

A Parallel Computing Method for Community
Structure Detection Based on BSP Model

Yi Sun1, 2, Zhen Hua1, 2 and Li-hui Zou1, 2

1 School of Computer and Communication Engineering,
University of Science and Technology Beijing, Beijing, China 100083

2 Beijing Key Laboratory of Knowledge Engineering for Materials Science, Beijing, China100083
Email: emailofsunyi@aliyun.com, pandiansinian@163.com, zoulihui@ustb.edu.cn

Abstract—Since the conventional algorithm for community
structure detection in a stand-alone environment cannot
handle the giant network whose number of nodes is more
than 105, and the widely used MapReduce method has a
limitation on dealing with excessive I/O operations during
the iterative process, an efficient parallel computing method
based on BSP (Bulk Synchronous Parallel) model for
detecting community structure is proposed in this paper.
The Fast Newman method is improved into parallel
calculations with multiple steps under the framework of
BSP model. It is more efficient to discover community
structures in the large scale network. In order to testify the
performance of the proposed method, a hama platform was
built up on the same cluster of the hadoop platform. And a
dataset, at a scale of 106, was also simulated for the
experiments. It is approved that the proposed method is not
only able to solve the issue of memory overrun in the
conventional calculation on a stand-alone computer, but
also to improve the performance effectively comparing to
the MapReduce model. The proposed method has high
practical value in large scale networks.

Index Terms—complex networks, graph clustering,
modularity, Fast-Newman algorithm, BSP model

I. INTRODUCTION

With the development of the social network, the
research on community structure detection has become a
hot topic in the current data analysis. How to increase the
data amount being processed without reducing the
accuracy of the community structure detection has
become a major research issue. Community structure
detection derives from graph partitioning [1]. Graph is
widespread in our daily life [2]. Many issues can be
represented by the graphs in the real world, such as the
biological networks, the social networks, etc. With the
increase of the complexity of the modern system, the
research on complex network [3-5] is playing more and
more important roles in many fields of applications [6].
As people lucubrate the physical meaning and
mathematical characteristics of complex networks, they
found that many real networks have a common
characteristic, being with community structures.

Although there is no clear definition for the community,
the networks have an obvious feature, i.e. a network is
usually composed by several communities, and the nodes
in the same community are gathered closely, whereas the
nodes in different communities are connected sparsely
[7-9]. It has great practical significance to study the
community structures for many applications, such as in
locating the user positions [10], analyzing and managing
the social network [11], predicting the protein functions
[12], identifying the master control genes, mining the
Web communities and classifying the search engines, etc.

Currently, there are many ways to solve community
structure detections, such as Kernighan-Lin algorithm
based on the local search [13], Girvan-Newman
algorithm based on the edge betweenness [7],
Fast-Newman algorithm based on the modularity [13] and
so on. They solved the problem of community structure
detections in small-scale network efficiently. However,
when they face the large-scale network, their processing
capacities become inadequate in the stand-alone
computing.

Since traditional methods for community structure
detections require the entire network to be stored in
memory, a stand-alone memory has been unable to store
such a large volume of data if the data size reaches up to
105. Therefore, how to deal with large scale data becomes
a key problem. As the data size increases, the processing
time increases as well. At a certain point, the efficiency
of community structure detections will hit a bottleneck in
the stand-alone processing. Parallel and distributed
technology [14, 15] is one optimum solution for the
above problems. As well known, MapReduce [16] is the
main parallel technique at present. Nevertheless, there are
still some deficiencies in MapReduce model for detecting
community structures, especially in iterative calculations.
Its efficiency would easily be affected by the repeated I/O
operations for storing the intermediate states during the
iterative calculations. There are a lot of inevitable
intermediate states during the whole process of
community structure detections. With the increase of the
data size, the number of the intermediate state is also
going to be increased. Excessive intermediate states result
in that much of the processing time is consumed on the
I/O operations, which is obviously not good for the large
scale data processing.

Manuscript received Sep 30, 2013; revised Oct 25, 2013, accepted
Dec 13, 2013.

Corresponding author: Li-hui Zou (zoulihui@ustb.edu.cn).

1876 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1876-1885

Figure 1. The structure of a superstep

In this paper, the Fast-Newman algorithm based on
BSP (Bulk Synchronous Parallel) model is proposed to
address the above problems. It can hash the data which
the memory cannot afford to the nodes of different
clusters in a data partitioning way, and exchange the
information among nodes via a message passing
mechanism to update the intermediate states and control
the execution procedures orderly by the barrier
synchronization. Compared with the stand-alone
processing, the proposed method solves both the
problems of memory overflows and parallel computations.
Compared with the MapReduce method which stores the
calculation states in the disk, it greatly reduces the I/O
times by using the total RAM of the computer cluster as
the shared memory to store computing states.

II. BSP MODEL OVERVIEW

The BSP (Bulk Synchronous Parallel) model, also
called overall synchronous parallel computing model, is a
kind of parallel computing and programming model
proposed by Leslie Valiant, in the 1980s [17]. It aims to
build a parallel computing architecture, without
depending on a certain specified structure, whose parallel
nodes can be extensible as needed. It brings a bridge
between the software and the hardware in the parallel
computer field [18]. The BSP model is not only a kind of
parallel architecture, but also a parallel programming
model that can accurately analyze and predict the
execution performance of the parallel program [19].

A BSP computation proceeds in a series of global
supersteps. Fig. 1 shows the structure of a superstep.
Three components are involved in one superstep [17]:

(1) Concurrent computation: several kinds of
computations occur on all the involved processors, each
of which only uses and stores values in their local
memory. Computations in this process are independent,
while other processes, such as message passing, are
asynchronous.

(2) Global communication: all the processors exchange
data in this process. After the computing tasks, each
processor will send their non-local results to the message
queues of other processors in a simplex mode.

(3) Barrier synchronization: Since there is no time
priority between the local concurrent computation and the
global communication, the barrier synchronization is used
to finish the superstep. When a process reaches the
barrier synchronization point, it will not start the next
computing process until all other processes have
completed their communicating actions.

One superstep is an iteration of the above three
processes. Firstly, local concurrent computations are
conducted respectively. The consuming time of these
processes is usually different among all the processors as
shown in Fig. 1. It indicates that the tasks assigned to
each processor or the scales of the tasks are different.
Secondly, each processor sends their own non-local
computing results to the corresponding processors
through the network communication. And at last, the

barrier synchronization will wait until all the messages
are sent out. The longest calculation time is taken as the
superstep time.

III. PROBLEM DESCRIPIONS AND MODELING

In this section, some important concepts are introduced
and defined by mathematical descriptions, including
complex network, community structure, node degree,
connection of community and modularity, to formulate
the problem of community structure detections according
to a hierarchy clustering method. And the model of the
problem is established combining with the characteristics
of the BSP model.

A. Complex Networks and Community Structure
Complex network is an abstract description of a

complex system. The complex system can be researched
as a complex network if regarding its constituent unit as a
node and abstracting the relationship between the units as
an edge connection.

According to the definition of the complex network,
we define a community structure network as a triple,
G=(V, E, C). Let V= {v1, v2, …, vN} denote the set of
nodes in a complex network G, in which N is the total
number of vertices in the network. Let E= {(i1, j2), (i2,
j2), …, (iM, jM)} be the set of connections between the
nodes in the complex network G , in which M is the total
number of edges in the network. If (i, j) = (j, i), the
network is an undirected graph, otherwise it is a directed
graph. And let C= {c1, c2, …, cK} as the set of
communities in the complex network G, in which K is the
total number of the communities.

The community structure C is defined as a quadruple,
C=(S, V, Ein, Eout), where S represents the community
label of the community, V represents the set of nodes in
the community C, Ein represents the set of edges within
the community C, and Eout represents the set of
connections among this community and other
communities.

An example of community structure which has been
well divided in the network is shown in Fig. 2, in which
the nodes in the same community are gathered closely,
whereas the nodes in different communities are found in a
lower density of edges.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1877

© 2014 ACADEMY PUBLISHER

Figure 2. Diagram of community structure in networks

The types of community can be classified by the
tightness of community. If A is a community, it can be
expressed by a quad, C(A)=(A, V(A), Ein(A), Eout(A)).
Then two definitions are given as follows.

Definition 1 (Strong Community Structure): If C(A) is
a strong community structure, it must satisfy (1):

() ()
() () () () ()

in out
i i

in out
i in i out

A h A ,

i V A ,h A E A ,h A

h

E A

>

∀ ∈ ∈ ∈
 (1)

Definition 2 (Weak Community Structure): If C(A) is
a weak community structure, it must satisfy (2):

() ()

() () () () (), ,in out
i in i out

in outh A h Ai ii A i A
i V A h A E A h A E A

>∑ ∑
∈ ∈

∀ ∈ ∈ ∈
 (2)

Since the constrain of the strong community structure
is too strict, most of complex networks are analyzed by
the weak community structure.

B. Degree and Community Connectivity
As a basic parameter of the network topology structure,

degree is an index for measuring the importance of a
node and it can reflect the ability of the node to establish
a direct connectivity with its surrounding nodes.
Community connectivity is described by degree. It can be
divided into internal and external connectivity. Internal
connectivity represents the degree formed by the
connections among the internal nodes, and external
connectivity represents the degree formed by the
connections of the edge nodes between the community
and other community.

Let EAA denote the internal connectivity of the
community A, and set N is the number of nodes in the
community A. If there is an edge between the node vi and
node vj, then it has:

1
0ij

i, j A
i, j A

d
⎧ ∈

∈
⎪= ⎨
⎪⎩

 (3)

1, 1i j

N

AA ijE d
= =

= ∑ (4)

Let FAB express the external connectivity of the
community A related to the community B, and set M is
the number of nodes in community A and N is the number
of nodes in community B, then it has:

,
AB ij

i M j N

F d
∈ ∈

= ∑ (5)

C. Modularity
Modularity, an index invented by Girvan and Newman

[20], is used to quantitatively evaluate the quality of
network community partition. It is initially defined to be
that Q = (number of edges within groups) - (expected
number within groups). The modularity is measured
relative to a null model which is defined by the
probability of an edge between the nodes vi and vj. The
modularity function Q can be defined as follows:

()
,

1 ,22
i j

ij i j
i j

k kQ b MM
δ σ σ⎡ ⎤⎛ ⎞= −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

∑ (6)

where bij represents there is an edge between the nodes vi
and vj, δ is a membership function, if the vertices vi and vj
belong to the same community, i.e. σi=σj, then δ(σi, σj)=1,
otherwise, δ(σi, σj)=0, and

,
0.5 ij

i j
M b= ∑ describes the

total nodes in the network. The probability of the edge

between vi and vj is
2

i jk k
M

 in a random network, in which

ki is the degree of vi.
If Q is much closer to 1, then the partition of the

community structure is much better.

D. Mathematical Model based on Modularity
According to the above descriptions of complex

network, community structure, degree, community
connectivity and modularity, assume that a network,
G=(V, E, C), has been partitioned into k communities. It
has eAA=EAA/2M expressing the fraction of all edges that
link internal nodes of community A in the network,
fAB=FAB/2M representing the fraction of all edges that link
the nodes in community A to the nodes in community B,
and aA= AB

B C
f

∈
∑ denoting the fraction of edges that

connect to the nodes in community A. According to the
definition of the modularity function, the optimum
community structure can be constructed at the Qmax as
follows [21]:

2
max

1

()
N

AA A
i

Q e a
=

= −∑ (8)

Due to the rule that the larger value of Q, the better the
community structures are, the principle of modularized
increment is used to merge communities. The increment
of Q is calculated as follows:

2AB BA A BQ f f a a= + − (9)
The communities can be merged iteratively in pairs in

the way of increasing Q the most or decreasing Q the
least until the calculation covering all the nodes goes into
the convergence [22].

1878 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Figure 3. Iterative merging process

E. Community Structure in BSP Model
In the BSP model, the nodes in the network, as

separate entities, are hashed into the whole cluster. Based
on the description of community structure in the complex
network, a triple CS=(vS, S, (

iSC ,
jSC)) is defined as the

data structure of the community structure which can
represent the community as well and a quad vi=(i, S, Nin,
Nout) is defined as the data structure of the nodes in BSP
model, in which i is the ID of the node, S is the
community label of the node, Nin is the set of the internal
nodes of the community connecting to the node, Nout is
the set of adjacent nodes connecting to the external
communities of the community S. Several related
definitions, the leader of community (LC), the parent
community, the sub-merger and the main-merger, are
given as follows for community merge in the BSP model.

Definition 3: vS is the LC of the community S whose
label is the same as that of the community. The LC is
responsible for managing the unification of the internal
nodes of the community CS and combining with other
communities.

Definition 4: the parent community CS is composed of
two sub-communities.

Definition 5:
jSC is the main-merger if its community

label does not change during the process of merging. The
ID of the LC of the parent community Cs is the ID of the
LC of the main-merger, and the community label of the
parent community is that of the main-merger.

Definition 6:
is

C is the sub-merger, referring to the
community whose label is changed. Its LC needs to
update the community labels of all the internal nodes in
this sub-merger.

In the following section, a parallel computing
algorithm will be built on the basis of the above model.

IV. PARALLELED FAST-NEWMAN ALGORITHM
ORIENTED TO BSP MODEL

A. Algorithm Description
The main idea of the algorithm is as follows. Firstly,

the program hashes the nodes to the cluster as
independent communities to manage them separately.
And then the LC, representing its community, merges
with other communities by computing their respective
modularized increment in parallel during the process of
merging. Each community filters out the potential merged
object whose local modularized increment is the
maximum. A predefined master node then collects all the
potential merged objects and calculates the target that has
maximal modularized increment globally. At last, based
on the community label of this target, the LC data of the
sub-merger is merged into the LC data of the
main-merger to complete the community merge for once.
In the above step of merging, the LC of the sub-merger
needs to update the community labels of its internal nodes.
The leader broadcasts the main-merger community label
within its community, including all internal nodes and the
nodes of sub-communities. Every sub-community
updates in the same way until all nodes in the community

have been updated with the new community label. Since
updating the nodes and merging the nodes are exclusive
with each other, they are executed in parallel. Recursively
execute above steps until the modularized increment turns
into negative, which implies the community partition is
achieved at the maximum Q. The algorithm stops until all
the nodes have been updated.

B. Community Merge Strategy
BSP model utilizes the leader merge strategy. The

iterative merging process is shown in Fig. 3. Every node
in the initial state in the network is an independent
community. They are the leaders of their communities.
Each LC passes the necessary information to its adjacent
communities. The information is used to calculate the
modularized increment between each adjacent pairs. Then
each LC finds out the potential merged object, (

iSC ,
jSC ,

∆Qij), corresponding to the object with local maximum
modularized increment, and sends it to the predefined
master node. And the predefined master node compares
all the modularized increments and finds out the pair of
communities, (

iSC ,
jSC), with global maximum

modularized increment. At last, the two communities are
merged into a new community CS. The new LC, Sv , is
equal to the LC of the main-merger,

jSv , i.e. the new
community and the main-merger have the same
community label. During the process of merging, the new
community sends its community label to the LCs of the
sub-mergers for updating all nodes of the
sub-communities. In the meantime, the LC of the new
community continues to merge with other communities.
The step of merging and the step of updating are executed
in parallel.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1879

© 2014 ACADEMY PUBLISHER

Figure 4. Parallel execution process

C. Multi-step Parallel Execution
The parallel computing is divided into two levels in

BSP model. One is the parallel execution within the same
superstep, e.g. multiple nodes in the same superstep
compute the local modularized increments in parallel.
The other one is the parallel execution of multiple steps,
e.g. the step of merging and the step of updating are
executed in parallel. Since community structure detection
cannot be completed only via a single type of operation,
the whole process is divided into the following steps:

Step 1: Calculate the modularized increment, select the
merged objects, and merge the community.

Step 2: Update communities.
Step 3: Judge the termination.
The parallel execution process of the three steps is

shown in Fig. 4. The overlaps in time axis indicates the
parallel executions of multiple steps happen. In Fig. 4,
Step 1 is the merging process. Each merging process
consists of five supersteps. Step 2 is the updating process
and Step 3 is the terminating process. The five supersteps
of Step 1 execute orderly. Step 2 is triggered by Step 1.
The execution times of Step 2 are determined by the
number of the sub-communities of the sub-merger. Step2
can be almost interspersed throughout the whole process.
It updates the community labels of the nodes within the
sub-merger through the iterative message passing among
the sub-communities. Step 2 can be executed in parallel
not only with Step 1, but also with the previous
uncompleted updating process of Step 2, i.e., as shown in
Fig. 4, the mth updating executes in parallel with the
(n–1)th updating.

Step 3 is caused by two types of conditions. The first is
triggered by the nth merging. This terminal condition, i.e.
the global modularized increment becomes negative, is
found in the superstep 3 of the nth merging, which shows
that the community structure of the network has been
divided into the optimal state. Thus, the superstep 4 and 5

become the virtual supersteps of Step 1. The virtual
supersteps no longer perform the merging process, but
terminate the calculations of all nodes. The predefined
master node will inform these two merged communities
to terminate their calculations. These two communities
will terminate their calculation status and transmit the
terminating messages to their adjacent communities and
sub-communities to terminate their calculation status as
well. The previous uncompleted updating process of Step
2 can be executed in parallel with Step 3. For Step 2 and
Step 3, they are both executed step by step. And the
execution of Step 3 on each node is after the execution of
the final execution of Step 2. Therefore, such parallel
execution can still ensure that all nodes in the network
have no more operations when they terminate their
calculations. As shown in Fig. 4, the (n–1)th updating and
the nth terminating execute in parallel.

The second terminal condition for Step 3 is triggered
when a new community has no adjacent communities.
The new community becomes an independent community.
In Fig. 4, after the (m-1)th merging, the new community
becomes an independent community, and it will never
merge with others. Spread this message to its nodes and
sub-communities to terminate their calculations. At this
time, Step 3 can be then executed in parallel both with
Step 1 and Step 2.

D. Algorithm Details
Some notations used in the proposed algorithm are

illustrated first.
Constant parameters are listed in Table I.
Input: R= {(vi, vj)|i, j∈G(V)}.
Output :{(CS, S, V)|S∈G(V),V≠0)}.
The variable declarations are given as follows:
Send message format: Send (t, m), where Send is the

function for sending messages, t expresses the goal of the
message and m represents the content of the message.

1880 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

TABLE I
CONSTANT PARAMETERS

Parameter name Symbol

Number of the cluster nodes N

Number of edges M

Synchronous node I

Receive message format: m.getFirst(), representing
extracting the first parameter from the message m. The
method of extracting other parameters is similar to the
above method.

Message types:
(1) m1: The content of m1 is composed of the

sub-merger label and the degree of the sub-merger. It is
sent to the LC of other community for calculating the
local modularity increment of the LC.

(2) m2: The content of m2 is composed of local
sub-merger label, local main-merger label, local
modularized increment and the degree of local
sub-merger. It is sent to the predefined master node for
finding out the global merged target.

(3) m3: The content of m3 is composed of global
sub-merger label, global main-merger label, global
modularized increment and the degree of global
main-merger. It is sent to the LC of the main-merger and
the LC of the sub-merger for merging into a new
community.

(4) m4: The content of m4 is composed of the
sub-merger label and the main-merger label. It is sent to
the LCs of the adjacent communities of the sub-mergers
for inform them to replace the sub-merger label with the
new community label in the set of their adjacent
communities.

(5) m5: The content of m5 is composed of the adjacent
community label of the sub-merger. It is sent to the LC of
the main-merger for expanding its set of their adjacent
communities.

(6) m6: The content of m6 is composed of the
main-merger label. It is sent to the internal nodes and
sub-communities of the sub-merger for updating their
community labels.

(7) m7: The content of m7 is composed of termination
signal. It is triggered when the global modularized
increment becomes negative. The message is then spread
to the whole network for terminating the calculations.

(8) m8: The content of m7 is also composed of
termination signal. It is triggered when the new
community becomes an independent one. The message is
sent to the internal nodes and sub-communities of the
new community for terminating their calculations.

Since Step 2 and Step 3 execute in random, and they
can both execute in parallel with Step 1, we add them into
each superstep of Step 1. If the nodes need to execute
these two steps, then they will stop executing Step 1.
Therefore, these three steps can be executed in parallel in
the cluster.

One merger is completed by five supersteps. The
whole community division can be finished by repeating
the supersteps below. The operations of update and
termination can be executed throughout the five
supersteps. If the nodes receive m6, m7 and m8, they
would perform update or termination operations. The
nodes will handle them with these supersteps in parallel,
in which Handle(m) is a function used to replace the
processing procedure and its pseudo code is as follows.

Handle(m):
 if type(m)=m8

 then isStop true
 for each t∈Nin

 Send(t, m8)
 End

 elseif type(m)=m6
 then Si m.getFirst()

 for each t∈Nin
 Send (t, m6)

 end
 elseif type(m)=m7

 then isStop true
 for each t∈(Nout∪Nin)

 Send(t, m7)
 end
 end if

The implement details of the paralleled Fast-Newman
algorithm oriented to BSP model are as follows.

Initialization: Initialize the nodes and averagely assign
them onto the cluster. Firstly, initialize the node vi= (i, Si,
Nin, Nout, Di, isStop). i is the ID of vi. Si is the community
label of the node. Si=i represents the node is the LC of the
community. Nin=∅ and Nout= {(i, j)| j∈G(V), i≠j}. Di and
isStop are additional properties. Di is the degree of the
community, Di = CountDeg(Nout) in which CountDeg is a
function for counting the degree of the community. isStop
is used to mark the calculating status of the node, if
isStop=false, the node performs calculations, otherwise, it
stops. Every node is its own LC in the beginning. Then,
assign all the nodes to their corresponding cluster node by
the calculation function Hash ({vi| vi∈G(V)})%N which is
a function for calculating the location of the node on the
cluster.

Superstep 1: Prepare for computing modularized
increment. Every LC will send the message, i.e. Send(t,
m1), t∈Nout, to its adjacent communities. The format of
the message is m1= (Si, Di). The content of the message is
the label and the degree of the community. If there are no
messages sent out, declare that the community is an
independent one, stop its calculation and send the
termination message to its internal nodes and
sub-communities, i.e. Send(t, m8), m8=(stop), t∈Nin, to
inform its internal nodes and sub-communities to stop
their calculations. The pseudo code of this superstep is as
follows.

Superstep 1:
for each m∈list(M)

if type(m)= m6 || type(m)= m7 || type(m)= m8
then Handle(m)

 end if

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1881

© 2014 ACADEMY PUBLISHER

if i= Si
 if Nout=∅
 then for each t ∈Nout

Send(t, m1)
end

else
for each t∈Nin

Send(t, m8)
 end
 end if
 end if
end

Superstep 2: Compute local modularized increment.
The LC of the community Sj receives the list of m1.
Firstly, it extracts all the related Si from every m1 and
counts the number of the connections, fij, between Sj and
Si in the node set Nout (fij=Count (Si, Nout) where Count is
a function for counting the number of Si in Nout).
Secondly, the LC of Sj calculates the modularized
increment of the pair of communities, (Si, Sj), i.e.

ij i j
ij 2

2f (D * D)
Q = -

2M 2M
Δ . Then, the LC of Sj compares all the

∆Qij and finds out the local pairs with the largest
modularized increment, (local

iS , local
jS ,

max

local
ijQΔ , local

iD), in

which
local
iD equals to the Di of local

iS . At last, it sends
the message to the predefined master node, i.e. Send(t,
m2), in which m2=(local

iS , local
jS ,

max

local
ijQΔ , local

iD) and t=I.
The pseudo code of this superstep is as follows.

Superstep 2:

max

local
ijΔQ -Double.MAX_VALUE

for each m ∈list(M)
if type(m)= m6 || type(m)= m7 || type(m)= m8

then Handle(m)
 else if type(m)= m1

fij=Count (Si, Nout)
ij i j

ij 2

2f (D * D)
ΔQ = -

2M 2M

if
max

local
ijΔQ <∆Qij

then
max

local
ijΔQ ∆Qij

local
iS m.getFirst()
local
iD m.getSecond()
local
iS Sj

 Send(I, m2)
 end if
 end if
end

Superstep 3: Compare global modularized increments
and select global merged target. The predefined master
node I receives the list of m2. Then it compares all the

max

local
ijQΔ in the list of m2 and finds out the largest one as

the global maximum increment (
maxij

globalQΔ =
max

local
ijQΔ). If

maxij

globalQΔ >0, the potential merged object of the m2,

corresponding to
maxij

globalQΔ , constitutes the global merged

object , m3 = (global
iS , global

jS ,
maxij

globalQΔ , global
iD), in which

the global
iS is the local

iS of the m2, the global
jS is the local

jS of the

m2, the global
iD is the local

iD of the m2. Then Send(t, m2),

t= global
iS , global

jS . If
maxij

globalQΔ <0, it is the end of merging,

and Send(t, m7), m7=(stop), t=i, j. The pseudo code of this
superstep is as follows.

Superstep 3:

maxij

globalΔQ -Double.MAX_VALUE

for each m∈list(M)
if type(m)= m6 || type(m)= m7 || type(m)= m8

then Handle(m)
 elseif type(m)= m2

if m.getThird()>
maxij

globalΔQ

then
maxij

globalΔQ m.getThird()
global
iS m.getFirst()
j
globalS m.getSecond()
global
iD m.getFourth()

 end if
end for
if i=I
 if

maxij

globalΔQ >0

 then Send(global
iS , m3)

 Send(j
globalS , m3)

 else Send(global
iS , m7)

 Send(j
globalS , m7)

 end if
end if

Superstep 4: Prepare for merging. For one situation, if
the ID of the node is equal to the global

jS in the m3, then

the node is the LC of the main-merger. The global
iS of the

m3 is moved into its Nin by the LC. Then Dj= ∆D +Dj, in
which ∆D is the global

iD of the m3 and Dj is the degree of
the new community. At last, the LC of the main-merger
removes the global

jS of the m3 from Nout.
For another situation, if the ID of the node is equal to

the global
iS of the m3, then the node is the LC of the

sub-merger. Firstly, the LC of the sub-merger updates its
community label Si to be the global

jS of the m3. Secondly,

Send(t, m4), t∈Nout, m4=(global
iS , global

jS) for informing its

adjacency LCs to replace global
iS to global

jS in their Nout.

Then, Send(t, m5), global
jt S= , m5=(out),

out∈

{ }| and gl
t

o l
jou

baE N N E S∈ ≠ for merging the community

data. At last, Send(t, m6), t∈Ein, m6=(global
jS) for updating

the internal nodes and sub-communities of the sub-merger.
If the LC of the main-merger and the LC of the

1882 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

TABLE II
RUNNING TIME TABLE

Data size
(nodes/edges)

Running time(s)

Stand-alone MapReduce BSP

10/14 0.016 1089.9 12.711

102/196 0.094 10899 44.339

103/1997 2.27 108990 400.7

104/19992 2620.64 989920 3333.012

105/199993 NULL 10804700 51282.05

106/1999995 NULL 202000000 1111111.1

sub-merger receive m7, they will stop calculations and
Send(t, m7), m7=(stop), t∈(Nout∪Nin) to inform others.

The pseudo code of this superstep is as follows.
Superstep 4:
for each m∈list(M)

if type(m)= m6 || type(m)= m7 || type(m)= m8
then Handle(m)
else

if i=m.getSecond()
then Dj m.getFourth()+Dj
 Nin.add(m.getFirst())
 Nout.remove(m.getFirst())

 elseif i= m.getFirst()
then Si m.getSecond()

for each out∈{E|N∈Nout and E≠ global
jS }

Send(global
jS , m5)

 end
for each t∈ Nout

Send(t, m4)
 end

for each t∈Nin
Send(t, m6)

 end
 end if
 end if
end

Superstep 5: Merge the communities. If the LC of the
main-merger receives the list of m5, it will add the
variable out of the m5 to Nout. If the other LCs receive the
list of m4, they will replace global

iS with global
jS in their

Nout. If the nodes receive the massage m6, they are the
LCs belonging to the sub-communities of the sub-merger.
They will update their community labels. If they has
sub-communities, then Send(t, m6), t∈Nin, m6=(j). If the
nodes receive the massage m7, they will continue to
Send(t, m7), m7=(stop), t∈(Nout∪Nin). The pseudo code of
this superstep is as follows.
Superstep 5:
for each m∈list(M)

if type(m)= m6 || type(m)= m7 || type(m)= m8
then Handle(m)

elseif type(m)= m4
then replace(m.getFirst(),

m.getSecond(), Nout)
elseif type(m)= m5
 then Nout.add(m.getFirst())

 end if
end

The above supersteps consist of the whole process of
paralleled Fast-Newman oriented to on the BSP model.

V. EXPERIMENT AND ANALYSIS

The experimental software platform is HAMA - 0.6.1.
The computer cluster used to test and compare the
parallel programs (BSP-based Fast-Newman and
MapReduce-based Fast-Newman) is composed of 5 PCs.
The CPU is Core i5, the capacity of RAM is 4G. Classic

stand-alone-based Fast-Newman was tested by a PC
whose CPU is also Core i5 but the capacity of RAM is
8G.

In order to test the efficiency of the program, we
counted the running time of the three algorithms at
different orders of magnitude. The results are shown in
Table II. Since the MapReduce program runs slowly, the
estimated time is used, i.e. the total time ≈ (time of a
merging) * (the number of merging).

From Table II, it can be seen that the program running
on stand-alone PC showed obvious superiority when the
amount of the nodes was less than 1*104. Its performance
was much better than those of BSP and MapReduce.
When the amount of the nodes was more than 1*104, the
stand-alone program appeared memory overflows. Both
MapReduce and BSP based program can still operate.
However, the running time of Fast-Newman based on
MapReduce model had become intolerable.

From Table II, we can also obtain the increment ratio
of the running time among different data scales. The
increment ratio represents the incremental volume of the
running time with the growth of the data scale. It is an
objective index for evaluating the effectiveness of the
parallelism. The smaller the increment ratio is, the better
the effectiveness of the parallelism is. The experimental
results are shown in Table III and Fig. 5. It can be seen
that the increment ratios of the BSP and the MapReduce
model were relatively small, which means the growth of
the data size made a little influence on the effectiveness
of the parallelism on the BSP and MapReduce models.
However, the influence was deep on the stand-alone.
Combined with the increment ratio of the running time on
the data size in Fig. 5, it can be predicted that when the
amount of the nodes exceeds 105, even increasing the
RAM of the stand-alone model until it can run any size of
a single serial program, the running time of BSP-based
parallel algorithm will be also less than that of the
stand-alone-based. Although both MapReduce and BSP
based parallel programs had a similar increment ratio, the
MapReduce-based parallel program was limited by the
running time as shown in Table II. To sum up, compared
with the FastNewman algorithm based on stand-alone and
MapReduce models, the BSP-based has obvious
advantages in processing large-scale data.

The influence of the number of cluster nodes on the

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1883

© 2014 ACADEMY PUBLISHER

TABLE III
THE INFLUENCE OF DATA SIZE

Data size
(nodes)

Increment ratio

Stand-alone MapReduce BSP

10 1 1 1

102 5.875 10 3

103 24.149 10 9

104 1154.47 9.08 8.33

105 NULL 10.91 10.91

106 NULL 18.695 21.67 Figure 5. The influence of data size

Figure 6. The influence of the number of cluster nodes on the
BSP-based Fast-Newman algorithm

BSP-based Fast-Newman algorithm is also tested in our
experiments. The purpose of the experiment is to evaluate
t the degree of parallelism in processing large-scale data.
Due to the message passing mechanism used on BSP
model，increasing cluster nodes cannot ensure the high
efficiency of parallelism. When the amount of the
calculation and the communication achieves an
equilibrium, the efficiency of parallelism becomes the
highest. The experimental results are shown in Fig. 6. It
can be seen that when the nodes of the network were less
than 102, the merging times in per second reduced with
the increase of the cluster nodes. The reason is that when
the data size was small, the calculation could be
completed instantly, but most of the processing time was
spent on waiting for network communications. The more
cluster nodes was, the longer the communication time
was. Moreover, the time of task allocation in the whole
running time was also quite considerable.

When the nodes of the network reached to 103, the
merging times in per second increased at first, and then
decreased, as shown in Fig. 6. It achieved the maximum
point when the cluster nodes were 2, which can be
deemed that it achieved the equilibrium between the
calculations and the communications.

 When the nodes of the network reached up to 104, the
merging times in per second were proportional to the

increase of cluster nodes. In this situation, the calculating
time was more important. The time for calculation
became dominant. The more the cluster nodes were, the
higher the merging efficiency was.

When the nodes of the network reached up to 106, the
merging times in per second were significantly less than
those whose nodes were less than 106 since the increase
of data size would easily result in increasing the
calculation time. Nevertheless, the merging times in per
second were still proportional to the increase of cluster
nodes as shown in Fig. 6.

Through the above experiment, it showed that the
paralleled Fast-Newman on BSP model could increase
the degree of parallelism. It was helpful for processing
large-scale data. Nevertheless, it was not the more cluster
nodes, the better the degree of parallelism, just as the
instance of 103. It can be inferred that the merging times
in per second at different order of magnitude has the
same trend, i.e. increased at first and then decreased. In
order to achieve the best efficiency of the parallelism, the
balance point between the data scale being processed and
the number of the cluster nodes should be found in
advance for constructing the optimum processing
environment.

VI. CONCLUSION

The paralleled Fast-Newman algorithm based on BSP
model is proposed in this paper. It takes full advantage of
the characteristics of the parallelism and the distributed
computing framework. It can solve the network scale
problem which the stand-alone computation cannot
handle. Under the same conditions, it is more efficient
than the MapReduce-based Fast-Newman algorithm. The
experiment proved that, when the data size was between
104 and 106, the proposed algorithm appeared a better
efficiency without reducing the accuracy of community
structure detection. It can be used in community structure
detections in the order of magnitude at 106 nodes.

The time complexity of the improved Fast-Newman
algorithm in the BSP model is O(n2). It reduces the
running time of modularity increment calculations, but
the merging times do not reduce. When the network scale
enlarges to a certain degree, the merging times will be the

1884 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

main factor that affects the efficiency of community
structure detections. Therefore, the next step is to address
the problem how to merge unconcerned
multi-communities in parallel during one time
calculation.

ACKNOWLEDGMENT

This work is supported by the National Key
Technology R&D Program in 12th Five-year Plan of
China (No. 2013BAI13B06) and China Postdoctoral
Science Foundation funded project (No. 2013M540863).

REFERENCES
[1] G. Karypis, and V. Kumar, “A Coarse-Grained Parallel

Formulation of Multilevel k-way Graph Partitioning
Algorithm,” SIAM: Parallel processing for scientific
computing, 1997, pp. 1-12.

[2] A. Lumsdaine, D. Gregor, B. Hendrickson, and J. W. Berry,
“Challenges in parallel graph processing,” Parallele
Processing Letter, vol. 17, pp. 5-20. January 2007.

[3] B. Yang, D. Y. Liu, J. M. Liu, D. Jin, H. B. Ma, “Complex
Network Clustering Algorithms,” Journal of Software, vol.
20, no. 1, pp. 54-66, 2009.

[4] D. Chen, X. Xu, “A Novel Approach for Finding Clusters
from Complex Networks,” Journal of Software, vol. 6, no.
1, 2011.

[5] S. Z. Li, X. M. Wang, “Complex Networks Community
Structure Division Algorithm Based on Multi-gene
Families Encoding,” Journal of Computers, vol. 8, no. 1,
pp. 3021-3026, Dec 2013.

[6] M. Rosvall, “Information horizons in a complex world,”
Umea: Umea University, 2006, pp. 19-29.

[7] M. E. J. Newman, ”Fast algorithm for detecting
community structure in networks,” Physica Review E, vol.
69. no. 6, 2004.

[8] S Fortunato. “Community detection in graph,” Physics
Reports, vol. 486, pp. 75-174, 2010.

[9] M. Girvan, and M. E. J. Newman, ”Community structure
in social and biological networks,” Proceedings of the
National Academy of Sciences, vol. 99, no. 12, 2002.

[10] B. Krishnamurthy, and J. Wang, “On network aware
clustering of web clients,” Proceedings of the Conference
on Applications, Technologies, Architectures and
Protocols for Computer Communication, New York: ACM,
2000, pp. 97-110.

[11] P. K. Reddy, M. Kitsuregawa, and P. Sreekanth, A graph
based approach to extract a neighborhood customer
community for collaborative Works-hop on Databases in
Networked Information Systems, London: Springer Berlin
Heidelberg, 2002, pp. 188-200.

[12] Y. Dourisboure, F. Geraci, and M. Pellegrin, “Extraction
and classification of dense communities in the web,”
International Conference on the World Wide Web, New
York: ACM, 2007, pp. 461-470.

[13] M. E. J. Newman, “Detecting community structure in
networks,” European Physical Journal, vol. 38, no. 2, pp.
321-330, 2004.

[14] J. Zhang, G. Q. Wu, X. G. Hu, S. Y. Li, S. L. Hao, “A
Parallel Clustering Algorithm with MPI – MKmeans,”
Journal of Computers, vol. 8, no. 1, pp. 10-17, Jan 2013.

[15] K. Chen, W. M. Zhen, “Cloud Computing:System
Instances and Current Research,” Journey of Software, vol.
20, no. 5, pp. 1337-1348, 2009.

[16] J. Dean, and S. Ghemawat, “MapReduce Simplified Data

Processing on Large Clusters,” Symposium on Operating
Systems Design and Implementation, 2004, pp. 137-150.

[17] G. Malewicz, M. H. Austern, A. J. C. Bik, J. C. Dehnert, I.
Horn, N. Leiser, and G. Czajkowski, “A System for
Large-Scale Graph Processing,” ACM SIGMOD
International Conference on Management of data , 2010,
pp. 135-146.

[18] L. G. Valiant, “A bridging model for parallel
computation,” Communications of the ACM, vol. 33,
Auguest 1990.

[19] J. J. Climent, C. Perea, L. Tonosa, and A. Zamora, “A BSP
recursive divide and conquer algorithm to solve a
triditional linear system,” Applied Mamematics and
computation, vol. 159 , pp. 459-484, 2004.

[20] M. E. J. Newman, and M. Girvan, “Finding and evaluating
community structure in networks,” Physical Review E, vol.
69, no. 2, 2006.

[21] K. Kteinhaeuser, and N. V. Chawla, “Identifying and
evaluating community structure in complex networks,”
Pattern Recognition Letters, 2010

[22] X. J. Li, P Zhang, Z. R. Di, and Y Fan, “Community
structure of complex networks,” Complex systems and
complexity science, vol. 5, no 3, pp. 19-42, 2008.

Yi Sun, born in 1963, received the B.
Eng. degree in computing application
technology from Beijing Institute of
Technology, P. R. China, in 1985.

Currently, she is an associated
professor at University of Science &
Technology Beijing. She has been
involved in many important national
projects, such as “973”, “863”, National

Key Technology R&D Programs and National Natural Science
Foundation of China. Her research interests include artificial
intelligence, data mining and knowledge discovery, semantic
technology and ontology-based knowledge base construction.

Zhen Hua, born in 1986. He is a M.S.
candidate at University of Science &
Technology Beijing.

He has been involved in National
Key Technology R&D Programs 12th
Five-year Plan of China. His research
interests include data mining artificial
intelligence, semantic technology and
ontology-based knowledge base

construction and social network analysis, etc.

Li-hui Zou, born in 1982, received her
B. Eng. degree and M. Eng. Degree in
electrical engineering and automation in
2005 and 2007, respectively, from
Northeast Forestry University, P. R.
China, and received her Ph.D. degree in
control science and engineering from
Beijing Institute of Technology in 2012.

She was selected for an international
academic exchange with full scholarship and studied at
Universidad Politécnica de Madrid (UPM) in 2009. Now she is
doing her postdoctoral work in University of Science &
Technology Beijing. Her research interest covers complex
system analysis, artificial intelligence and machine vision.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1885

© 2014 ACADEMY PUBLISHER

