl) as discussed above.

This method publishes each triple according to these
entities which appear in this triple as subject, predicate,
and object respectively. Thus, all P2P nodes know which
P2P nodes are responsible for triples they are looking for.
It guarantees to find out matched triples in the network if
the triples exist.

Once a node N receives a SPARQL query Q, according
to the idea as discussed in subsection 2.3, it can retrieve
all related triples as temporary web ontology to process
the query as follows:

1. Node N Parses graph pattern of query Q and extracts
all the entities as a collection enSet.

2. according to each entities en in collection enSet
retrieves enough related triples from virtual
community for query Q by using function retrTriple
(en) based on some strategies.

3. Creates a temporary web ontology O which holds all
the triples being retrieved.

4. Reasons ontology O to construct solutions for the
query.

The specific strategies to changes web ontology into a
collection of triples and retrieve related triples for a query
is discussed in detail in the following section.

III. STRATEGY AND ALGORITHM OF RDF TRIPLE
PUBLICATION

In a RDF graph, entities are the primitive terms of
ontology to express the basic notions in domain. Entities
compose of classes, properties, and individuals, which are
identified by IRI references respectively. Therefore,

entities in RDF graph represent the notions and terms in a
domain being described and reflect the category of
domain knowledge to a certain extent.

Language vocabularies, which are provided by RDF
Schema or OWL, are meta-language elements and almost
appear in every ontology. So, they cannot reflect the
category of domain knowledge. Similarly, because
literals are just used to identify values such as numbers or
dates by means of a lexical representation, they cannot
reflect the category of domain knowledge too.

Hence, in order to efficiently retrieve related triples as
knowledge needed to process a SPARQL query, we can
publish a RDF triple based on the entities appearing on it.
However, there is a type of entities known as anonymous
entities. When a convention is used by some linear
representations of an RDF graph, they are assigned a
local identifier respectively, which can be distinguished
from all IRIs and literals. In fact, an anonymous entity in
RDF graph represents an anonymous notion, which is
used to link multiple concepts to express a complex
relationship, i.e., a piece of complex knowledge. This is
to say, anonymous entity in RDF graph is used to link
several RDF triples. So, RDF triple should be published
based on anonymous entity appearing in it so as that
related triples can be retrieved.

Because anonymous entities must be kept distinct if
meaning is to be preserved when graphs are merged, here
we present a method to assign an anonymous entity an
unique IRI reference: Given an anonymous entity, we
connect IRI of the RDF graph where this anonymous
entity locate, character ‘#’, and this entity’s local identifier
as its IRI reference. For example, if a FDF graph, which
IRI is http://www.example.com/onto.owl, have an
anonymous entity, which local identifier is _:personZhao,
according to our method, its IRI reference generated is
http://www.example.com/onto.owl#_:personZhao. Because
the IRI reference of this RDF graph is unique and the
entity’s local identifier is unique in this RDF graph too,
this anonymous entity’s IRI reference generated is unique.
In this paper, for each anonymous entity in a RDF graph
to be published, a unique IRI reference is generated for it.

1. Algorithm publishTriple(onto)
2. Input onto: ontology, i.e., RDF graph onto to be published
3. Output null: there is nothing to return
4. {
5. takes out all the specified triples in ontology onto as triple

set triSet;
6. for(each triple tpl in triple set triSet){
7. takes out a subject, a predicate, and an object from triple tpl

as RDF term set rsSet;
8. for(each RDF term rs in set rsSet){
9. if(rs is anonymous entity){
10. Generate IRI reference rs_iri for rs;
11. }else if(rs is named entity){
12. Extracts rs’s IRI rs_iri;
13. }
14. publish tpl based on IRI rs_iri by using

pubTriple(rs_iri, triple)；
15. }
16. }
17. }

Figure 3. Algorithm: publishTriple

According to discussions above, we design RDF graph

1944 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

publication algorithm: publishTriple based on function
pubTriple (entity, triple) in subsection 2.4, shown in
Figure 3. The basic idea is that, given a RDF graph, first
extracts all the RDF triple specified in it; then for each
entity in a triple, if it is an anonymous entity, generates an
IRI reference, else takes out its IRI reference to publish
the triple.

The number of accesses to P2P network is quantity of
the named and anonymous entities in all the RDF triple in
web ontology when it is published.

IV. STRATEGIES AND ALGORITHMS OF RDF TRIPLE
RETRIEVING

In this section, first we discuss the strategies and
several concepts for RDF Triple Retrieving. Then present
the algorithms of RDF triple retrieving.

A. Basic Idea of RDF Triple Retrieving
Given a SPARQL query, if a RDF graph can be

queried out results for the query, RDF terms appearing in
the graph pattern must appear in the RDF graph.
Moreover, if graph pattern of the query is converted into
triple pattern, each triple in the triple pattern can be
matched in the RDF graph. This is to say, for each RDF
term in the graph pattern and its role as one of the subject,
predicate, or object in a given triple in the triple pattern,
there is at least one triple specified or implied in the RDF
graph, which involves in the RDF term as the same role.

Therefore, Given a SPARQL query Q, these triples
should be retrieved from virtual community based on
structured P2P network, which can match the triples in
triple pattern of query Q, or which can reason out the
triples that can match the triples in triple pattern of query
Q.

If a triple T in a graph pattern of query can match with
RDF triple T’, out of question, the subject, predicate, and
object of T and T’ are corresponding to each other
respectively. That is, the entity in the triple T, also
appears on the corresponding role in triple T’. Thus, only
these triples are possible matched with triple T, where an
entity e appears if triple T contains an entity e. Moreover,
the triples matched with triple T can be reasoned out only
from such triples, which is included in the RDF unicom
sub-graph of the entities appearing in triple T, because
these triples where entity e appears cannot reason out
from a RDF graph without entity e. In a similar way, if a
RDF graph contains several independent unicom sub-
graph and entity e does not appear in one of these RDF
unicom sub-graphs, these triples where entity e appears
cannot reason out from this RDF unicom sub-graph. In
fact, if entity e is a property, it maybe appears in several
independent unicom sub-graph. In our approach, if more
than one independent unicom sub-graphs in a RDF graph
share an entity as property, they are regarded as one RDF
unicom sub-graph.

Therefore, if all the specified and potential RDF triples
where entity e appears need to be retrieved and reasoned
out, the independent unicom sub-graph where where
entity e appears should be retrieved. This is, all the triples
which locate in the unicom sub-graph should be obtained.

In our approach, this independent unicom sub-graph of
entity e is called unicom triple set, recorded as CSGe.
Given a context, CSGe contains all the triples, where
entity e locates, or which can reason out the triples where
entity e locates. Graph pattern containing entity e of
query can be matched just against these triples.

So, given a SPARQL query Q, according to each entity
appearing in graph pattern of query Q, their CSG can be
gotten respectively, all the triples in these CSG together
are called unicom triple set of query Q, recorded as CSGQ.
If their biggest unicom subgraphs can be gotten in a given
context, all the triples in these subgraphs are called
biggest unicom triple set of query Q, recorded as MCSGQ.
In fact, if MCSGQ is taken as web ontology, it can process
SPARQL query Q effectively.

Given a SPARQL query Q, if MCSGQ can be gotten in
a given context, such as a given virtual community, all
potential solutions in whole sharable knowledge can be
reasoned out. Because MCSGQ includes all direct and
indirect related triples of SPARQL query Q, just from
which solutions of query Q can be reasoned out. The
triples, which are not included in MCSGQ, cannot
contribute to construct solutions for query Q. Here we do
not discuss it in detail.

B. Algorithms of RDF Triple Retrieving
According to the above analysis, using function

retrTriple discussed in subsection 2.4, we design the
algorithm retrieveRldTriple shown in figure 4 to retrieve
CSG of a SPARQL query based on web ontology
publication algorithm: publishTriple in figure 3. The
strategy of the algorithm retrieveRldTriple is that: Firstly,
give a SPARQL query Q, takes out all the entities
appearing in graph pattern of query Q as entity set entSet.
Then, according to each entity in set entSet, retrieves the
published RDF triples by using function retrTriple
discussed in subsection 2.4 as a RDF triple set tripleSet.
Without question, at least one entity in set entSet appears
in a RDF triple in set tripleSet. Moreover, triples in set
tripleSet are centered in the entities in set entSet as
several CSGs respectively. This is the first iteration.
Secondly, according to the new entities introduced by the
triples in set tripleSet (that is, the entities which appear in
a triple of set tripleSet, but do not belong to set entSet),
continues to retrieve RDF triples as part of set tripleSet
(that is, further expends each CSG). This is the second
iteration. So iteration, until there are not new entities to
be introduced, MCSGQ is gotten, from which all potential
can be reasoned out for query Q.

If we only focus on the access to P2P network, the
access number is the quantity of elements in entity Set
enSet in MCSGQ in algorithm: retrieveRldTriple. Though
we can reason out all potential solutions for a query Q
based its MCSGQ as mentioned above, it may be difficult
to get the MCSGQ in large-scale knowledge communities
because there may be a mass of related triples and need
great numbers of accesses to P2P network. In practice,
users sometimes do not need all possible solutions of
their queries. Thus, for a query we can just retrieve a
small CSGQ according to a limited number of iterations of
the algorithm: retrieveRldTriple. This method to retrieve

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1945

© 2014 ACADEMY PUBLISHER

a small CSGQ for a SPARQL query usually has high
performance, although it cannot guarantee to obtain all
potential solutions for the query.

1. Algorithm retrieveRldTriple
2. Input enSet: the entities Set, each element in it appears in

graph pattern of SPARQL query Q
3. Output tripleSet: MCSGQ returned
4. {
5. initializes empty Lists levelA, levelB, current, and constru;
6. puts elements in Set enSet into List levelA;
7. current= levelA; constru= levelB;
8. while(true){
9. for(each entity en in List current){
10. retrieves RDF triples as a Set triSet by using function

retrTriple (en);
11. puts triples in triSet into tripleSet;
12. for(each triple triple in Set triSet){
13. takes out each entity appearing in triple as entity Set

entitySet;
14. for(each entity ent in entity Set entitySet){
15. if(entity ent is not belong to enSet)
16. puts entity ent into entity Set enSet and List constru;
17. }
18. }
19. }
20. if(list constru is empty) break;
21. if(current = =levelA){
22. current=levelB; constru=levelA;
23. } else{
24. current=levelA; constru=levelB;
25. }
26. clear List constru;
27. }
28. return axSet;
29. }

Figure 4. Algorithm: retrieveRldTriple

However, if just a small CSG is retrieved for a
SPARQL query rather than MCSG of the query, the CSG
may contain incomplete knowledge because some triples
are probably not able to express complete meaning. For
example, if a CSG of a SPARQL query Q contains a
triple “ex: myPage. HTML, ex: creator, _ : personSi”,
which introduces an anonymous entity “_ : personSi”, but
does not contain the triples to describe the anonymous
entity “_ : personSi” in a given context, such as "_ :
personSi, ex:name, Huayou Si" and "_ : personSi,
ex:email, sihy@live.cn", the knowledge in CSG is
considered to be incomplete. As matter of fact,
anonymous entity usually is not an object to be queried,
but just links multiple triples to express a piece of
complex knowledge. Thus, if an anonymous entity loses
the triples that it links, appearance of the anonymous
entity makes no sense.

Therefore, if some anonymous entities exist in a CSG
which is retrieved for a SPARQL query, some related
RDF triples which describe these anonymous entities
must be retrieved to add to the CSG so as to make the
knowledge in it complete.

Here, we design an algorithm: bcCSG, shown in figure
5, to retrieve related RDF triples for the anonymous
entities in a CSG for query Q. Its strategy is: extracts all
the anonymous entities in a CSG, which description RDF
triples have not been retrieved, as a List anoList. Then,
takes out each anonymous entity ano to retrieve its
description RDF triples by using retrTriple (ano) to add
to CSG. If some new anonymous entities are introduced

by the RDF triples retrieved, puts them into List anoList.
The algorithm ensures that each anonymous entity in
CSGQ gets all the triples it links.

1. Algorithm bcCSG
2. Input csgSet: CSGQ of SPAQRL query Q
3. Output csgSet: CSGQ which complete knowledge
4. {
5. initializes empty Lists anoList;
6. extracts all the anonymous entities without description triples

in a csgSet and puts them into List anoList;
7. for(each anonymous entity ano in List anoList){
8. retrieves RDF triples as a Set triSet by using function

retrTriple (ano);
9. takes out each anonymous entity in triSet as entity Set

anoSet;
10. for(each anonymous entity an in Set anoSet){
11. if(anoList does not contain an){
12. puts an into anoList;
13. }
14. }
15. puts RDF triples in Set triSet into csgSet;
16. }
17. return csgSet;
18. }

Figure 5. Algorithm: bcCSG

If we only focus on the access to virtual community,
the access number is the quantity of elements in csgSet in
algorithm: bcCSG.

V. EVALUATION

We design the following three experiments to evaluate
effectiveness and efficiency of our approach:

• The first experiment evaluates the ability of our
approach’s callback, i.e., the ability of obtaining
potential solutions for a given query in a given
context, such as in a virtual knowledge community.

• The second experiment reveals the specific effects
on obtaining potential solutions for the query, which
is based on a query’s different CSGs according to
different iterations by Algorithm: retrieveRldTriple
in Figure 4. Usually, a CSG with more iterations is
retrieved for a query; more solutions for the query
probably can be gotten. This experiment reveals the
specific relationship between them to gain a better
understanding of the efficiency of our approach.

• The third experiment evaluates the efficiency of our
approach by the number of the access to network
when RDF graph, i.e., WEB ontology, is published,
or a SPARQL query is processed.

A. Experiment Set Up
To evaluate our approach, we have implemented it. In

this implementation, we apply the open source
development kits: Jena [14], Pellet [15], and open-chord
[16]. Jena is a Java framework to provide a programmatic
environment for building Semantic Web applications.
Pellet is a Java-based OWL DL reasoner, which can be
used in conjunction with Jena libraries. Open Chord is a
Java-based implementation of the Chord DHT [10]. It
provides an interface for Java applications to take part as
a node to construct a structured P2P network.

In our experiments, we use the OWL ontologies and
SPARQL queries of the third party as experimental data,

1946 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

which locate in “pellet-2.2.2\examples\data”, i.e., the
example data in the open source development kits “pellet-
2.2.2”. The experimental data provides several OWL
ontologies and dozens of SPARQL queries.

B. Results and Analysis
• Experiment 1 is conducted to evaluate our

approach’s ability of obtaining potential solutions
for a given query.

In this experiment, first of all, we find out the number
of the potential solutions of each query in our
experimental data. First, we merge all OWL ontologies in
our experimental data as a new ontology O. Then, for
each query in our experimental data, we reason ontology
O to find out the number of its solutions. Obviously, the
number of a query’s solutions is the query’s potential
solution number based on the knowledge that all these
OWL ontologies in our experimental data provide. The
results are shown in line Potential in table. 1.

We use our approach (M1) to publish all web
ontologies and process all our queries in experimental
data based on their MCSGQ obtained by Algorithm:
retrieveRldTriple in figure 4. And then, record the
number of each query’s solutions returned by our
approach (M1) in line Returned in table. 1.

Figure 3 shows that, the numbers in line Returned are
identical to numbers in line Potential respectively. This is,
our approach (M1) can get all the potential solutions for a
given query in a given context. It is because, for a query,
although related RDF triples are divided into different
P2P nodes, our approach M1 can freely retrieve them and
put them together to process the query.

• Experiment 2 is conducted to explore the specific
effects of a query’s different CSG according to
corresponding iterations on obtaining potential
solutions.

In this experiment, first we publish all OWL ontologies
in our experimental data using our approach (M1). Then,
for each query, we retrieve its CSGs of all possible
iterations by Algorithm: retrieveRldTriple respectively.
Next, for each query q, we get the numbers of query q’s
solutions respectively based on each CSG of query q.
Their results are recorded in table. 2. For example, the

number in line I3 and column Q8 means the number of
the returned solutions when query Q8 is processed based
on a CSG which is obtained by Algorithm:
retrieveRldTriple according to 3 iterations.

TABLE 1.
THE NUMBERS OF SOLUTIONS RETURNED OF EACH QUERY BASED ON

DIFFERENT CSG
Iterations Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12

I1 0 41 0 17 0 0 0 0 1 1 1 0
I2 571 41 34 17 41 0 0 0 1 1 1 0
I3 678 41 34 17 80 0 0 2 3 3 4 0
I4 678 41 34 17 80 0 0 2 3 3 9 1
I5 678 41 34 17 80 78 39 2 3 3 9 1
I6 678 41 17 80 78 39 2 3 3 9 1
I7 678 41 17 78 39 2 3 3 9 1
I8 2 3 3 9 1
I9 2 3 3
I10 2 3 3
I11 2 3 3
I12 2 3 3
I13 3
I14

This table shows that, based on respective CSG on one
iteration, 2 queries get their all potential solutions; based
on respective CSG on three iterations, 8 queries get their
all potential solutions; until based on respective CSG on
five iteration, all queries get their all potential solutions.

In addition, we calculate the percentage of returned
solutions against all the potential solutions of all the
queries based on their own CSG on their each iterations.
The results are shown in Figure 6.

The Figure 6 shows that, based on the CSG with one
iteration by Algorithm: retrieveRldTriple respectively,
6.2% of solutions of all queries are gotten; based on the
CSG on two iterations, the percentage is 71.8%; based on
the CSG on five iterations, the percentage is 100%. The
results are amazing. They mean that, given a query, it is
highly possible to get most solutions in a given context
just based on a small CSG. It is because that the
semantics of an entity et is mainly associated with the
entities (as set enSet), which sometimes appear in same
RDF triples of entity et. CSG with 2 iterations contains all
the triples. So, the results are reasonable.

TABLE 2.
THE NUMBERS OF POTENTIAL SOLUTIONS AND RETURNED BY OUR APPROACH

Query Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12
Potential 678 41 34 17 80 78 39 2 3 3 9 1
Returned 678 41 34 17 80 78 39 2 3 3 9 1

Figure 6. Percentages of Returned Solutions Based on Respective CSG According to Each Iteration

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1947

© 2014 ACADEMY PUBLISHER

Figure 7. Number of the Accesses to Network When Each RDF graph Is Published

Figure 8. Number of the Accesses to Network When Each SPARQL Query Is Processed

This results show our approach is essentially efficient.
For a query, usually it is unnecessary to retrieve its
MCSG even if all solutions are needed.

• Experiment 3 is conducted to evaluate the
efficiency of our approach by the number of the
accesses to network when a RDF graph is published,
or a SPARQL query is processed.

Similar to our approach (M1), Si et al [39] propose a
P2P-based approach (M2) to publish axioms in sharable
web ontologies and freely share them to process
SPARQL query in virtual community. Given a query of
SPARQL, this approach M2 can gather related axioms so
as to reason out all potential solutions for the query. In
this experiment, we compare the efficiency of the
approach M1 and M2 to evaluate our approach M1.

To simulate a distributed virtual community, first we
merge university0-0.owl and univ-bench.owl in our
experimental data as a new ontology O. Then, randomly
divide ontology O into 10 ontologies and deploy them on
different nodes. Finally, we conduct our tests. This is, by
using our approach M1 and M2 respectively we publish
these ontologies and record the number of their accesses
to P2P network in process of each ontology publication.
These results are shown in figure 7.

The Figure 7 shows that the number of approach M1’s
accesses to the network is more than approach M2 when a
web ontology is published. It is because that an axiom in
web ontology usually represents a piece of complex
knowledge, which can break down into several RDF
triples. Each of RDF triple usually is published three
times according to its subject, predicate, and object by
our approach M1, while approach M2 just publishes each
axiom based on each entity appearing on it.

In this experiment, by using approach M1 and M2
respectively, we further process the first seven SPARQL
queries in our experimental data (because the published
ontologies have nothing to do with the rest of queries).

Then, we record the number of their accesses to P2P
network in process of each query. This experimental
result is shown in figure 8.

The Figure 8 shows that the number of approach M1’s
access to the network is slightly more than approach M2
when a SPARQL query is processed. It is because these
two approaches retrieve RDF triples or axioms just based
on entities appearing on graph pattern of the query being
processed and triples or axioms returned. But, approach
M1 also considers related anonymous entities. So,
approach M1 needs more accesses to the network than
approach M2. But the difference values are not big.

From these three experiments, it can be seen that our
approach is effective and efficient. If necessary, it can get
all potential solutions for a query in a virtual community.
If not necessary, it can get some solutions for a query
within a small number of accesses to P2P network.
Although it will consume more resource than approach
M2 when web ontology is published or query is processed.
But, the granularity of knowledge to be published and
sharing by approach M1 is smaller than approach M2
(because publication and retrieving of approach M1 is
RDF triples, while approach M2 is OWL axioms). So,
approach M1 is has more flexibility than approach M2. In
addition, approach M2 just processes OWL ontology,
while approach M1 can handle all kinds of RDF graphs.

VI. RELATED WORK

Along with the development of P2P techniques and the
technical requirement of knowledge sharing in virtual
community, in recent years some P2P-based approaches
for ontology publication and discovery have been
proposed. The current research works can be divided into
three categories. The works in the first category focuses
on P2P-based web ontology publication and semantic
query routing; the second focuses on distributed storage
and management of web ontology; and the third category

1948 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

mainly focuses on distributed management and sharing of
knowledge in virtual community. The typical works of
the first category are listed as follows:

Earliest of all, Tian et al. [19] present an ontology-
based P2P lookup service (named SemanticPeer), which
extends Chord protocol with express table and index
table to publish resources in common ontology and
private ontologies respectively. With the approach, a
semantic query can be routed to a node which contains a
private ontology to process it. Similarly, Gao et al. [20]
publish classification information of a resource to P2P.
Then, based on the classification of target resource, it can
find out the peers where a kind of resource maybe locates
in. In essence, these approaches must be based on
common knowledge base or unified classification.

Raul Palma1 and Peter Haase [17] provide an approach
(named Oyster) to exchange and re-use ontologies based
on P2P network. Oyster provides an infrastructure for
storing, sharing, and finding ontologies making use of the
proposal for Ontology Metadata Vocabulary (OMV) [18]
which describes the properties of ontology. It does not
involve in the specific knowledge in ontologies when
publishing and discovering them.

In addition, we [26] also propose a structured P2P-
based approach to publish sharable ontologies in different
sites and automatically locate the useful ontologies for a
semantic query. Given a semantic query, if an ontology
published can be reasoned out solutions for it, the
approach is sure to locate the ontology and achieve
related solutions.

However, in these approaches, knowledge sharing is
incomplete because it is based on sharable ontology
rather than knowledge itself. This is to say, the unit of
sharing knowledge is ontology itself. For example as
mentioned above, though we cannot construct any
solutions for a query from ontology A or ontology B
respectively, yet we can from knowledge together in
ontology A and B.

As matter of fact, there are also some P2P-based
approaches for ontology publication, which just focus on
distributed storage and management of web ontology.
The typical works are discussed as follows:

Min et al. [21] present a scalable distributed RDF
repository (named RDFPeers) that stores each triple at
three places by applying globally known hash functions
to its subject, predicate, and object. Thus, all nodes know
which node is responsible for triples they are looking for.
Queries are guaranteed to find out matched triples in the
network if the triples exist. However, if RDF triples are
directly published on P2P, it does not support semantic
retrieval. To address this question, Kohigashi et al. [22]
focus on class hierarchies of RDF resources, encode them
into related resource ID, and publish the ID. Then, they
present a P2P information sharing method for RDF triples
based on the class hierarchies. However, except for
classification information, the method cannot yet support
complex semantic query.

When semantic information is distributed over a
structured P2P network, some related problems, such as
load balance and reliability, will be encountered. To

address the problems, Rizzo et al. [23] present a solution
for distributed and reliable RDF storage. But, they do not
care about semantic retrieval.

In general, these approaches directly publish
knowledge in web ontology, so they break the limitations
that the unit of sharing knowledge is ontology itself. But,
except for classification information, complex semantic
query processing is difficult to achieve based on these
approaches.

In current research, many works focus on distributed
management and sharing of knowledge in virtual
community. These typical works are listed as follows:

The works [27-30] discuss interaction, behavior and
key techniques for knowledge sharing in virtual
community from different perspectives. Especially, the
work [30] discloses characteristics of knowledge sharing
in virtual community based on structured P2P techniques.
But, they did not focus on specific implementation
technology.

Chen et al. [8] propose an approach for knowledge
sharing in community, which organizes the P2P nodes
with sharable knowledge as an unstructured P2P network.
If a node receives a query and has not related knowledge
to process it, the P2P node sends the query to its
neighbors until the query can be processed. Similar
approaches are also presented in works [4, 7, 9, 31-33].
Their difference is that they adopt different strategy to
construct unstructured P2P strategy. They try to connect
the P2P nodes with similar knowledge as neighbors so as
to improve the routing efficiency of semantic query. Just
like the first category, knowledge sharing is incomplete in
these approaches. In fact, unstructured P2P also limits
their efficiency.

Javier et al. [34] propose a multi-agent system-based
approach for knowledge sharing in community. However,
due to its complexity, multi-agent system (MAS) has not
been applied effectively. The current research is limited
and further research work should be conducted.

In addition, in the works [35-38], distributed ontology
techniques are discussed. But, they just focus on mapping,
integration, and reason of distributed ontology. They do
not place emphasis on knowledge publication and
retrieving in ontology.

VII. CONCLUSION AND FUTURE WORK

In this paper, we propose a structured P2P-based
approach to publish and share RDF triples in web
ontologies so as to automatically gather related RDF
triples from different ontologies in different nodes to
process SPARQL queries in an open distributed
environment. It overcomes the limitation that knowledge
sharing is based on entire ontology. It is particularly
suitable for knowledge sharing in a virtual community,
where numbers of ontologies of a given domain are
created respectively by informal groups of people, and
shared and leveraged for their respective purposes. We
also conducted experiments to evaluate the effectiveness
and efficiency of the approach. The experimental results
demonstrated that it is effective and efficient.

In near future, we plan to continue our research work

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1949

© 2014 ACADEMY PUBLISHER

in the following aspects:
• Conduct experiments for our approach in a large-

scale community.
• Conduct further study to investigate graph pattern of

SPARQL query to find out other clues to more
efficiently retrieve related RDF triples rather than
the appearing entities. For example, structure of
graph pattern, relationship among entities in graph
pattern, and so on.

• Deal with the inconsistency among retrieved RDF
triples. In a large-scale community, RDF triples
related to a query maybe come from different
ontologies in different nodes. Inconsistency is
unavoidable.

• Study the method to map a word to existing
ontological entities so as to facilitate requestors to
construct their SPARQL queries automatically.

ACKNOWLEDGMENTS

The research work was supported by Scientific Starting
Foundation of Hangzhou Dianzi University under Grant
No. KYS055612041 and National Natural Science
Foundation of China under Grant No. 61003077.

REFERENCES
[1] OWL. http://www.w3.org/TR/owl2-overview/. Retrieved

March 17, 2013.
[2] Swoogle. http://swoogle.umbc.edu. Retrieved March 17,

2013.
[3] Ning Zhong, Jiming Liu, and Yiyu Yao. Advances in Web

Intelligence [M]. Higher Education Press. Beijing. 2011.
pp.239.

[4] Zhen, L.; Jiang, Z. & Song, H. Distributed recommender
for peer-to-peer knowledge sharing Information Sciences,
2010, 180, 3546 – 3561

[5] P. Maret, M. Hammond, and J. Calmet. Virtual Knowledge
Communities for Corporate knowledge Issues [C]. M.-P.
Gleizes, A. Omicini, and F. Zambonelli (Eds.): ESAW
2004, LNAI 3451, pp. 33–44.

[6] Melanie Gnasa, Sascha Alda, Jasmin Grigull et al. Cremers.
Towards Virtual Knowledge Communities in Peer-to-Peer
Networks [C]. J. Callan et al. (Eds.): SIGIR 2003 Ws
Distributed IR, LNCS 2924, pp. 143–155

[7] J.S.H. Kwok, S. Gao, Knowledge sharing community in
P2P network: a study of motivational perspective, Journal
of Knowledge Management 8(1) (2004) 94–102.

[8] Chen-Ya Wang, Hsin-Yi Yang, Seng-cho T. Chou. Using
peer-to-peer technology for knowledge sharing in
communities of practices, Decision Support Systems 45
(2008) 528–540.

[9] L.C. Jain, N.T. Nguyen, Knowledge Processing and
Decision Making in Agent-based Systems, Springer-Verlag,
2009.

[10] I. Stoica, R. Morris, D. Liben-Nowell, D.R. Karger, M.F.
Kaashoek, F. Dabek, H. Balakrishnan, Chord: a scalable
peer-to-peer lookup protocol for internet applications,
IEEE/ACM Transactions on Networking (TON) 11(1)
(2003) 17-32.

[11] SPARQL Query Language for RDF. http://www.w3.org
/TR/rdf-sparql-query/. Retrieved March 18, 2013.

[12] RDF. http://www.w3.org/RDF/. Retrieved March 17, 2013.
[13] D. Karger et al., Consistent Hashing and Random Trees:

Distributed Caching Protocols for Relieving Hot Spots on

the World Wide Web. Proc. 29th Annual ACM Symp.
Theory of Comp., May 1997, pp. 654–63.

[14] Jena 2. http://openjena.org/. Retrieved March 20, 2013.
[15] Pellet. http://clarkparsia.com/pellet. Retrieved March 20,

2013.
[16] Open Chord. http://open-chord.sourceforge.net/. Retrieved

March 20, 2013.
[17] Raul Palma1, Peter Haase. Oyster-Sharing and Re-using

Ontologies in a Peer-to-Peer Community. Y. Gil et al.
(Eds.): ISWC 2005, LNCS 3729. 2005. pp.1059–1062

[18] J. Hartmann, R. Palma, Y. Sure, M. Suarez-Figueroa, P.
Haase, A. Gomez-Perez, and R. Studer. Ontology metadata
vocabulary and applications. In Proc. of the Workshop on
Web Semantics (SWWS’05), First IFIP WG 2.12 and WG
12.4 Agia Napa, Cyprus, 2005.

[19] Jing Tian, Yafei Dai, and Xiaoming Li. SemanticPeer: An
Ontology-Based P2P Lookup Service. M. Li et al. (Eds.):
GCC 2003, LNCS 3032, pp. 464–467, 2004.

[20] Gao, Q.; Qiu, Z.; Wu, Y.; Tian, J. & Dai, Y. An interest-
based P2P RDF query architecture. Proceedings of the
First International Conference on Semantics, Knowledge
and Grid (SKG’05). 2005. pp.1-5

[21] Min Cai, Martin Frank. RDFPeers: a scalable distributed
RDF repository based on a structured peer-to-peer network.
Proceedings of the 13th international conference on Word
Wide Web (WWW’04). ACM Press. 2004. pp.650-657.

[22] Kohigashi, K.; Takahashi, K.; Harumoto, K. & Nishio, S.
A Peer-to-peer information sharing method for RDF triples
based on RDF schema. Lecture Notes in Computer Science,
2009, 5518 LNCS, 646-650

[23] Rizzo, G.; Di Gregorio, F.; Di Nunzio, P.; Servetti, A. &
De Martin, J. C. A peer-to-peer architecture for distributed
and reliable RDF storage. 1st International Conference on
Networked Digital Technologies(NDT 2009). 2009. pp.94–
99

[24] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi
Sharma, and Steven Lim. A Survey and Comparison of
Peer-To-Peer Overlay Network Schemes. IEEE
Communications Surveys & Tutorials Second Quarter
2005, Volume 7, No.2. pp:72-93.

[25] Diego Calvanese, Giuseppe de Giacomo, Domenico
Lembo, Maurizio Lenzerini, Riccardo Rosati.Tractable
Reasoning and Efficient Query Answering in Description
Logics: The DL-Lite Family [J]. Journal of Automated
Reasoning 39(3):385–429, 2007

[26] Huayou Si, Zhong Chen, Yong Deng. P2P-based
Publication and Location of Web Ontology for Knowledge
Sharing in Virtual Communities[C]. The 24th International
Conference on Software Engineering and Knowledge
Engineering (SEKE2012). Redwood City, San Francisco
Bay, USA. 2012.07

[27] Kleanthous, S., Dimitrova, V.: Analyzing community
knowledge sharing behavior. In: Proceedings of User
Modeling, Adaptation, and Personalization UMAP2010.
Springer, Hawaii (2010) , pp. 231–242

[28] Kleanthous, S., Dimitrova, V.: Detecting changes over
time in a knowledge sharing community. In: Proceedings
of the IEEE/WIC/ACM International Conference on Web
Intelligence I2009, Milan. IEEE Computer Society, Los
Alamitos (2009) , pp.100–107

[29] Puntambekar, S.: Analyzing collaborative interactions:
divergence, shared understanding and construction of
knowledge. Comput. Educ. 47(3), 332–351 (2006)

[30] Cheng, R., Vassileva, J.: User motivation and persuasion
strategy for peer-to-peer communities. In: Proceedings of
38th Hawaii International Conference on System Sciences
Hawaii, USA, pp. 3–6 (2005)

1950 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

[31] Ardissono, L., Bosio, G.: Context-dependent awareness
support in open collaboration environments. User Model.
User-Adapt. Interact. 22(3), 223–254 (2012)

[32] Kleanthous Loizou, S.: Intelligent support for knowledge
sharing in virtual communities. Ph.D., School of
Computing, University of Leeds, Leeds (2010). pp.45-46

[33] Zhang, J., Ackerman, M., Adamic, L.: Expertise networks
in online communities: structure and algorithms. In:
Proceedings of the International Conference on World
Wide Web WWW2007, Alberta, Canada, ACM Press,
New York (2007) . pp. 221–230.

[34] Javier Portillo-Rodríguez, Aurora Vizcaíno, Juan Pablo
Soto et al. Fostering Knowledge Exchange in Virtual
Communities by Using Agents [C]. J.M. Haake, S.F.
Ochoa, A. Cechich (Eds.): CRIWG 2007, LNCS 4715, pp.
32–39, 2007.

[35] Schlicht, A. & Stuckenschmidt, H. Towards Distributed
Ontology Reasoning for the Web [C]. IEEE/WIC/ACM
International Conference on Web Intelligence and

Intelligent Agent Technology(WI-IAT '08). 2008.1. pp.536
-539

[36] Lee, J.; Park, J.; Park, M. et al. An intelligent query
processing for distributed ontologies [J]. Journal of
Systems and Software. 2010(83). pp.85 – 95

[37] Kaneiwa, K. & Mizoguchi, R. Distributed reasoning with
ontologies and rules in order-sorted logic programming [C].
Web Semantics: Science, Services and Agents on the
World Wide Web, 2009, 7, 252 – 270

[38] Jiang, Y.; Tang, Y.; Wang, J. et al. Representation and
reasoning of context-dependant knowledge in distributed
fuzzy ontologies [J]. Expert Systems with Applications,
2010, 37, 6052 – 6060

[39] Huayou Si, Zhong Chen, Yun Zhao, Yong Deng. P2P-
Based Publication and Sharing of Axioms in OWL
Ontologies for SPARQL Query Processing in Distributed
Environment[C]. The 14th Asia-Pacific Web Conference
(APweb 2012). April 11-13, 2012

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1951

© 2014 ACADEMY PUBLISHER

