
Challenges of Diacritical Marker or Hudhaa
Character in Tokenization of Oromo Text

Abraham Tesso Nedjo

School of Computer Science and Technology, Faculty of Electronic Information and Electrical Engineering,
Dalian University of Technology, Dalian, CHINA

Email: abratesso@gmail.com

Degen Huang and Xiaoxia Liu
School of Computer Science and Technology, Faculty of Electronic Information and Electrical Engineering,

Dalian University of Technology, Dalian, CHINA
Email: huangdg@dlut.edu.cn, liuxxfm@gmail.com

Abstract— The problem of tokenization in natural language
processing is to find a way to get every token in a text. For
languages like Oromo, for which, much effort has not been
done yet regarding language processing, the task of
tokenization by no means cannot be overlooked. This paper
reports on Oromo tokenizer that we designed and tested by
accommodating the challenge of diacritical marker-Hudhaa
which is a sign to represent in-word glottal sound in Oromo
language. In this work, we have studied the effect of using
acute accent for diacritical mark rather than using other
confusing marks like right-quote to write Hudhaa. Accuracy
is a prime factor in evaluating any Natural Language
Processing (NLP) system. So we measured the accuracy of
our system on 1.2MB (9686 sentences having 164932 words)
of Oromo text data and an accuracy of 99.94% was achieved
by this algorithm.

Index Terms—Diacritical Marker; Glottal; Hudhaa; Oromo;
Tokenization

I. INTRODUCTION

OROMO language is classified as a Cushitic language
of east African nations, spoken by more than 40 million
people living in Ethiopia, Somalia, Kenya, and Djibouti
and is the 3rd largest language in Africa. According to
Omniglot: the online encyclopedia of writing systems and
languages [1], Oromo people are the largest ethnic group
in Ethiopia and account for more than 40% of the
population. But according to Tilahun Gamta’s article,
present on [2], Oromo comprise 50%-60% of the
population of the Ethiopian Empire State. The people are
found all over Ethiopia and particularly in Wollega,
Borana, Hararghe, Shoa, Illubabour, Wollo, Jimma, Bale,
Arsi, and even in the southwestern zone of Gojjam.

The writing of Oromo language was with either the
Ge'ez script or the Latin alphabet until the 1970s. Then
some organizations began using the Latin alphabet as the

official alphabet to write Oromo during the early 1970s,
Oromo Liberation Front (OLF) was the one who chose
first [1][2]. Soon later the language faced other political
and social challenges. Because, under the Mengistu
regime (between 1974 and 1991) the writing of Oromo
language in any script had been banned officially, though
limited usage of the Ge'ez script was allowed. After
decades of struggling for formalizing the writing system
of the language, , OLF convened a meeting of over 1,000
Oromo intellectuals to decide which alphabet to use to
write Oromo, in the Parliament Building at Arat Kilo,
Finfinnee, on 3rd of November 1991. After many hours
of debate, they decided unanimously to adopt the Latin
alphabet.

In Oromo language, there are glottal sound called
Hudhaa with a controversial diacritical marker. For
example, like in the words ba'anii, buáa, qeéetti, and
deebi’anii. In different texts, one may find usage of
different characters to represent Hudhaa, as in the
example mentioned. The use of such inconsistent
diacritical sign in computer technology made the Natural
Language Processing (NLP) activities of Oromo text a bit
troublesome. Especially the use of right-quote as
diacritical marker has made the problem to be more
severe, since right-quote is also used as a quote mark in
Oromo.

In this paper, we present an effective Oromo tokenizer
that enables people to get the basic unit of document –
word. Our tokenizer perfectly considers how the glottal
(Hudhaa character) that is hosted within the sequence of
some Oromo words should be determined. Finally after
having successfully designed the tokenizer, we concluded
that there need to be standard use of diacritical marker-
Hudhaa for writing Oromo language. Mainly, in order to
avoid the use of right-quote or left-quote as glottal marker,
we recommend acute accenting of vowels at glottal sound.

The result of this research is believed to have
invaluable contribution in software development,
particularly in the areas of natural language processing;
like in machine translation (including tough works of
translating unknown words [3] and in extracting

Manuscript received September 25, 2013; revised November 17,
2013; accepted November 22, 2013.

Corresponding author: abratesso@gmail.com

1818 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1818-1826

translation phrases [4]); parsing, and information retrieval,
and any text related web applications including bilingual
plagiarism detector [5], since tokenization is the basic
step that software development of all these applications
can not bypass. For the disadvantaged languages like
Oromo and many others for which less effort or no effort
has been done so far, regarding language applications,
this result lays a good foundation, even for other
languages to benchmark this good practice. For us, we are
including the result of this paper in Oromo POS tagger
and Oromo-English machine translation system
(undergoing researches) as a module. And we will
consider it for solving other NLP problem in the future
and, of course, will work on its optimization as well.

The remainder of this paper is structured as follows.
Section II briefly reviews the theoretical underpinnings of
tokenization to give readers a picture about its importance
and how it figures prominently in text processing. In
Section III, we describe related works and framework that
can leverage the task of tokenization. In Section IV we
present an elucidation of the Oromo alphabet, writing
system, Diacritical Marker (Hudhaa) and Oromo word
formation referred to Orthographical and grammatical
rules of the language. In Section V, we present our
approach to the problem. And the experimental settings
are presented in Sections VI. Finally, in Section VII and
Section VIII, we discuss and conclude our paper and
suggest avenues for future work.

II. TOKENIZATION

Tokenization is a very important task in text
processing of any language. By tokenizing, we mean that
we break up stream of texts into words, phrases, symbols,
or other meaningful elements called tokens, which
becomes input for further processing, such as parsing or
text mining [6]. Tokenization is highly useful in many
applications, particularly, both in linguistics (where it is a
form of text segmentation), and in computer science,
where create word level understanding and forms part of
lexical analysis. Given a character sequence and a defined
document unit, tokenization is the task of chopping it up
into pieces, called tokens, perhaps at the same time
throwing away certain characters, such as punctuation
marks [7]. In addition to word segmentation, sentence
segmentation which generally based on punctuation is a
crucial first step in text processing. Every NLP task needs
to do text normalization; like segmenting/tokenizing of
words in running texts, normalizing word formats, or
segmenting sentences in running texts [8].

Especially in Information Retrieval, as Christopher et
al. [7] mentions, some ways to address the more difficult
problems including development of more complex
heuristics, querying a table of common special-cases, or
fitting the tokens to a language model that identifies
collocations in a later processing step, are paramount.
More generally, for very long documents, the issue of
indexing granularity arises. For a collection of books, it
would usually be a bad idea to index an entire book as a
document.

The major question of tokenization phase is, answering
what are the correct tokens to use? Is it just a matter of
chopping on whitespace and throw away punctuation
characters? The answer for these questions is obviously
no, since this is just a starting point and there are a
number of tricky cases, even for English language, which
seems relatively easy to tokenize [7]. For example,
handling cases of various uses of the apostrophe for
possession and contractions is always confusing.

Usually tokenization occurs at the word level.
However, it is sometimes difficult to define what is meant
by a "word". Often a tokenizer relies on simple heuristics,
for example, like all contiguous strings of alphabetic
characters and numbers are part of one token; tokens are
separated by whitespace characters, such as a space or
line break, or by punctuation characters; and punctuation
and whitespace may or may not be included in the
resulting list of tokens, and so on.

In languages that use inter-word spaces (such as most
that use the Latin alphabet, like Oromo), this approach
seems fairly straightforward. However, even here there
are many edge cases such as contractions, hyphenated
words, emoticons, and larger constructs such as URLs
(which for some purposes may be counted as single
tokens) [8]. Such problems are also there even in English.
For example, in English "New York-based", a naive
tokenizer may break at the space even though the better
break is (arguably) at the hyphen. Particularly, in Oromo,
where glottal character is used within words, splitting
proper tokens as required is challenging. Therefore, close
examination will make it clear that whitespace is not
sufficient by itself for Oromo, even for English. Consider
the following Oromo sentence from The Holy Bible:

Joh 14:6 Yesus deebisee, "Karichi, dhugaan, jireenyis,
ana; anaan yoo ta'e malee, eenyu iyyuu gara abbaa hin
dhufu.” (Which means, Joh 14:6 Jesus saith unto him, I
am the way, the truth, and the life: no man cometh unto
the Father, but by me.)

Segmenting purely on whitespace would produce
words like this: including the punctuations.

"Karichi, dhugaan, jireenyis, ana; dhufu.”
These errors could be addressed by treating

punctuations, quotations, and special characters, in
addition to whitespace, as a word boundary. But
punctuation often occurs word internally, which are used
for short-hand writing like A.I.B., A.B.O., O.F.C.,
19/02/1977, and other borrowed terms like m.p.h., Ph.D.,
AT&T, and www.google.com. Similarly, assuming that
we want 35.5 to be a word, we will need to avoid
segmenting every period, since that will wrongly segment
this number into 35 and 5. Number expression like use of
comma (or space) in between every three digits is other
complications to be thoroughly scrutinized and addressed
in Oromo. For example, numbers like 9,999,888.55 or 9
999 888.55 or 9999888.55 (which are exactly the same)
are common writing practices in many Oromo texts.

Moreover, Computer technology has introduced new
types of character sequences that a tokenizer should
probably tokenize as a single token, including email
addresses and URLs like (bilisummaa@mail.yahoo.com),

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1819

© 2014 ACADEMY PUBLISHER

and (http://www. gadaa.com/index.html), numeric IP
addresses (142.32.48.231), package tracking numbers
(1Z9999W99845399981), and more.

As Jurafsky and Martin [8] mentions, a tokenizer can
also be used to expand clitic contractions that are marked
by apostrophe, like in English language, for example,
converting what’re to the two tokens what and are, we’re
to we and are, and he’s to he and is or he and has. But
this requires ambiguity resolution, since apostrophes are
also used as genitive markers in English, for example, (as
in book’s or in houses’) or as quotative marks (as in
‘what’re you? Crazy?’).

Of course, tokenization is particularly more difficult
for languages with running text; such as Chinese which
have no word boundaries, as mentioned by Huang et. al
[9]. But Oromo language has no such problem of running
text but the issue of compound words like creating names
by joining two or more nouns is still challenging.
Conceptually, splitting on white space can also split what
should be regarded as a single token. This occurs most
commonly with names (Dirree Galaan, Abbaa Seenaa)
but also with borrowed foreign phrases (Los Angeles)
and compounds that are sometimes written as a single
word and sometimes space separated (such as garaagara
vs. garaa gara). Other cases with internal spaces that we
might wish to regard as a single token include phone
numbers (251) 911-658524) and dates (Ama 19, 1977).

Therefore, tokenization algorithm may also tokenize
multiword expressions of proper names like Boolee
Bulbulaa, Laga Danbii, and Gaara Mul’ataa (name of
places in Oromia), which requires multiword expression
dictionary of some sort. This makes tokenization
intimately tied up with natural language processing tasks
of detecting names, dates, and organizations, a process
called named entity detection [8].

III. RELATED WORKS

Word tokenization has been designed for many
languages of the world pertinent to their specific
orthographic and grammatical rules. But no such an effort
has been made for Oromo language so far. Here we want
to mention the word tokenization of English, since it has
some similarity with Oromo, even though English
language has few in-word glottal sign or diacritical
marker. English has also apostrophe which somehow
seems like the Hudhaa problem of Oromo. But the
meaning and the way apostrophe is used and has been
tokenized in English is quite different from the one we
are presenting in this paper for Oromo. The English
tokenizer works very good for English. But this English
tokenizer does not work well for Oromo text as it would
completely destroy the meaning of some of the words.
Especially it highly affects words with Hudhaa or
diacritical marker. To show the inefficiency of this
existing English tokenizer for Oromo language, we
looked at tokenizer of split() method of Python for
comparison, as presented under our Discussion section
(Section 7).

IV. OROMO ALPHABET AND WRITING SYSTEM

To understand a language, starting at its basic data unit
(Alphabet or Qubee in Oromo) is mandatory. Oromo
language shares a lot of features with English writing
system except some differences. The Oromo writing
system is a modification of Latin Writing system. The
writing system of the language is straightforward which
is designed based on the Latin script. All the letters in
English language are also in Oromo but have different
names and phonetic representations. Oromo has also
“Qubee Dachaa”, which is doubling of consonants from
some other alphabets to represent different alphabet
(Qubee) in Oromo. Wakshum [10] and Morka [11]
describe Oromo writing system in more details.

Learning Oromo alphabet is very important because its
structure is used in every day conversation. Without it,
one will not be able to say words properly even if one
knows how to write those words. The better you
pronounce a letter in a word, the more you will
understand in speaking the Oromo language. Specially,
for someone who deals with text processing or NLP in
general, understanding the characters is mandatory.
Oromo alphabet has both vowels and consonants just like
in English. Five of the letters (‘a’, ‘e’, ‘i’, ‘o’, and ‘u’)
serve as vowels; whereas the rest of the alphabets
including “Qubee Dachaa” are all consonants.

In Oromo language, the diacritic marker (Hudhaa)
appears in between these vowels of words mostly, as
these vowels are the one that have their own sounds and
also give sound to the consonants in all syllable. In the
subsequent sections, we will show how these Hudhaa is
represented in words and the difficulties that it intrudes in
differentiating from other quotation marks.

A. Oromo Punctuation Marks
Analysis of Oromo texts reveals that different Oromo

punctuation marks follow the same punctuation pattern
used in English and other languages that follow Latin
Writing System [12]. The full stop (.) in statement, the
question mark (?) in interrogative and the exclamation
mark (!) in command and exclamatory sentences marks at
the end of a sentence, and comma (,) which separates
listing in a sentence and the semi colon (;) listing of ideas,
concepts, names, items, etc. The other quotation marks
are also used just like in English. The double quotations
(“ ”) and single quotation (‘’) are used in similar rules as
in English.

We might as well use the correct dashes where we
need them in writing Oromo. There are three types of
dash like that of English: the hyphen, the endash, and the
emdash. Hyphens are typed as you’d hope, just by typing
a - at the point in the word where you want a hyphen.
Even though our typesetter or some conventional word
processors takes care of hyphenation that is required to
produce pretty linebreaks, we type a hyphen when we
explicitly want one to appear, as in a combination like
“gar-tokko, irra-daddarbaa, qurxummii-qabduu, dhuga-
baatuu”, and so on.

An endash is the correct dash to use in indicating
number ranges, as in Lk.1—3 meaning “No.1–3”. To

1820 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

specify an endash one can type two consecutive dashes
on the keyboard, as in 1--3. An emdash is a punctuation
dash, used at the end of a sentence—some writers tend to
use them too much, including us. To specify an emdash
one can type three consecutive dashes on the keyboard, as
in “. . . a sentence---we tend to. . . ”. Moreover, ellipsis--
also called points of suspension; which consists of three
periods set close together is another punctuation used in
the language. Ellipsis is often used to indicate an
interruption or pause.

B. Diacritical Marker or Hudha in Oromo Language
The term Hudhaa is diacritical marker in Oromo. Just

like in many languages of the world, in Oromo language
there are places in words’ syllable where it happens to
have glottal sound. The main use of Hudhaa as diacritical
marker in Oromo is to change the sound value of letter to
which they are added. These show that the vowel with the
diaeresis mark is pronounced separately from the
preceding vowel; the acute and grave accents, which can
indicate that a final vowel is to be pronounced differently.

Therefore, the definition of Hudhaa is the same as that
of diacritical mark defined on English dictionary [13],
which is a mark placed over, under or through a letter in
some languages, to show that the letter should be
pronounced differently from the same letter without the
mark. Diacritical mark is also called diacritical point or
diacritical sign. These marks are needed to accommodate
sounds in a language with combination of those limited
number of alphabet of the language. Hudhaa, serving as
diacritical marker in Oromo, is found in many words of
the language.

In computer technology, non-English languages seem
to be unfavored, regarding Hudhaa (diacritic) type
representation. Even though computer technology was
developed mostly in the English-speaking countries, so
data formats, keyboard layouts, etc. were developed with
a bias favoring English (a language with an alphabet
without diacritical marks), efforts have been made to
handle them nowdays. Depending on the keyboard layout,
which differs amongst countries, it is more or less easy to
enter letters with diacritics on computers and typewriters.
Some have their own keys; some are created by first
pressing the key with the diacritic mark followed by the
letter to place it on. Such a key is sometimes referred to
as a dead key, as it produces no output of its own but
modifies the output of the key pressed after it.

On computers, the availability of code pages
determines whether one can use certain diacritics.
Unicode solves this problem by assigning every known
character its own code; By doing so, most modern
computer systems provide a method to input it. With
Unicode, it is also possible to combine diacritical marks
with most characters. This Unicode representation is used
in our program for accenting Hudhaa of Oromo language
in this project.

Oromo is one of the African languages that have many
words which contain diacritical marks – Hudhaa. Of
course, the variety of the marker is not too many in
Oromo, even though there are too many words. Moreover,
a lot of unassimilated foreign loanwords are there in

Oromo. The acute and grave accents are occasionally
used.

C. Oromo Word Formation
Oromo word construction is straight forward and most

convenient to represent any phoneme in the language and
even to write foreign words. Words are formed from two
or more sounds by combining vowels and consonants
somehow like that of English. In Oromo words, all the
consonants have no sound of their own unless a vowel is
following them. But the vowels have their own sound as
well as give sound to the consonants.

In Oromo, there are many writing grammatical rules,
just like in any other language. But here we are going to
mention the ones related to appearance of ‘Hudhaa’ in
some Oromo words. Besides the punctuations and
quotations mentioned, there is another special character,
usually apostrophe (') called “Hudhaa” for glottal
sounding in some Oromo words. This Hudhaa in Oromo
language appears between diphthongs (diphthong also
known as a gliding vowel, which refers to two adjacent
vowel sounds occurring within the same syllable) of
Oromo word.

Mostly Hudhaa appears in between characters of
words having consecutive vowels of different type (for
example, ta’e, ta’uu, bu’aa, ho’a, xaa’oo, mi’a, mi’aa,
fe’uu, waa’ee). So there is no instance in Oromo words
having consecutive vowels of different type without
Hudhaa. Hudhaa sometimes appears between characters
of words having consecutive vowels of same type also,
depending on the phoneme of the syllable. Especially
when the number of the consecutive vowels is greater
than two (for example, re’ee, qe’ee, qu’uu), though there
are cases when it may rarely occur between just two of
them (like in sa’a). Or Hudhaa may be inserted, between
vowels and consonants, depending on the phoneme again
(like in har’a, hir’uu, mul’anne).

Here our point is that the Hudhaa character selection
found in many of Oromo texts and the difficulty of
differentiating it from other quotations. Some people just
use apostrophe (') or use of the right-quote character (’) or
left-quote character (‘) to indicate the glottal somewhere
in the middle of words or as component of words. This
leads to serious confusion in text processing as the single
quote character represents another thing and meaning in
text. Look at the confusion of the apostrophe in the
following text:

Luk 14:17 Yeroon nyaataa yommuu ga'e, 'Amma
kottaa hundinuu qophaa'eera' jedhee warra
waamaman haa yaadachiisuuf hojjetaa isaa itti erge.

As common practice, some people use symbols of
vowels with hat from symbols dictionary (like r�ee,
bủaa, qủuu sảa, xaảoo, etc). One may find this kind of
scriptures in Oromo literature, which is, of course, not a
standardized way of writing the language. Because, these
symbols (ả, �, ủ, etc) are not alphabetic characters and
intrude another complication in tokenization of Oromo or
in Oromo text processing activities in general.

Still in other texts written by use of LATEX or any
TEX typesetter, Hudhaa/glottal in Oromo is represented
by accenting of the vowels by control symbols. Of course,

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1821

© 2014 ACADEMY PUBLISHER

LATEX typesetter can provide accents for just about all
situations as needed. The accents in LATEX can be
accessed through a variety of control symbols and single-
letter control words which accept a single argument, like
the letter to be accented [14]. For example, to write ho’a,
some people use ho\’{a} in LATEX typesetter and when
it is compiled, it becomes ho’a. Likewise, bu\’{a}a will
produce bu`aa, qe\’{e}e will produce qe`ee, waa\’{e}e
will produce waa`ee, and so on. But this is true only in
the case of skilled writers of few publication domains
(like academic journal articles and some books) and is not
applicable for the vast majority of text processing
package users. Of course, another way of using acute or
grave accent in text processing applications (like in
Microsoft Word) is using combination of dead key (Ctrl
+ ’ in our case) followed by the letter to be accented.
Likewise, one can activate one’s dead key on
OfficeWriter by changing system keyboard layout to
English US, International with dead keys. But, as
observed in the corpus we used for this research purpose,
these things are not much used, but few.

In some texts, the combinational use of these different
writing schemes may exist inconsistently in the same
document. At some point in the text, you may find the use
of the right-quote character (’) or left-quote (‘) or
apostrophe ('), at another point you may find this glottal
inserted from the symbol lists of the text processor, and
so forth. And even writers who use LATEX accents for
typesetting, sometimes insert the glottal (’) manually and
loose consistence.

So, all the writing schemes of Hudhaa in Oromo (use
of apostrophe or right-quote within a word and use of
special characters (vowels with hat), or using acute accent
in LATEX) has got drawbacks of lacking uniformity.
Therefore, there need be standard usage of such
diacritical marker character selection in Oromo text
(preferably ‘`’, which is different from apostrophe or
right-quote character having a different Unicode value
and easily available on any standard keyboard) in order to
avoid such a confusion while word tokenization and other
text processing activities. For example, writing ta`e
instead of ta’e or tảe, bu`aa instead of bu’aa, or buảa,
har`a instead of har’a, or harả etc. The issue is the
question of standardization, but with computationally
expensive process, it is possible to make double round
replacement to reinstate the original apostrophe or right-
quote character, indeed. According to our approach to the
problem and solution we set, to be presented in the
subsequent sections, the use of acute accent of the vowels
is found to be the best way of representing Hudhaa in
Oromo texts.

V. OUR APPROACH

The problem of tokenization can be formally stated as
follows. Given a streams of text t (including all its
punctuations and quotes), we want to finds the words or
tokens t1, t2,…,tn, discretely. Punctuation marks and other
accompanying symbols and quotations are to be treated
as separate tokens as well. In this Oromo language
specific tokenization, our problem is dealing with the in-

word glottal character (Hudhaa) handling, which wrongly
separates and reports a single word into two or more
tokens after tokenization. For this purpose, we proposed
the algorithm shown in Fig. 1 and Fig. 2.

Figure 1: Algorithm of the Tokenizer with accenting the diacritical

marker-Hudhaa

The algorithm begins by reading text data form file.

Scanning through the text and modifying as required, in
order to remove common typographical errors like
missing of spaces after punctuation marks. (Eg
Haqa,Mirga,fi Diimokiraasii should be written as Haqa,
Mirga, fi Diimokiraasii). And then flattening or smoothen
the text by removing unnecessarily included redundant
whitespaces as well as replace fake whitespace characters
with normal single whitespace.

The main challenge of this work lays at this point.
Since the character for Hudhaa, as we discussed earlier
may be: apostrophe, right-quote, acute accent, defining
Hudhaa positions in the text, based on Oromo language
orthographic rules is the main task of this endeavor. So
scrutinizing which one of these are for Hudhaa
representation and which of them are for their normal
quotation purpose was challenging. For this purpose we
depend on the behavior of Hudhaa in Oromo language
that it is always surrounded by vowels, at least on one
side, and that Hudhaa appears within a word (not at word
boundary). After determining which ones of these
characters are meant for Hudhaa purpose, we replaced
them by grave (`), a character which is normally not used
in writing Oromo language but easily available on

1822 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

standard keyboards. This replacement has been needed as
place holder until the subsequent tokenization activities
like separation of other quotations from the text. And
finally will be used for acute accenting the vowel
following them.

Figure 2: Pseudocode for the Algorithm of the Tokenizer

After that, we tokenized the text by considering

different grammatical rules to remove or separate
punctuation marks, quotes and symbols from words.
Thereafter, performing one more smoothening before
reinstating the Hudhaa (which is currently held by grave)
is needed to clear out unnecessarily intruded extra
whitespace. The final step of our tokenizer is acute
accenting the diacritical marks of Hudhaa instead of the
grave or instead of reinstating to one of those
controversial marks like apostrophe (') character, right-
quote (’) character or any other symbol.

VI. EXPERIMENTAL RESULTS

The tokenizer prototype is tested and passed on the
sample test data prepared for this purpose. We conducted
the research on Oromo text of 1.2MB having 9686
sentences collected by making text mining. The corpus
was collected from different public Oromo sites of

newspapers and bulletins in order to make the sample
corpus balanced and representative. The original data was
full of terms, punctuation marks, quotes, and symbols.
We fed the data to the algorithm designed and observed
the result. After flattening the corpus, we have got
164932 words, among which, about 5.23% (8628 words
have in-word glottal--Hudhaa, comprising 1674 unique
words). Most of them are represented by right-quote
character, some with English apostrophe ('), which is
quite similar with the character used to close single quote.
This is one of the difficulties encountered while striping
off quotation marks from such accented words
exclusively.

The tokenization we did without specially handling the
Hudhaa character resulted in producing two or more
wrong words by splitting at the syllable or diphthongs of
words with Hudhaa. For that matter, in this research we
made investigation on the difference between Oromo
tokenizer in both scenarios for comparison.

Without taking out the Hudhaa before applying
tokenization algorithm, we entirely loose the glottal
representation of those words while casting out the quotes.
But by carefully scrutinizing and locating the Hudhaa
(based on Oromo Orthographic rules) we managed to
retain the words with diphthongs by representing them
with grave mark ‘`’ (some people call it accentor) before
tokenizing the text. And this approach works inclusively
very well with our tokenizer. That means the accuracy is
more than 99% to handle the diacritical markers in
Oromo, except some typographic errors found in the
corpus. Table 1 and Table 2 show the accuracy of the
prototype, both without and with accenting the Hudhaa
respectively. We measured the accuracy by the ratio of
the number of error of the tokenizer to the total number of
words. The tokenizer prototype, in general, performs very
well. We also repeatedly checked the performance of the
algorithm with other small size texts and attested that it
works even more effectively.

TABLE 1:

ACCURACY OF THE TOKENIZER WITHOUT ACCENTING HUDHAA
Total No

of
Words

Words
with

Hudhaa

Error of the
Tokenizer
without

accenting
Hudhaa

Effective
Tokens
without

accenting
Hudhaa

Accur
acy

164932 8628 8716 156216 94.72
%

In addition to its effectiveness, we evaluated the
performance of our tokenizer in terms of its efficiency
based on space economy and response time. Table 3
shows our observation. Response time of the tokenizer by
accenting the Hudhaa is a bit longer than that of without
accenting (122 seconds and 92 seconds respectively for
our 1.2MB data). But when we consider the space
economy, accenting reduces the space requirement by as
much as the number of words having Hudhaa in the text.
In our case tokenization with accenting the Hudhaa is
efficient by 8628 bytes.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1823

© 2014 ACADEMY PUBLISHER

TABLE 2:
ACCURACY OF THE TOKENIZER WITH ACCENTING HUDHAA

Total
No of
Words

Words
with

Hudhaa

Error of the
Tokenizer
without

accenting
Hudhaa

Effective Tokens
without

accenting
Hudhaa

Accur
acy

164932 8628 88 164844 99.94
%

TABLE 3:
EFFICIENCY OF THE TOKENIZER

 No of
Characters

Response Time
in Second

Tokenization without
accenting Hudhaa 1002059 92

Tokenization with
accenting Hudhaa 993431 122

Difference 8628 30

Moreover, we consulted linguistics in Oromo language

to get scientific judgment for the work. The output of our
tokenizer was seen by experts of the language and the
result was judged to be in- line with the orthographic
rules of Oromo and the tokens reported are correct.

VII. DISCUSSIONS

Here we begin our discussion by showing the
inefficiency of the existing English tokenizer for Afan
Oromo even if both languages show some similarities, in
order to admire this endeavour and the result we obtained.
For example, look at the following Oromo sentence (s)
tokenized by English tokenizer of split() method of
Python.
>>> s = "Manaa ba'anii buáa malee qeéetti

deebi’anii hin galan!"
>>> ss= s.split()
>>> ss

['Manaa', "ba'anii", 'bu\xc3\xa1a', 'malee','qe\xc3\xa9etti'
'deebi\xe2\x80\x99anii','hin' 'galan!']

The tokens we get contain terms like 'bu\xc3\xa1a',
‘qe\xc3\xa9etti’ and 'deebi\xe2\x80\x99anii', depending
on the diacritical marker we use for Hudhaa. These are
actually the distorted form of Oromo words buáa, qeéetti,
and deebi’anii according to the input string, though
different diacritical marker is used inconsistently. And
also the last word 'galan!' is mistakenly accompanied by
exclamation mark ('!').

Furthermore, in order to compare the result and judge
that one cannot depend on English tokenizer for Oromo
text, as may be asked by some people, since both
languages show some similarities, we tokenized the same
corpus we used for our research purpose and obtained the
result as in Table 4.

TABLE 4:
PERFORMANCE OF ENGLISH TOKENIZER FOR OROMO TEXT

Total No
of

Words

Error of the
Tokenizer (in

number of words)

Effective Tokens
with English

Tokenizer
Accuracy

164932 34055 130877 79.35%

So, one can generalize that this performance (less than
80% accuracy) is not credible enough to be used for
Oromo text tokenization, at all.

In this project, all scenarios of Oromo grammatical and
orthographical rules, are exhaustively investigated and
deployed for Oromo tokenization. But the named entity
detection and multiword expression dictionary was not
considered except compound words linked with hyphen.
And finally we reached at successful tokenizer for Oromo
which can be adopted and used in any language
processing activities of Oromo language.

Figure 3: Some Error sources seen in the corpus

The most challenging and critical problems

encountered in this endeavor was the typographic errors
of the corpus. Particularly, the errors around the
punctuations and quotation marks were troublesome. For
example, look at the numbered sentences, as in Fig. 3
taken from the corpus. The term akka'tseeraatti in the
first sentence, which is actually not a word, but is
unintentionally, linked two words. It happened so,
because typist of the verse forgot pressing space bar
between the word akka and the word 'tseeraatti with left-
quote. So the apostrophe which appeared as Hudhaa of
the preceding vowel ‘a’, is not glottal. The word
tseeraatti is even not a correct Oromo word, for that
matter. The first letter of the word ‘t’ is an error. The
intention was to write akka seeraatti (with space,
meaning as rule of law), gives meaning together with the
preceding word akka. In the second sentence, the word
abju'atu and guyyoo'ta are totally spelling error to write
abjootu and guyyoota.

1824 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Similarly, in the third sentence, the term
foamanii,isaaniswarra has three errors. The second and
the third characters (o and a) of the term are vowels of
two different type which cannot be written consecutively
without Hudhaa. The second problem with this error is
that there is no space after the comma, and hence our
tokenizer considers the entire term as one word by just
knocking out the comma. Which is of course not an
Oromo word appearing together. Even the term after the
comma isaaniswarra is an error. Since the two words
(isaanis warra) was the real intention of the phrase, to
write fo’amanii, isaanis warra(meaning, chosen, they are
those). The term kutaa'hiyya happening with such
confusing Hudhaa is also another error in the same
sentence. The true words of the Bible verse were written
as kutaa biyya. In the forth sentence we see the term
tokko’hadhaa’ootti, which is an error again. A space is
needed between the word tokko and hadhaa'ootti. In
addition, the left-quote (') preceding the first character (h)
of the term 'hadhaa'ootti is intruded by mistake. The
correct spelling of the term qajeelaanmul'ifameera is
qajeelaan mul'ifameera with space between the two
words qajeelaan and mul'ifameera.

Too many similar cases are there in punctuation marks
as well. Particularly, missing of spaces after comma and
period are the more critical ones. And also there are full
of unnecessary inclusion of spaces after periods while
writing acronyms, which our algorithm judges as end of
sentence. These things have somehow affected the result
of our algorithm we designed for Oromo tokenizer.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have shown that there is high degree
of inconsistent use of diacritical marker in Oromo
language among writers. Though our system
accommodates all, for the tokenization purpose, we pose
an issue of standardizing Hudhaa representation in
computer technology that Oromo language linguistics
should further investigate. We recommend to opt for
acute accent on the vowels to show diacritical mark. One
can make accenting in conventional text processing
applications represent Hudhaa by using dead key (like
Ctrl +’) followed by the vowel to be accented.

Finally, we conclude our paper by recommending
researchers and practitioners in the area of computational
linguistics as well as Oromo language studies to use the
result of this work and explore more in the future.
Moreover, we advise software developers working in the
area of natural language processing to include this
tokenizer since it is basic and very important for the other
subsequent processes. For us, we are including the result
of this paper in Oromo POS tagger and Oromo-English
machine translation system (undergoing researches) as a
module. And we will consider it for solving other NLP
problem in the future and, of course, will work on its
optimization as well.

ACKNOWLEDGMENT

This work has been supported by the National Natural
Science Foundation of China. Project No (61173100,
61173101, and 61272375).

REFERENCES

[1] http://www.omniglot.com/writing/oromo.htm. Omniglot:
The Online Encyclopedia of Writing Systems &
Languages, Available Online, May 2013.

[2] http://www.africa.upenn.edu/Hornet/Afaan_Oromo_19777.
html. Afaan Oromo, Available Online, May 2013

[3] K. Md. Anwarus Salam, S. Yamada, and T. Nishino.
(2013). How to Translate Unknown Words for English to
Bangla Machine Translation Using Transliteration,
Journal of Computers, Vol. 8, no. 5, May 2013.
doi:10.4304/jcp.8.5.1167-1174

[4] Z. Chun-Xiang, M. Y. Ren, Z. M. Lu, Y. H. Liang, D. S.
Sun, Y. Liu (2011). Multiple Linear Regression for
Extracting Phrase Translation Pairs, Journal of Computers,
Vol. 6, NO. 5, MAY 2011.
doi:10.4304/jcp.6.5.905-912

[5] M. Shamsul Arefin, Y. Morimotoy, M. A. Sharifz. (2013)
BAENPD: A Bilingual Plagiarism Detector, Journal of
Computers, Vol. 8, no. 5, May 2013.
doi:10.4304/jcp.8.5.1145-1156

[6] http://en.wikipedia.org/wiki/Tokenization Wikipedia, The
Free Encyclopedia, Available Online, May 2013

[7] C. D. Manning, P. Raghavan, and H. Schütze, An
Introduction to Information Retrieval, Cambridge
University Press, (2008).

[8] D. Jurafsky, J. Martin, Speach and Language Processign:
An Introduction to Natural Language Processing,
Computational Linguistics, and Speech Recognition,
(2010).

[9] C. Huang, P. Simon, S. Hsieh, and L. Prevot, Rethinking
Chinese Word Segmentation: Tokenization, Character
Classification, or Word break Identification, (2007)

[10] W. Mekonnen Development of Stemming Algorithm for
Oromo Texts, Master’s Thesis, Addis Ababa University,
(2000).

[11] M. Mekonnen Text to Speech System for Afaan Oromo,
Master’s Thesis, Addis Ababa University, (2001).

[12] D. Megersa Automatic Sentence Parser for Oromo
Language Using Supervised Learning Technique, Master’s
Thesis, Addis Ababa University, (2002).

[13] OXFORD Advanced Learners’ Dictionary, Oxford
University Press 2000

[14] G. Maltby (1992). An Introduction to TEX and friends.
http://heather.cs.ucdavis.edu/~matloff/LaTeX/Malthy.pdf,
Available Online, May 2013

Abraham Tesso Nedjo, is a PhD
Candidate in Computer Science at
School of Computer Science and
Technology, Faculty of Electronic
Information and Electrical Engineering,
Dalian University of Technology, Dalian,
Liaoning Province, CHINA. His current
research interest focuses machine
translation, natural language processing,

and machine learning. He can be reached at:
abratesso@gmail.com

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1825

© 2014 ACADEMY PUBLISHER

Degen Huang (Prof), is a Professor of
Computer Science at School of
Computer Science and Technology,
Faculty of Electronic Information and
Electrical Engineering, Dalian University
of Technology, Dalian, Liaoning
Province, CHINA. His major research
interests include machine translation,
information retrieval and natural

language processing. He can be reached at:
huangdg@dlut.edu.cn

Xiaoxia Liu is a PhD Candidate in
Computer Science at School of
Computer Science and Technology,
Faculty of Electronic Information and
Electrical Engineering, Dalian
University of Technology, Dalian,
Liaoning Province, CHINA. Her current
research interest focuses machine
translation, natural language processing,

and machine learning. She can be reached at:
liuxxfm@gmail.com

1826 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

