
SyncCS: A Cloud Storage Based File
Synchronization Approach

Chao Liang and Luokai Hu

Lenovo Mobile Communication Technology Ltd., Xiamen, P. R. China
Email: liangchao@lenovo.com, luokaihu@gmail.com

Zhou Lei and Jushu Wang

School of Computer Engineering and Science, Shanghai University, Shanghai, P. R. China
Email: {leiz, wangjushu}@shu.edu.cn

Abstract—More and more people begin to own multiple
computing devices. File synchronization technologies are
needed to effectively manage data which spans multiple
devices. However there is not a general standard for file
synchronization system. In this paper we propose a file
synchronization model based on cloud storage - SyncCS. We
describe the SyncCS architecture and present a novel two-
stage file synchronization protocol along with a conflict
resolution mechanism. We evaluate the performance of our
proposed file synchronization protocol. Our experimental
results indicate that the number of operations to be
synchronized when using our protocol is relatively smaller
than that using a widely used method.

Index Terms—file synchronization model, synchronization
protocol, conflict resolution

I. INTRODUCTION

In the 1990s, the rapid development of network
technologies, especially wireless networking technology,
promoted the emergence of a new computing paradigm -
mobile computing. Mobile computing has revolutionized
the way we use computers [1]. More and more
individuals own multiple computing devices. David
Dearman and Jeffrey S. Pierce [2] conducted a survey on
the use of people on multiple computing devices. They
interviewed 27 people and found that people use multiple
computing devices (including fixed equipment and
mobile devices, such as desktop computers, notebook
computers, personal digital assistants (PDAs), smart
phones, etc.) for several reasons. People's daily activities
may span multiple devices, or they may want to assign
different roles to different devices depending on different
environments, or they may want to separate their work
activities from private life. The use of multiple devices
creates a very important issue, that is, cross-device data
management.

Consider the following scenario. A person has a
desktop computer in the office, a desktop computer at
home, a personal laptop and a PDA. How to ensure that
he can have consistent access to some important
information on each computing device, such as address
book, agenda, or meeting presentations? In the past, a
commonly used method is using removable storage
devices (such as U-disk and removable hard disk) or e-
mail attachments to send smaller files. Some very
important documents may be unsafe in removable storage
devices, because the device may get lost or damaged. A
fatal drawback of using e-mail attachments is that there is
often a size limit on an attachment. The emergence of
cloud computing [3] in recent years provides us with a
better solution. That is, we can use cloud storage services
provided by third party service providers as an
intermediary to synchronize data or files between
different devices of the same user. There have been some
third-party services on the market. For instance, an online
address book service Plaxo, [4], Firefox synchronous
extension Google Browser Sync [5], and file
synchronization services such as Dropbox [6], Everbox
[7], Kuaipan [8] and so on. However, these companies
often provide their products without implementation
details. In this paper, we propose a file synchronization
model based on cloud storage - SyncCS.

Data synchronization has been used in failure recovery
of storage systems to improve system availability for a
very long time. In such scenarios, we typically use
incremental synchronization methods at data item or
block level. However, when it comes to cross-device data
management, the logical structure of a file cannot be
ignored. In this paper, we focus on the issues pertinent to
file-level data synchronization. In our file
synchronization model, we use the concept of shared
directory, like iFolder [9]. Each user sets up a shared
directory When the user logs in at any client, the shared
directory on the client will synchronize with the
corresponding directory on the remote server. After
synchronization, the shared directory on the client will be
consistent with the corresponding directory on the server
from structure to the contents of its files.

Manuscript received July 1, 2013; revised Nov 20, 2013; accepted
Dec 11, 2013.

Corresponding author: Luokai Hu luokaihu@gmail.com.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1679

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1679-1686

Since wireless coverage for mobile communications is
often limited, wireless Internet is often accessible only in
some fixed hot spot areas. Thus users cannot guarantee a
connection with the network all the time. As a result, off-
line operations on files are inevitable. In view of this
situation, this paper presents a two-stage file
synchronization protocol. The first stage is a non-real
time two-way synchronization stage between the client
and server, in which all update operations on the client
and the server will be synchronized to each other. The
second stage is a real time one-way synchronization stage
between the client and server, in which the online update
operations on the client will be synchronized to the server
instantaneously. Since it supports offline operations, in
the first stage it not only should synchronize the updates
on the server to the client, but also the offline updates on
the client to the server. Then we need a conflict
mechanism to deal with file conflicts we may face in the
two-way synchronization process. Inspired by the version
control method in [10], our approach uses file-versions to
detect and handle conflicts.

In this paper we address three major aspects of the file
synchronization system, including system architecture,
synchronization protocol, and conflict mechanism. The
main contributions of this paper are: 1) we design a file
synchronization model based on cloud storage. 2) We
propose a two-stage file synchronization protocol. 3)
Based on the proposed synchronization protocol, we
design a conflict detection and resolution mechanism.

The rest of the paper is organized as follows. In
Section 2 we give an overview of the whole system
architecture. Section 3, we present the details of our
proposed two-stage file synchronization protocol. Section
4 discusses our conflict mechanism alone. In Section 5,
we experimentally evaluate the performance of SyncCS.
Section 6 discusses the related work. Section 7 provides
concludes this paper.

II. SYNCCS OVERVIEW

In this section, we will briefly introduce the
synchronization procedure and the system architecture of
our file synchronization model - SyncCS

A. Synchronization Procedure
In the previous section, we assumed the following

scenario: A user has multiple computing devices,
including a desktop in the office, a desktop at home, a
personal laptop and a PDA. He may use different devices
in different occasions. However, there are some
commonly used files that he wishes to access at any time
and any place, such as the address book, agenda, photos,
work documents and so on. For such a scenario, we
propose SyncCS, a common file-level synchronization
system model, which can synchronize the specified files
on different devices of a user. We use the concept of
shared directory, indicating that a user can specify a
directory as a sync folder, and put the files that need to be
synchronized into the sync folder, and then all update
operations (including delete, modify and rename) on
these files will be automatically synchronized to the

server and to all devices of the user. We will introduce
the synchronization process of SyncCS from the user's
perspective as follows:

a) A user logs in at a SyncCS client (refer to this as
the work client), and specify or create a local sync folder
(below we will call it SyncCS-folder), then all the
contents of this folder will be uploaded to the server.
Thus, the work client and server come to a consistent
state for the first time. Then the online updates of the
work client will be uploaded instantaneously to the server
until it is disconnected.

b) The user logs in at another SyncCS client
(assume the laptop client). After logging in, he should
create a local SyncCS-folder. Then the laptop client and
server will do the first stage synchronization, in which the
laptop client will download all contents of the SyncCS-
folder on the server to the local SyncCS-folder. At this
point, the laptop client and the server achieve consistency
for the first time. Then the laptop client and server do the
second stage synchronization, during which update
operations on local SyncCS-folder on the laptop client
will be monitored and uploaded to the server. Other
clients will synchronize with the server in the same way
when they first log in.

The user can update the contents of the local SyncCS-
folder on any client when they are disconnected from the
server. When he logs in again at a client (suppose the
work client), there exists update operations to be
synchronized both on the work client and the server. So
the work client and server do the two-way
synchronization in the first stage. The work client will
synchronize to the server all offline update operations
which have occurred since the last disconnection, and the
server will synchronize to the work client all the update
operations that have occurred by its synchronization with
other clients. After the work client and the server come to
a consistent state, they will proceed to the second
synchronization stage, i.e., the real time one-way
synchronization.

B. The SyncCS Architecture
Now we will describe the SyncCS architecture from

system’s perspective.

Figure 1. SyncCS Architecture

1680 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

As shown in Figure 1, we divide the architecture of the
SyncCS model into three layers: application layer, control
layer and storage layer. The application layer includes
different client software applications on different devices.
These applications store the metadata of the files in the
local SyncCS-folder, monitor users’ update operations
and record operation log, and synchronize with the
SyncCS-folder by interacting with the server. The control
layer includes a metadata server and some
synchronization servers. The metadata server is used to
store metadata information of the files in every SyncCS-
folder on the server. While the synchronization server is
responsible for handling client’s synchronization requests,
coordinating file conflicts occurred in the synchronization
process, and interacting with the application layer and
storage layer to synchronize files. The storage layer is a
large-scale storage system, such as Amazon's S3 [11],
GFS [12], HDFS [13] or other cloud storage services, and
its responsibility is to store user files.

According to our synchronization protocol, as
explained later in the next section, we will describe the
information exchange process between the internal
components of SyncCS as follows.

 After a user logs in at a client, the client will send a
synchronization request to the Sync Server. After it
receives the request, the Sync Server will respond to
the client to initialize the synchronization.

 Then the client and the server will do the first stage
synchronization. At this stage, we first upload, and
then download.

 During the upload synchronization, the client will
analyze and merge the operation log which has been
recorded since the last synchronization, and send the
processed log to the Sync Server. At the same time,
the Sync Server will query the metadata server to
get the metadata of the server-side SyncCS-folder.
Then the Sync Server will conduct synchronization
according to the operation entries recorded in the
processed log. The modified file contents and
metadata will be stored in the storage layer and the
metadata server.

 Conflicts that are detected during the
synchronization process will be stored in a
temporary conflict table. After the upload
synchronization completes, the Sync Server will
interact with the client to coordinate the resolution
of conflicts.

 During the download synchronization, the client will
generate a view of the local SyncCS-folder and send
it to the Sync Server. At the same time, the Sync
Server will query the metadata server to generate a
view of server-side SyncCS-folder. Then the Sync
Server will compare these two views, generate an
operation sequence based on the difference between
them and send it to the client. After this, the client
conducts download synchronization according to
this operation sequence.

Finally, the client and the server will do the second
stage synchronization which is real-time and one-way. At
this stage, the client will monitor the user’s update

operations on SyncCS-folder and upload them to the
Sync Server in real time. And the Sync Server will store
the modified files into the storage layer, and at the same
time update the metadata in the metadata server.

III. TWO- STAGE SYNCHRONIZATION PROTOCOL

We firstly introduce the organization of metadata. In
our file-level synchronization protocol, each user file is
associated with a metadata entry, which is defined as a
seven-tuple like (FID, User, Type, Path, Size, Time,
Version). In this metadata tuple, FID indicates the unique
identifier of a file which is specified by the server when it
is synchronized to the server for the first time. It means
that a local file does not have a FID or a corresponding
metadata entry until it is synchronized to the server. User
represents the user to whom a file belongs. Type indicates
the type of a file. We consider directory as a special type
of file and use Type to distinguish it from a normal file.
Path indicates the full path of a file (SyncCS-folder as the
root directory). Size is the size of a file. Time is the
timestamp when the file is synchronized to the server.
Version is the version number of a file, which is set to 1
when the file is first synchronized to the server. After this,
the value of Version increments whenever the content of
the file is modified on the server-side. Each client of each
user maintains a copy of the current local metadata, while
the metadata of all users’ server-side SyncCS-folder is
stored in the metadata server.

Suppose at some point (say T1), a client (say the work
client) completes synchronization with the server and
disconnects. Then the work client starts recording
operation logs from T1. At point T2, the work client
connects with the server again. Note that the server might
have synchronized with other clients before T2. Below
we describe the synchronization process between the
work client and the server in detail in this case.

A. Non-real-time Two-way Synchronization
At this stage, we synchronize in the following order:

upload synchronization, conflict resolution, and
download synchronization. And we divide the update
operations to be synchronized into four types: create,
modify, rename, and delete. Each update operation
corresponds to an operation entry, of which the format is
like (FID, Cmd, Para), where FID is the unique identifier
of the updated file, Cmd is the operation code, and Para
represents other parameters involved in the operation.
Each operation and its corresponding entry are shown in
Table 1.

TABLE I.

OPERATION ENTRYS

Operation Type Operation Entry
Create (FID, Create, Fpath)
Modify (FID, Modify, Fversion)
Rename (FID, Rename, OldPath, NewPath)
Delete (FID, Delete, Fversion)

Once a user performed an update operation on the local

SyncCS-folder, the client software will be able to detect it,

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1681

© 2014 ACADEMY PUBLISHER

and generate a corresponding entry. Operation log is a
sequence of operation entries that is recorded by the
client. To facilitate the subsequent log processing, the
client will also record into the log the local time when an
update operation occurs. So each entry in the operation
log is recorded in a format like: [LocalTime, (FID, Cmd,
Para)], in which the LocalTime indicates the local time
when an update operation occurs.
Upload Synchronization (client -> Server)

First, the work client analyzes and merges the
operation log that is recorded from T1 to T2. There may
be many redundant operations that are performed offline
by a user on the local SyncCS-folder. For example, a file
is revised many times. A file is created after T1 and
deleted before T2 and so on. To synchronize these
duplicate update operations will consume a large amount
of time and network flow, and may even lead to some
unnecessary conflicts. So it is better for the client to
preprocess the operation log before synchronization, i.e.,
to merge the operation sequences in the log. We
summarize several kinds of operation sequences that can
be merged as shown in Figure 2. Note that the client can
only merge the sequences that consist of operations on
the same file.

Figure 2. Operation Sequences to be merged

Figure 2 shows six kinds of situations. Each labeled
square represents an update operation. The long grid
composed by a number of small boxes represents a
sequence of update operations on the same file. The blank
small box represents a blank period, during which there is
no update operation. The first long grid represents a case
that a file has been through a process from creation to
deletion during a period from T1 to T2 ('...' in a small box
represents any number and any kind of update operations).
In this case, we do not need to synchronize the file,
because the file has completed its entire life cycle during
the period from T1 to T2. The second and third ones
describe cases that a file is created during the period from
T1 to T2, and renamed or modified after the creation. In
these cases, we just need to synchronize the create
operation. The fourth and fifth ones describe cases that
the same file is renamed or modified repeatedly during
the period from T1 to T2. In these cases, we only need to
synchronize once. The last one describes a case that a file
is finally deleted after being through a variety of update
operations in the period from T1 to T2. In this case, we
only need to delete the file directly from the server.

The methods for processing the corresponding
sequence in the log are different in different case. We call
the log before processing L and the one after L'.

For Cases 1, 2 and 3, files are created after T1. They
have never been synchronized to the server. Thus they
have no metadata entries locally. To synchronize these
files, the process of log merging would be too
complicated. The easiest way is that the client software
scans local SyncCS-folder and local metadata base,
generates a create operation entry [T2, (NULL, Create,
Fpath)] for each file that has no corresponding metadata
entry, and inserts the operation entry into L'.

For cases 4, 5, 6, we need to merge the log sequence
for the corresponding file. The merging process is
described as follows:

a. Classify the log entries in L by FID. Then the
entries corresponding to the same file will be
gathered together.

b. Classify the log entries of the same file by Cmd
and sort them in the order of
Delete Rename Modify.

c. Order the update operation entries of the same
kind in an increasing order of LocalTime.

d. For the log sequence of each FID (i.e., each file),
perform the following steps:

e. If the first entry of the sequence is a Delete
operation, then insert a Delete operation entry
[LocalTime, (FID, Delete, Fversion)] into L’,
go to step h.

f. If the first entries of the sequence are one or
more Rename operations, such as: [LocalTime1,
(FID, Rename, OldPath1, NewPath1)]
[LocalTime2, (FID, Rename, OldPath2,
NewPath2)] ……[LocalTimen, (FID, Rename,
OldPathn, NewPathn)], then insert a Rename
operation entry [LocalTime1, (FID, Rename,
OldPath1,NewPathn)] into L’, and remove all of
the rename operation entries of this FID from L.

g. If the first entries of the sequence are one or
more Modify operations, such as: [LocalTime1,
(FID, Modify, Fversion)] [LocalTime2, (FID,
Modify, Fversion)] ……[LocalTimen, (FID,
Modify, Fversion)], then insert a Modify
operation entry [LocalTime1, (FID, Modify,
Fversion)] into L'.

h. Repeat steps e to g for the log sequence of the
rest FIDs.

i. Order the operation entries in L' in the
increasing order of LocalTime.

After log processing is completed, the work client will
send the processed log L’ to the server. Then the server
can do upload synchronization according to the operation
entries in the log.

 To synchronize the create operation, the server gets
the content of the file from the work client, assigns a
unique identifier FID for this file and creates a
metadata entry for the file both on the server side
and the work client. Since the file is synchronized to

1682 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

the server for the first time, the version number of
its corresponding metadata entry is set to 1.

 Similar to the synchronization of create operation,
when synchronizing a modify operation, the server
gets the content of the file from the work client to
update the content of the file on the server, and
updates the metadata of the file both on the server
and the work client. Because the synchronization of
a modify operation changes the content of the file on
the server, the version number of the modified file
should be incremented.

 When synchronizing a rename operation, the server
modifies the file path according to the parameters in
the operation entry and correspondingly changes the
metadata of the file on the server side and the work
client. A rename operation does not cause any
change in the content of the file, so the version
number of the renamed file remains unchanged.

 To synchronize a delete operation, the server deletes
both of the content and metadata of the file on the
server.

Of course, we may encounter various conflicts in the
synchronization process. We record the detected conflicts
in a temporary conflict table, and wait until the upload
synchronization is completed for centralized processing.
Specific conflict detection and resolution strategies will
be discussed in Section 4.

So far, we have completed the upload synchronization
from the client to the server. In this process, all of the
update operations on the work client will be synchronized
to the server.
Download Synchronization (Server -> Client)

Next we will do download synchronization from the
server to the client, which downloads the updates on the
server to the work client. Since we have resolved the
conflicts before, there will no longer be any file conflict
in the download synchronization process. So we only
need to find out the different parts of the SynCS-folder on
the server and the work client, and replace the old version
on the server with the new version on the client.

First, the work client and the server depth scan their
SyncCS-folder respectively to generate a view of
SyncCS-folder (the sequences of metadata entries of all
the files in the folder). Then the work client transmits the
local views to the server, and the server generates a set of
operation sequence according to the different parts of two
views as follows:

c) Look for a match in the view on the client based
on the keyword FID for each metadata entry in the view
on the server. In case of no match, generate a Create
operation entry. Otherwise, continue to compare the file
paths (Path) of the two metadata entries. If they are
inconsistent, generate a Rename operation entry.
Continue to compare the file version numbers (Version)
of the two metadata entries. If they are inconsistent,
generate a Modify operation entry. If both the Path and
Version are the same, then we consider the two files to be
consistent.

d) Look for a match in the view on the server based
on the keyword FID for each metadata entry in the view
on the client. If there is no match, generate a Delete
operation entry.

At last the server will send the generated operation
sequence to the work client. According to this sequence
the work client will perform download synchronization. It
is worth mentioning that the file contents on the server
will not change during the download synchronization, so
the version numbers of files on the server will not change
either.

B. Real-time One Way Synchronization
When the work client completes the two-way

synchronization with the server, the user will be able to
continue to update the files of the SyncCS-folder on the
work client on-line. Once a user performs an update
operation on any file, the client software can detect it and
generate a corresponding operation entry and send it to
the server. The server will synchronize the corresponding
update according to this entry.

IV. CONFLICT MECHANISM

When a client uploads the updates of a local file to the
server, if the same file on the server-side has also been
updated then a file conflict may be caused. In this section,
we analyze all the possible situations that may cause a
conflict, and correspondingly define six kinds of file
conflicts, according to which a conflict resolution scheme
is then proposed.

We define the notion of a conflict as follows: During
the uploading synchronization, suppose we need to
update a specific file with operation A. However the
same file on the server-side has already been updated
with operation B. If operation A and operation B would
lead to different operating results, then a conflict arises,
which is called A-B conflict.

A. Conflict Detection
In the preceding sections we mentioned that, during the

uploading synchronization, the client sends the processed
log to the server, and the server updates the relevant files
according to the operation entries in the log afterwards.
The operation entries recorded in the log can be divided
into four categories: create, modify, delete, and rename.
We analyze the file conflicts that may be caused by the
four update operations, and propose a corresponding
conflict detection mechanism.

When we synchronize a create operation: First we
search the server to see if there is a file with an identical
path (i.e. file with the same name). If there is such a file
then a file name conflict arises. Otherwise the server
accesses the file contents from the client, generates a
unique identifier – FID for this file, and sets the value of
Version to 1. Then the metadata entry of this file is
inserted into the metadata tables, and is returned to the
client at the same time.

When we synchronize a modify operation: First we
search the server to see if there is a file with the same FID.
If there is no such file then a modify-delete conflict arises.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1683

© 2014 ACADEMY PUBLISHER

Otherwise we compare the version numbers of the files
on the client and on the server-side. If the two version
numbers are equal to each other, then we update the file
content on the server-side. If they are not consistent then
a modify-modify conflict arises. Whenever the content of
a file on the server-side is modified successfully, the
version number on the server-side is increased by 1, and
the metadata on the client are also updated. Modify-
rename conflicts are not considered here, because we
believe that modify operations change the content of a
file, while rename operations change a file's metadata.
Thus they are two different kinds of operations that can
occur simultaneously and can be merged.

When we synchronize a delete operation: First
search the server to see if there is a file with the same FID.
If there is no such file then do nothing. Otherwise
compare the version numbers of the deleted file and the
file on the server-side. If the two version numbers are
consistent then delete the content and metadata of the
corresponding file on the server-side. If the two version
numbers are not consistent then a delete-modify conflict
arises. Delete-rename conflict is not considered here, as
rename operations will not change the content of a file,
thus we believe that the renamed file is the same as the
file to be deleted.

When we synchronize a rename operation: First
search the server to see if there is a file with the same FID.
If there is no such file then a rename-delete conflict
arises. If there exists such a file then compare the OldPath
of the client file with the path of the file on the server-
side. If the OldPath is equal to the server path, then
rename the server file with the NewPath. Otherwise
compare the NewPath of the client file with the path of
the server file to see whether they are consistent. If they
are consistent then do nothing. if not, then a rename-
rename conflict arises. Similarly, we do not consider
rename-modify conflict here.

B. Conflict Resolution
In this sub-section we will discuss how to resolve the

six kinds of conflict we’ve mentioned before.
File name conflict: Alert the user that the file name

has already been occupied. And request the user to
change the corresponding file name.

Modify-delete conflict: Warn the user that the file has
been deleted on the server-side, and query the user
whether to create this file again on the server-side or
delete the local file. If user chooses the former option,
then the server creates this file again, assigns a new FID
to this file, sets the version of this file to 1, and updates
the metadata on both sides. However if the user chooses
the latter, then the client deletes the local file along with
the file metadata.

Modify-modify conflict: Warn the user that there are
conflicting files on the server-side. Display the details of
the conflicting files so that the user can select to save two
files at the same time or just to save one. If the user
chooses to save the two files at the same time, then the
local file will be automatically renamed (we can add a
version mark to the original file name) and uploaded as a
new file. After this the server assigns the uploaded file a

new FID, sets the version of this file to 1, and updates the
metadata on both sides. If the user chooses to save the
local file, then the file content on the server-side is
updated, and the file version number on the server-side is
increased by 1, and the client metadata is updated
accordingly. If the user chooses to save the file on the
server-side, then we can do no operation and wait for the
file to be synchronized to the client during download
synchronization.

Delete-modify conflict: Warn the user that there is an
update about the file to be deleted, and query the user
whether they determine to delete the file. If the user
determines to delete the file, then the server deletes the
corresponding file content and metadata. Otherwise we
do no operation and wait for the file to be synchronized to
the client during download synchronization.

Rename-delete conflict: Resolution to this conflict is
analogous to the one to the modify-delete conflict.

Rename-rename conflict: Alert the user that the file
name has been changed on the sever-side, and query the
user which path to keep.

V. EXPERIMENTS AND RESULTS

Our experimental environment includes a metadata
server, a sync server, a storage server, and two laptop
computers, which are connected in a local area network.

We simulate the situation in which people use a file
synchronization system to test our prototype. We assume
that in the daily file operations of an average person
modify operations account for 80% of all file operations,
rename operations account for 10%, create operations and
delete operations account for 5% respectively. The
number of the files that need to be synchronized is
supposed to be around 100, and each file has an equal
probability to be updated. During the offline operation
between two synchronizations, the average updating
frequency of each file is basically about 10 times. We set
an operation sequence in accordance with the proportion
of each file operation to simulate a user's operation.

Different network environments will affect
synchronization time delay. Thus, we take the number of
operations that we need to complete in a synchronization
process as the measurement criteria. We compare the
number of operation entries that need to be synchronized
when using the log replaying method [14] and our
proposed log merging algorithm. The test results are
shown in figure 3 and figure 4.

Figure 3. Contrast of total number of operation entries

1684 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Figure 3 shows the total number of operation entries
that need to be synchronized when using two algorithms
respectively. The x axis represents the 10 results we get.
As it can be seen from the figure that, for the same file
scale and operating frequency, the number of operations
to be synchronized using log merging algorithm is much
smaller than the one using log replaying method, and it is
relatively balanced each time.

Figure 4. Contrast of average number of each operation entries

Figure 4 shows the average number of operation
entries that need to be synchronized when using the two
algorithms respectively. By using our log merging
algorithm, we find that the number of operation entries
will be significantly reduced, especially for modify and
rename operations. Among all kinds of operations, the
number of modify operations decreases the most, because
it takes the largest proportion and reduces to at most one
for each file.

VI. RELATED WORK

Data synchronization technologies have been used in
failure recovery of storage system for a very long time. A
widely used method is log replaying [14, 15]. Just as its
name suggests, in this method, the operation log is sent to
the device that needs to be synchronized, and the
synchronization process is performed strictly according to
the operation sequence recorded in the log. However
there may be many redundant operations in the log that
will consume a large amount of time and network flow,
and may even lead to some unnecessary conflicts. Our
approach includes a log merging algorithm which can
greatly reduce the number of operations that need to be
synchronized.

Conflict resolution is an essential component of a file
synchronization protocol. In SyncViews [15] file
conflicts are detected based on timestamps, and a file that
was later received by the server is considered to be the
newest. This approach may miss some updates when
there are offline operations. In contrast, our conflict
detection and resolution mechanism considers all the
situations that may occur in a two-way synchronization.

VII. CONCLUSION AND FUTURE WORK

File synchronization is an effective way to conduct
cross-device data management. In this paper we proposed
a two-stage file synchronization protocol which combines

a log merging algorithm with a view comparing
algorithm. In addition, we presented a conflict resolution
mechanism based on our proposed protocol, which
addresses conflict detection and resolution in a two-way
synchronization scheme. Our experimental results show
that by using our method, the number of operations that
need to be synchronized is significantly reduced when
compared with the log replaying method.

In our protocol, the local update operations are paused
during two-way synchronization, which will cause certain
time of service stop. In our future we will address this
problem and will build our synchronization system in a
real cloud environment.

ACKNOWLEDGMENT

This work was supported by a grant from the Hubei
Provincial Department of Education scientific research
programs for youth project (No. Q20133003)

REFERENCES

[1] Alzain, Mohammed, Soh Ben, and Pardede Eric, “A survey
on data security issues in cloud computing: From single to
multi-clouds”, Journal of Software, v 8, n 5, pp.1068-1078.
2013.

[2] David Dearman and Jeffery S. Pierce. “It's on my other
computer: computing with multiple devices”, In
Proceedings of the twenty-sixth annual SIGCHI conference
on Human factors in computing systems (CHI '08). ACM,
New York, NY, USA, pp. 767-776.

[3] Dongbo Liu and Xiao Peng, “PM&E-CP: Performance
monitor and evaluator for cloud platforms”, Journal of
Software, v 8, n 4, pp.761-767, 2013.

[4] Plaxo. www.plaxo.com..
[5] Google Browser Sync.

www.google.com/tools/firefox/browsersync/
[6] Dropbox. http://www.dropbox.com/
[7] Everbox. http://www.everbox.com/
[8] Kuaipan. http://www.kuaipan.cn/
[9] iFolder. http://www.ifolder.com/ifolder
[10] J. Plaice and W.W. Wadge, “A New Approach to Version

Control”, IEEE Trans. Software Eng., pp.268-276, 1993.
[11] Amazon S3. http://aws.amazon.com/s3/
[12] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,

“The Google file system”, In Proceedings of the nineteenth
ACM symposium on Operating systems principles (SOSP
'03). ACM, New York, NY, USA, pp. 29-43, 2003.

[13] D.Borthakur, “The Hadoop Distributed File System:
Architecture and Design”, The Apache Software
Foundation, 2007.

[14] Huang Lu, Hai-Shan Chen and Ting-Ting Hu, “Survey on
resource allocation policy and job scheduling algorithms of
cloud computing”, Journal of Software, v 8, n 2, pp.480-
487. 2013.

[15] Bao Xianqiang, Xiao Nong, Shi Weisong, Liu Fang, Mao
Huajian and Zhang Hang, "SyncViews: Toward Consistent
User Views in Cloud-Based File Synchronization
Services", Chinagrid Conference (ChinaGrid), pp.89-96,
Aug. 2011.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1685

© 2014 ACADEMY PUBLISHER

Chao Liang received the PhD degree from Institute of
Computing Technology Chinese Academy of Science in 2002.
Now he is the Chief Architect of Lenovo Mobile
Communication Technology Ltd. His current research interests
include mobile cloud computing and cloud storage.

Luokai Hu received the MS degree from Wuhan University,
China, in 2006 and PhD degree in State Key Lab of Software
engineering at Wuhan University in 2011. He is currently a post
doctor of Lenovo Mobile Communication Technology Ltd. And
he is also a lecture at Hubei University of Education. His
current research interests include Semantic Web and cloud
computing.

1686 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

