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Abstract—According to previous reports software clones are 
considered harmful for software maintenance. Likewise, 
model clones are problematic in model-based development. 
It is significant to detect model clones in software models. In 
this paper, we present a novel optimized path-based model 
clone detection algorithm (OPMCD). It first builds paths 
from block graphs, and then identifies clone instances from 
the common subsequence of paths. Moreover, an 
experiment is designed to evaluate the algorithm through 
comparing with the state-of-the-art of model clone detection 
algorithm ConQAT model clone detection (CMCD). The 
experiment result illustrates that OPMCD has better 
performance in terms of efficiency, and it is practically 
suitable for large-scale MATLAB/Simulink models.  
 
Index Terms—Matlab/Simulink model, optimized path, 
model clone, clone detection 
 

I.  INTRODUCTION 

In classical programming languages, clone appears as 
duplicated code fragments. It is well known that most 
code clones are created by ad hoc reuse through frequent 
copy & paste, i.e., fragments being copied rather than 
being used with appropriate reuse mechanisms [1]. The 
cloning of code segments in code-based software 
development by copy & paste has adverse effects on 
maintainability [2-4], such as unnecessary duplicates of 
code which increase cost of maintenance, and 
inconsistent changes to cloned code which can create 
incorrect program behavior and lead to faults.  

Code clone detection is very active area in software 
clone research [5]. A variety of code clone detection 
approaches have been proposed. In general, they can be 
divided into five types based on their source 
representations: text based, token based, metric based, 
abstract syntax tree based (AST), and program 
dependency graphs based (PDG). However, algorithms 
for code clone detection commonly make no sense to 
model clone detection as they using different 
representation except PDG. 

Over the years, model-based development has become 
a promising approach for developing embedded software 
systems. It has many advantages over traditional 
development methodology [6]: independence of a target 
language; higher abstraction level than traditional 
programming languages; faster than traditional 

programming; higher automation degree, and possibility 
to detect errors earlier. MATLAB/Simulink is widely 
used for modeling in the embedded system domain [7] 
with which there is already up to 80% of the production 
codes in embedded control units that are generated from 
models [8]. 

Just as in code-based development, cloning also occurs 
in model-based development when a developer copies 
model elements instead of using an appropriate reuse 
mechanism [9]. In model-based software development, 
clone appears as redundant model elements. Since most 
of the reasons leading to clones in code-based 
development are also valid in model-based software 
development, it is not surprising that clones can also be 
found in models [10,11]. Cloned subgraphs in Simulink 
models often appear for different reasons. Most 
commonly, they are introduced by the habit of copy & 
paste —  deliberate copy model elements with slight 
changes instead of using an appropriate reuse mechanism 
[12], or by the use of elements from specific libraries in 
general-purpose domain. Moreover, clones can also be 
unintentionally created when similar solutions are 
independently created [13].  

Previous studies have proved that the existence of 
clone is likely to hinder the maintainability of the model 
in model-based development [10,11]. Besides the 
potentially increases of maintenance effort, clone is a 
potential source of bugs if not all impacted clone 
instances are changed consistently. Hence, it plays an 
important role for model-based development to identify 
duplicated model elements in different parts of the 
software model.  

Existing algorithms for model clone detection have the 
bottleneck in detection phase among the whole clone 
detection pipeline. In this paper we propose a novel 
optimized path-based model clone detection algorithm 
(OPMCD), and compare it with ConQAT model clone 
detection (CMCD) [4,10]. The proposed OPMCD builds 
common subsequences from long paths which are 
extracted from model graphs. Clone instances are 
obtained by extending common subsequences. During the 
process of building paths and finding common 
subsequences, some optimized measures are introduced, 
i.e., those nodes without incoming edge are chosen as 
starting point to build path instead of an exhaustive 
search, and only the longest path is considered. 
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Experiments with MATLAB/Simulink show that the 
proposed OPMCD can significantly reduce detection 
time. 

The remainder of this paper is organized as follows. 
Section 2 introduces the mainly processes of model clone 
detection. Section 3 describes heuristic clone detection 
algorithm of CMCD. Section 4 presents our approach and 
elaborates the OPMCD. In order to validate the 
effectiveness of OPMCD, section 5 implements a case 
study and compares OPMCD with CMCD. Finally, 
section 6 makes a conclusion. 

II.  RELATED WORK 

The boom of model clone detection is accompanied 
with the rapid and wide practices of model-based 
development. Some people have studied model clone 
detection within the past years. In graph models, clone 
can be considered as isomorphic or similar subgraph. The 
problem of frequent subgraph mining might be the most 
similar problem to our work. An overview of algorithms 
for frequent subgraph mining is presented in [14]. Most 
of these algorithms focus on mining frequent item set 
among molecules [15,16]. However, some notable 
differences exist between Matlab/Simulink models and 
chemical molecules in terms of size and structure. 
Furthermore, frequent subgraph mining usually works 
with a higher required minimum pattern frequency. Thus, 
most of subgraph mining algorithms are not suitable for 
clone detection in real-world models. 

Liu et al. [17] propose a clone detection algorithm for 
UML sequence diagrams. The approach firstly linearizes 
sequence diagram as an array and then detects clone by 
using tree-matching algorithm. The detection time is 
decreased by reducing duplicated subgraph identification 
to common substring identification. However, this 
approach is not appropriate for our work because a 
similarity representation cannot be created in Simulink 
models. Störrle [18] explores the problems and 
possibilities which associated with detecting clones in 
UML domain models, and designs a number of 
algorithms and heuristics to carry out clone detection. 
The basic idea of it is based on the observation that UML 
models are loosely connected to fat nodes rather than 
densely connected to graphs of lightweight nodes. 

Deissenboeck et al [8,11] firstly proposed an algorithm 
for model clone detection in graph based models and 
developed a detection tool which called CMCD based on 
this algorithm. The core pair detection of CMCD routine 
performs iteration over all possible pairs of nodes in 
breadth first search (BFS) manner. On one hand, it can be 
solved in polynomial time and appropriate for large-scale 
models, but on the other hand it naturally causes certain 
clone instances that can’t be found, as leads to a lower 
recall. It is heuristic because it only involves one 
potential mapping of nodes. Since CMCD is the 
state-of-the-art of model clone detection algorithm at 
present, our proposed algorithm will be compared with it 
in the following sections. 

ModelCD (Model Clone Detection) was presented by 
Pham et al. [19]. It consists of two algorithms eScan and 

aScan. The core idea used by ModelCD to detect clones 
is to identify bigger clones through adding extension 
edges to already detected smaller clones. eScan is used to 
identify exact clones within a model graph routine 
through performing a depth first traversal of the clone 
lattice. It uses a generating parent technique to ensure 
each fragment and is processed only once. aScan is the 
first algorithm that can identifies approximate clones 
which uses a vector based approximation of the structure 
with a subgraph called Exas [20]. It is different from 
eScan that aScan traverses the clone lattice in a breadth 
first manner. 

Hummel et al. [21] presents an index based algorithm 
for Matlab/Simulink model clone detection that is 
incremental and distributable. Their main purpose is to 
help developers who can quickly access all clones of a 
model element to consciously manage cloning during 
maintenance. To enable semantic clone detection of 
Matlab/Simulink model, Al-Batran et al.[22] proposes a 
pattern based approach with the concept of normal forms 
to identify clones which have identical behavior but 
different structure. In addition, Alalfi et al.[23] adapts 
NiCad code clone detector to find near miss clone of 
Matlab/Simulink by transforming graph-based models to 
normalized text form.  

III.  MODEL CLONE DETECTION 

In the context of Simulink models, model clone 
appears as a connected submodel. Two submodels are 
considered clone if they are isomorphic, non-overlapping, 
and connected [11]. 

There are two types of model clones, exact clone and 
approximate clone [24]. Exact clone is exactly matched to 
one another — two data-flow model graphs have exactly 
the same structure and corresponding labels. 
Approximate clone contains syntactic clone and semantic 
clones. Syntactic clone means that two data-flow model 
graphs have essentially the same structure and labels, 
allowing for minor adaptions like changes to the element 
names, attributes, and parameters, etc. In contrast to 
syntactic clones, semantic clones may exhibit a rather 
different structure but have the same behaviors. 

Within the last few years, the detection of model clone 
has been an active area of software maintenance research. 
Theoretically, model clone detection is the problem of 
identifying all maximum common subgraphs within a 
graph, which is a NP-Complete problem. Just as 
mentioned in [25], one of most obvious source for 
improvement is the clone detection phase. There exist 
several algorithms to detect clones in models [11,19]. 

Generally, the model clone detection process includes 
three major phases: preprocessing and normalization, 
clone detection, postprocessing. To understand the 
process of model clone detection easily, we list out the 
flow-process diagram in figure 1.  

In the preprocessing and normalization phase, the 
models are converted to a labeled, directed graph 
representation. Meanwhile, the nodes and edges are 
assigned with normalization labels. To facilitate 
following detection, all subsystems are flattened. Thus 
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the hierarchic structure of system model is eliminated. In 
detection phase, clone instances are identified by 
similarity compare algorithms. Several clone detection 
algorithms have been presented, such as heuristic graph 
based, vector based, index based, etc.  

 

 

 

 

 

 

 

Figure 1.  The processes of model clone detection 

Here, we propose OPMCD at the detection phase. 
With our algorithm, clone instances can be found by 
extending common subsequences of long paths which is 
built from model graphs. In postprocessing phase, clone 
groups which have common clone instances are merged 
to a bigger group and the clone results are reported with 
visualization form. 

CMCD is the state-of-the-art of model clone detection 
[10]. Our OPMCD algorithm implemented in Conqat 
framework, both preprocessing and postprocessing of 
OPMCD and CMCD are the same. But in the core clone 
detection phase the two algorithms are completely 
different.  

To better illustrate and compare with the proposed 
OPMCD, we firstly analyze the heuristic clone pair 
detection algorithm of CMCD.  

The algorithm of CMCD is depicted in Figure 2. The 
input is model graph which is preprocessed from models. 
At first, node pair set N is created. All node pairs are put 
into N if they have the same node labels. If node pair (u, 
v) has not been visited, put them into queue Q. If queue Q 
is not null, pair (m, n) will be dequeued from Q (line 6). 
Line 7 is the most important heuristic place as a list P of 
node pairs is constructed from the neighborhood of node 
pair with a high similarity value. More details of the 
algorithm can be found in [8]. 

1 function Heuristic model clone detection 
2 Input: model graph G = (V, E, L) 
3 create node pair set N containing all pairs, each pair has same 

node label, D : ൌ	∅ 
4 for each node pair (u, v) in N do 
5   if {u, v } ∉	D then 
6   Q : ൌ	{(u, v)}, C : ൌ	{(u, v)} 
7   while Q്∅ do 
8     dequeue pair (m, n) from Q  
9     P = build_list (m, n) 
10     for each (x, y)	∈	P do 
11       if (x, y)	∈	D  
12         jump to the loop at line2 
13       else if x	്	y	∧	{x, y} has not been visited   
14         C := C	∪	{(x, y)} 
15         enqueue (x, y) in Q 
16   export clone result C 
17   D := D	∪	C  

Figure 2.  Heuristic algorithm of CMCD for detecting clone pairs 

The core pair detection of CMCD routine performs 
iteration over all possible pairs of nodes in BFS manner. 
To improve time complexity, the algorithm uses heuristic 
search which is used to quickly extend new pairs of nodes 
that can be combined with the current pair of nodes to 
form a larger clone pair. Finally, clone pairs are 
combined to clone groups. Therefore, on the one hand it 
can be solved in polynomial time and appropriate for 
large-scale models, but on the other hand it naturally 
causes that certain clone instances can’t be found, which 
leads to a lower recall. 

IV.  OPTIMIZED PATH-BASED MODEL CLONE DETECTION 
ALGORITHM 

Our proposed OPMCD focuses on diagram model with 
exact clone identification, and contributes to the detection 
phase, which is the bottleneck of performance and kernel 
phase in clone detection pipeline.  

A.  Definitions 
Given G = (V, E, L) as the representation graph of a 

model, we use the following definitions: 
Definition 1 (Labeled Directed Graph) A labeled 

directed graph G is a pair G = (V, E, L) consisting of a set V 
of nodes and a set E ⊆ V ൈ V of directed edges, with an 
additional labeling function L: V 	∪	E→N which maps 
nodes and edges to labels from a set N.  

Definition 2 (Graph Component) A graph component is 
a set of connected nodes of G which forms a weakly 
connected subgraph.  

Definition 3 (Longest Path in Graph) The longest path is 
simple node path of maximum length in a graph 
component. This longest path is a simple path in which 
every node appears exactly once. 

Definition 4 (Common Subsequence) A common 
subsequence in a pair of sequences is a node subsequence 
that appears in both sequences. The longest common 
subsequence is a common subsequence with maximal 
length.  

Definition 5 (Clone Instance) A clone instance is the 
exactly matched or similar subgraph in model graph. All 
clone instances within a clone group have clone 
relationship with each other. Both graphs are called clone 
instances if they are isomorphic. 

Definition 6 (Clone Group) A clone group is a set of 
clone instance, where any two instances are a clone pair.  

B.  Optimized Path-Based Model Clone Detection 
Algorithm 

In this paper, we focus on the detection algorithm with 
graph based data-flow models.  

The kernel idea of the detection algorithm is based on 
an observation that the longest path in a data-flow model 
contains majority nodes of the model. For instance, the 
longest path in model shown in figure 3 contains 7 nodes, 
which cover 77.8% nodes of total. Basically, our 
algorithm consists of three main steps: building path, 
finding common subsequences, and identifying clone 
instances. The procedure to identify clone instance is as 
follows.  

models 

preprocessing & normalization 

clone detection 

postprocessing 

reporting result 
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First, all connected components are exacted from 
model graph. Then, the proposed OPMCD uses those 
nodes which have no incoming edge as the starting point 
to build paths. If the length of one path is long enough, it 
will be selected for subsequent processing. Figure 3 
displays an example. From nodes “input” without 
incoming edge, two paths with (input, gain, add, divide, 
sum, output) and (input, select, add, divide, sum, vector, 
output) are constructed separately from the components 
of figure 3 (a) and figure 3 (b). Meanwhile, those paths 
whose length is smaller than a desired value will not be 
considered (e.g., the path (subsys, vector, output) in the 
figure 3 (b)). Next, the common subsequences (add, 
divide, sum) of long paths are created between two paths. 
Finally, all common subsequences are expanded by the 
extension with nodes with the same label in a BFS 
manner. All nodes contained in clone instances which are 
marked with gray color are identified.  

 

 
(a) 

 
(b) 

Figure 3.  The illustration of finding clone instance with OPMCD 

The pseudo-code of OPMCD is described in figure 4. 
G denotes set of graph representations transformed from 
system model by preprocessing and normalization. C 
denotes set of connected components. Container stack S 
is used to store nodes temporarily. T denotes set of nodes 
which have been visited. 

1 function OPMCD 
2 input: labeled directed graph G = (V, E, L) 
3   extract connected components from model graph G, and put 

into the set C 
4   path_list := ∅,	seq_list := ∅ 
5   for each component x in C 
6     T := ∅ 
7     for each node n in component x do 
8       S := ∅ 
9       if(getIncomingEdge(n) = 0) 
10         buildPath (n)  
11   for each pi, pj ∈	path_list and	pi്pj do 
12     findSubseq(pi, pj) 
13     for each subSeq s in seq_list do 
14       clones := clones	∪	findClones(s) 
15   perform cluster on clones and report the results 
16  
17 function buildPath(n) 
18   push n into S, T := T	∪	{n} 
19   nodeCluster := getNodeCluster(n); 
20   if nodeCluster ് 	∅ 
21     for each node y in nodeCluster 

22       if y ∉ T 
23         buildPath(y) 
24   else 
25     if (S.size >	∂1) 
26       path_list := path_list ∪	constructPath(S) 
27   pop n from S 
28  
29 function findSubseq(p, q)  
30   m = p.size+1, n= q.size+1 
31   create an m×n all zero matrix M 
32   for each element M[i][j] in M  
33     if node p[i-1] and q[j-1] have same label 
34       M[i][j] = M[i - 1][j - 1] + 1 
35   for each element M[i][j] 
36     if(M[i][j] >∂2) 
37       seq_list :=seq_list∪p.substring(i-M[i][j], i-1) 

Figure 4.  Pseudo-code of OPMCD 

First, model is represented as a sparse, labeled directed 
graph G = (V, E, L). In line 3, all labeled directed graph are 
enumerated, and then all connected components are 
extracted to construct set C. If the size of a component is 
small, it would be eliminated.  

Since the first node of a path has no incoming edge, we 
use those nodes without incoming edges as a starting 
point to build path instead of enumerating all nodes, as 
shown in line 9. It can effectively prevent the 
construction of vast redundant paths, which helps to 
reduce time consumption of the algorithm. 

Line 10 calls function buildPath that is detailed in lines 
17-27. A depth first search (DFS) backtracking algorithm 
is used in the construction of path within graph 
components. At first, the starting node n is put into S and 
T in line 18, and then getNodeCluster performs a BFS 
traversal from n using forward edges to get node cluster 
in line 19. If nodeCluster is not empty, the function 
buildPath is repeatedly called for each node which has 
not been visited in nodeCluster (lines 20-23). In line 22, 
OPMCD guarantees that each node be visited at most one 
time and no repeated nodes existed in different paths. 
When a node without forward edge has been reached, a 
path is constructed from node sequence in S supposing 
the size of S is big enough (lines 23-25). Next, the top 
node n of S is popped in line 26. 

What must be emphasized is that we choose all 
non-overlapping candidate paths which are greater than a 
given threshold besides the longest path in line 25. This is 
due to the fact that some large graph components contain 
hundreds of blocks. If only the longest path is considered, 
we may lost the chance of finding potential candidate 
clones resulted from other path. At the same time, short 
paths are not being considered because clones that 
resulted from those paths often tend to duplicate with 
clone result from long paths. Consequently, it can 
guarantee that our algorithm has high recall and fast 
detection. 

After that, the common subsequence set seq_list is 
obtained by function findSubseq in line 12. Function 
findSubseq identifies all kinds of common subsequences 
with a trick of matrix in lines 33-34. The primary 
character of it is introducing a threshold in line 36 to 
eliminate trivial common subsequences from which 
meaningful clone instances generally can’t be generated.  

width 

divide 

delay

vector
sum 

subsys input 

add 

output

select 

output

gain 

const 

input add divide 

width 

sum 

delay 
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Later, clone instances in model graph are identified by 
function findClones through the extension of common 
subsequences via BFS search in line 14. Finally, all clone 
groups are clustered and the results are reported. 

Totally, the optimized measures are introduced in lines 
3, 22, 25 and 36 respectively. The heuristic mechanism in 
line 9 not only helps to significantly reduce total time for 
detection, but also ensure that OPMCD has excellent 
detection performance in precision and recall.  

C.  Time Complexity 
Assume that d is the maximum number of the nodes 

without incoming edge in components, m is the average 
size of components, n is the number of connected 
components, and N is the total number of nodes in model 
system. The OPMCD mainly consist of three functions: 
building path, finding common subsequence, extending 
from common subsequences.  

For building path function, all nodes in a connected 
component are traveled only once from a given starting 
point (nodes without incoming edge) by DFS. Building 
path function in our algorithm runs O(d*m*n) times, in 
which m*n equals to N. Moreover, in practice, nodes 
without incoming edge are small proportion of all nodes 
of a component, i.e. d is small. Thus, O(d*N) is trivial.  

During the extension of common subsequences, there 
are N2 = n2*m2 compactions in worst case. In summary, 
the time complexity of novel optimized path-based 
algorithm can be solved in O(N2) time. 

V.  EXPERIMENTS 

In order to evaluate the performance of OPMCD, 
ConQAT is used as a common framework to integrate 
OPMCD for simulation. The ConQAT is an integrated 
toolkit for creating quality dashboards that allow to 
continuously monitor quality characteristics of software 
systems. The experiments are performed on personal 
computer with a duo Intel core of a 2.4GHz CPU, 3GB of 
main memory, and Windows 7 operating system. In these 
experiments, the weight of minimum clone instance is set 
as 5. 

ModelCD developed by Pham et al. [18] operates in 
roughly the same way as ConQAT, has little 
improvement and is not publicly available, so we 
excluded it in our comparison.  

A.  Analyzed Model 
We choose four open source Simulink system models 

which are available from MATLAB Center [7]: A 
Simulink model for a communications lab (SIM), a 
simulation of multiple unmanned air vehicles (MUL), a 
video surveillance system (SEM), and an echo canceller 
model (ECW). These Simulink model-based systems are 
also chosen as experiment objects in [11,19]. Table I 
shows the sizes of these models where system denotes 
model name, files denotes the number of model file of 
system, nodes denotes the total number of blocks, and 
edges denotes the total number of lines. 

 
 

TABLE I.    

SIZES OF MODELS 

system files nodes edges 
SIM 49 452 422 
MUL 2 475 576 
SEM 16 1558 2029 
ECW 31 2312 2274 

As above table shown, the models contain hundreds to 
thousands of blocks. The largest system has 2312 blocks 
distributed over 31 files. What should be noted is that all 
blocks of the MUL model contain just in one .mdl file 
while another file does not contain any block. 
Unfortunately, industrial-scale models are not available. 
These analyzed model are typical models. They have 
been used to verify the effectiveness of algorithm in 
many papers [8,11,19]. 

Since we are not interested in small clone instances, 
graph components which are less than 5 will be removed 
in the process of extracting connected components. The 
results of extracted connected components are show in 
table II. There are 6 columns: model name (system), the 
number of graph components which are kept after 
extraction processing (#CKeep), the number of graph 
components which are skipped after extraction processing 
(#CSkip), the total number of nodes in kept components 
(#NKeep), the total number of nodes which are skipped 
(#NSkip), and the average size of kept components 
(#Asize). 

TABLE II.    

CONNECTED COMPONENT EXTRACTION 

system #CKeep #CSkip #NKeep # NSkip # Asize
SIM 42 28 411 41 9.8 
MUL 15 14 448 27 29.9 
SEM 18 91 1457 101 85.9 
ECW 74 192 1957 355 26.4 

We can see that almost 83.5% components have been 
eliminated in SEM from Table II. For the largest model 
ECW, 192 components were removed and just 74 
connected components are kept. This shows that the filter 
of graph components is effective, especially for large- 
scale model. 

B.  Run-Time Comparison 
To compare the run-time between the proposed 

OPMCD and CMCD, we performed both of them with the 
models in Table I. The results of run-time comparison are 
illustrated in figure 5. The initial parsing phase of 
OPMCD and CMCD are the same and not taken into 
account. Thus, the time shown in vertical direction of 
figure 5 which does not involve time for loading and 
parsing Simulink files, and displaying clone results. 
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process of paths building and common subsequences 
finding, those nodes without incoming edge are chosen as 
starting point to build path instead of an exhaustive 
search, and only the longest path is considered. The 
experimental evaluation demonstrates that OPMCD can 
significantly speed up detection time. At the same time, it 
can preserve high quality in precision and recall which has 
advantage in clone detection for large-scale model 
systems. Future works include further improvement in 
detection time and applying our algorithm to industrial 
model systems. Moreover, according to specific 
objectives and scenarios of model clone detection, it is 
interesting to study on clone groups filter and cluster to 
improve performance of OPMCD. 
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