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Abstract—Web applications have become software com-
modities of choice due to advances in internet, and wireless
communications. Web applications need to be tested during
new development, and thereafter during maintenance when
presented with changes. Models can be used to represent
the desired behavior or to represent the desired testing
strategies and testing environment. FSMWeb is a black box
model-based testing, and regression testing approach for web
applications. This paper elaborates, extends the previous
works on FSMWeb’s features, and introduces patching as a
regression testing technique in which test cases are repaired
(patched) versus being fully regenerated. Patching may lead
to cost saving when regression testing. These enhancements
lead to construction, and analysis of cost models used to
compare various regression testing approaches resulting to
selection of a regression testing approach that achieves a
favorable (reduced) cost. The determination of favorable cost
is subject to number of assumptions, and tradeoffs.

Index Terms—FSMWeb, regression testing, patching, cost
model, tradeoffs.

I. INTRODUCTION

The FSMWeb test model was first introduced by An-
drews et al. [1] as a test model for web applications.
The authors chose to use the Finite State Machine (FSM)
as a test model due to the nature of most web ap-
plications. Namely, the application services are fulfilled
via navigation among the web pages. FSM has inherent
limitations including a tendency towards state explosion
[2]. FSMWeb is constructed with two main features to
overcome FSM’s limitation: 1) the creation of FSMs in a
hierarchical structure, and 2) the annotation of transitions
(edges) among the FSMs with input parameters and pred-
icates followed by an action (e.g. press of a button). The
use of predicates achieves a higher rate of compression
than the annotation of inputs on transitions (edges) used
in Extended FSM (EFSM) [3]. The two aforementioned
features in FSMWeb achieve both a high rate of state
compression and scalability [4]. The presence of an action
at the end of a string of input parameters implies a
transition to the succeeding state. In this way, the model
only represents the main functionality, also known as the
happy path. The handling of failures and error recovery
are subjects of additional enhancements to FSMWeb and
is left for future research. The FSMWeb data structure is
comprised of nodes (states) and edges (transitions). The
FSMWeb is bounded by a start web page node (Ws) and
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a terminating web page node (We) and serve in test case
generation. Ws and We demarcate FSMWeb’s boundaries;
Ws and We could be dummy or physical nodes [1].
Except Ws and We, all other nodes are either cluster or
Logical Web Page - LWP nodes (A LWP is comprised of
a state and set of inputs followed by an action (e.g., press
of a button). A physical web page contains one or may
contain many LWPs) [1], [5]. Figures 1a, 1b, 1c, and 1d
represent FSMWeb in various levels of abstraction (i.e.
Abstract FSM - AFSM [1]), refinement, or in between.
The use of subsystems (ss) and components (c) terms is
semantic and implies the existence of subsystems in a
more abstract level in relation to components. However,
structurally both subsystems and components are cluster
nodes that when decomposed result in a set of nodes
(e.g. subcluster, and/or LWP) and edges that connect
the nodes. In this paper, use of clusters achieves state
compression and therefore scalability as a result [4]. There
could exist many cluster hierarchies in FSMWeb based on
complexity of a web application. For example, Ws could
represent a physical portal page for a commercial airline
web application, and analogously We could represent a
web page with an end-of-application exit message; AFSM
could represent the entire commercial airline operations;
reservation, marketing, maintenance could be represented
by subsystems; flight schedule, pricing, seating could
represent components of reservation subsystem, and flight
reservation (by inputting the traveler’s information) could
be represented by one or many LWPs.

The cluster nodes includes two dummy entry (nDI ) and
exit (nDO) nodes. The nDI and nDO nodes are means of
keeping the various (including graphical) representations
of the model in a Single Entry/Single Exit (SESE) [6]
configuration and aids in the test generation process in
the different levels of hierarchy. The justification for use
of dummy nodes is explained in the later sections. For
a given thread of hierarchy, the successive (recursive)
decomposition of cluster nodes results to a set of LWP
node(s) and connecting edge(s). The successive decompo-
sition of all the cluster nodes in the model results in the
most refined representation of the model in which, except
for the Ws and We nodes, all other nodes are LWP and
are connected through edges. Edges represent the input
parameters, the predicates, are followed by an action,
and are always represented in the most refined level (not
subject to decomposition). Edges are classified as either
1) external, or 2) internal (inspired by [7]). An edge is
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Fig. 1: The FSMWeb model depicted at subsystem,
component, and LWP levels

classified as an external edge when the edge is incident on
a cluster node (i.e. either entering into a cluster node or
exiting out of a cluster node). If an edge is not external
then it is internal (i.e. an edge that connects two LWP
nodes). In the most refined representation of FSMWeb
(i.e. when all nodes are of type LWP, except the Ws and
We nodes), classification of edges into external or internal
[7] aids in determining the cluster node boundaries. The
external and internal classification of edges is used to
assess the scope of the impact on test cases in the presence
of change to edges. Except for Ws and We nodes,
each and every hierarchical level of FSMWeb could be
comprised of a mix (heterogeneous) of cluster and LWP
nodes.

FSMWeb could also be used for maintenance work.
Maintenance may involve fixing errors (corrective), en-
hancing features (perfective), or modifying or incorporat-
ing new features as required (adaptive) [5]. Regardless
of the nature of the changes, web applications need to be
regression tested to ensure that the intended functionalities
are fulfilled. The main goal in regression testing is to
reveal as many faults as possible in the SUT (System
Under Test) while reducing the required resources (per-
sonnel, costs, time to delivery, etc.). In large applications,
selective regression testing is preferred in comparison to
retest-all [8] since the former achieves a reduction in the
required resources assuming that the number of affected
test cases due to changes are small in comparison to the
total number of test cases. Andrews et al. [5] applied
classification to FSMWeb as a vital step in selective
retesting in order to classify the test cases that are no
longer valid (obsolete), the test cases that have not been
altered but need to be re-run to gain confidence for
their validity (retestable), and the test cases that have
not been affected (reusable) (reusable classification was
first introduced by Leung et al. [9]). The classification

of test cases are followed by executing the retestable test
cases that results to two additional groups of obsolete
and reusable test cases based on whether the execution of
retestable test cases fails or succeeds. Both the obsolete
test cases resulted from classification step and the test
cases resulted from executing the retestable test cases
need to be replaced by replacement test cases to maintain
the existing functionalities. Also, there may be a need
for generation of test cases for new functionalities [10],
[11]. A salient feature of this paper is a use of patch-
ing as a regression testing scheme. Patching focuses on
repairing obsolete test cases resulting from a test case’s
classification. In this paper, the prevailing assumption is
that test case generation (or regeneration) incurs higher
cost (effort) in comparison to patching under certain
circumstances (minor changes). The preceding is a major
assumption by which four different regression testing cost
models are compared in this paper. The cost models
are constructed for regression testing approaches using
classification, classification followed by patching, retest-
all, and brute force. The computations, and analysis (com-
parisons) of these costs are subject to certain assumptions,
and/or tradeoffs.

The contribution of this paper is as follows: 1) for-
malization of the FSMWeb and formalization of test case
generation (these works are missing in [1] and are vital
steps in carrying forward), 2) introduction of patching
under certain conditions as an alternative to full test case
regeneration, and 3) formulation of cost models through
which the aforementioned regression testing approaches
are compared resulting to making a decision to select the
most favorable regression testing approach. This paper
is organized as follows: Section 2 describes the issues that
sets this work apart from the other related works. Sec-
tion 3 formalizes FSMWeb model, describes FSMWeb’s
model characteristics (properties), and devise a set of rules
for its construction and maintenance. Section 4 explains
and formalizes test generation using FSMWeb’s model.
Section 5 describes test case classification in regression
testing using FSMWeb. Section 6 introduces test case
patching as an alternative to full test case regeneration
under some conditions. Section 7 proposes cost models
used in regression testing in order to examine tradeoffs
through cost analysis by comparing the selective retesting
using classification, patching, retest-all, and brute force
regression testing approaches. Section 8 draws conclu-
sions and suggests future work. Section 9 pays tribute to
individuals that helped in embellishing this paper.

II. RELATED WORKS

This section includes some of the recent related web-
based application testing/regression testing works in a
chronological order starting with the oldest papers.

Leung and White [9] proposed a cost model to com-
pare selective retesting versus retest-all techniques. Mal-
ishevsky et al. [12] presented a cost-benefit and trade
offs for regression testing concentrating on test case
selection, test suite reduction, and test case prioritization.
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The Authors’ technique is evaluative( versus predictive)
and is not clear if their approach includes regression
testing for web applications. The works by Binkley
[13]–[15] addressed reduction in regression testing cost
using dependence graph/slicing, considering semantic dif-
ferences/similarities, and employing algorithms (e.g. com-
mon execution patterns). Sant et al. [16] used logged
user data to construct web application’s models using
Markov assumptions resulting to automatically generating
test cases. Neto et al. [17] presented a survey of model-
based testing approaches classifying testing levels, soft-
ware domains, level of automation, etc. Do and Rothermel
[18], [19] proposed a cost-benefit model for regression
testing techniques among which is the cost of repairing
obsolete test cases (COr). However, the works in [18],
[19] do not entail the make up of the COr. Park et
al. [20] presented historical value based approach for
effective regression testing using prioritization that is
cost aware. The authors used Average Percentage of
Faults Detected ( [21]) as a measure correctness for their
approach. Marchetto et al. [22] proposed a state-based
testing for Ajax-built web applications. This work in-
volved manipulation of Document Object Model (DOM)
of the web page and abstraction in deriving a state model.
Test cases were resulted from the state model by deriving
them from semantically interacting events. Alshahwan et
al. [23] proposed automated session data repair in web
applications’ maintenance work. The authors used white-
box testing approach to detect changes followed by repair
actions. Memon’s work [24] concentrated on Graphi-
cal User Interface (GUI) regression testing. The author
used repairing transformation to salvage obsolete uses
cases. The author’s work involved white-box approach
for test repairs. The preceding work was followed by
Huang et al. [25] in repairing test cases using Genetic
Algorithm (GA). Briand et al. [26] presented regression
test selection automation hinging upon UML designs.
The authors’ approach was based on design changes
and the three test categories of reusable, retestable, and
obsolete. Mesbah et al. [27] proposed a technique to cope
with non-deterministic behavior of Ajax (web) application
when regression testing. The authors suggested to use
a set of oracle comparators, template generators, and
visualizations for test failures. Sprenkle et al. [28] used
logged user behavior to construct a usage-based model of
web application navigation. This work resulted to creating
abstract test cases. Artzi et al. [29] presented an automated
test generation for JavaScript by constructing a feed-back
framework. Marback et al. [30] used a regression testing
approach for web applications written on PHP. The ap-
proach used dependence graphs employing abstract syntax
trees to patch test cases considering numeric and string
input values. Sampath et al. [31] proposed formalization
work of test case prioritization, reduction/minimization,
and selection using hybrid criteria (remix of Rank, Merge,
and Choice). The authors claimed outperformance of
hybrid criteria over the constituent criteria making up the
hybrid criteria.

The work in this paper is different from the preceding
works despite of the overlapping topic coverage. This
difference is due to hierarchical feature of FSMWeb
which advocates state compression and hence scalability
as a result. In regression testing, this feature may help
to localize (by considering external edges) the affected
nodes and edges under certain conditions and therefore
help to isolate the test cases that are affected by changes.
Finally, test case patching (versus fully regenerating the
obsolete test cases) for minor changes and under special
circumstances may contribute to cost saving when regres-
sion testing.

III. FSMWEB TEST MODEL

The FSMWeb’s data structure model is a Hierarchical
predicate FSM (HFSM) test ready model for web appli-
cations and is defined as follows:

HFSM = {Ml}nl=0 (1)

where M represents a model (i.e. FSM), and the subscript
l = 0, 1, 2, 3, ..., n indicates the level where the FSM
is located with M0 representing the most abstract level
(i.e. AFSM = M0 [1]). The models (Ml) consist of the
following parameters

Ml = < S,P, T >

where S is the set of states (s ∈ S), s0 ∈ S is the initial
state, sf ∈ S is the final state, and P is the set of predicates
(p ∈ P). Ammann et al. [6] has defined predicate as an
expression and a set of constraints that evaluates to a
boolean value (i.e. true or false). In this paper, we only
model valid actions (See “happy path” in section I). So,
each and every predicate must evaluate to true.

P = < I, ACT >

, I is a set of inputs (i ∈ I), and ACT is a set of actions
(act ∈ ACT). An action (act) triggers a transition given
properly formatted inputs (see [1] for input constraints
and types).

p = i1, i2, i3, ..., in, act

T is defined as a transition function where T: S × P
→ S (the set of edges, E can be constructed via the
transition function T). The formal definition of FSMWeb’s
data structure excludes the output parameter (O) since the
states (S) cover the outputs (O ⊆ S). Hence, states (S)
serve as partial test oracles (i.e. si × {ii1, ii2, ii3, ...} →
si+1, is considered a partial test oracle since otherwise
si+1 would have not occurred). States (S) are comprised
of Logical Web Pages (LWPs) and clusters (CL), where
S = LWP ∪ CL and LWP ∩ CL = ∅.

A. FSMWeb as a Partitioned Test Ready Model

In FSMWeb, low-coupling among subsystems (cluster
nodes) or among components (cluster nodes) [1], [5] is the
desirable criterion to maintain minimality in test sequence
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generation work. Partitioning is not always possible since,
in some cases, individual web pages may represent a sin-
gle function (e.g., login page). However, a single function
that is represented by a subsystem could be viewed by the
process of applying a chain of abstraction [7].

The partitioning decomposes a web application into its
constituent elements of web pages (page), components
(comp), and subsystems (ss). The essential feature to
enforce at the time of partitioning is to ensure that
elements (i.e. pages, components, and subsystems) are
disjoint with respect to one another both in the peer levels
and through out the hierarchical levels. Stated differently,
there should not exist any replicated nodes (cluster or
LWP) in FSMWeb model. The enforcement of disjoint
feature at the time of partitioning is a factor in keeping the
number of the nodes in a manageable quantity, and con-
sequently leading to FSMWeb scalability. An FSMWeb
partitioning is specific to a web environment in contrast
to AH-Graphs [7] in which the nodes’ types for a given
level of hierarchy are homogenous and the refinement of
the graph could go on in an unpredictable manner.

B. FSMWeb Properties

In this section, we devise a set of FSMWeb proper-
ties by restating the preceding sections. The following
properties must be observed during FSMWeb’s model
construction and maintenance.

1) Graph Type: FSMWeb is a Deterministic Anno-
tated/predicated Directed Graph (DADG). Annota-
tions/predicates on edges describe a set of con-
straints for the transitions.

2) Model Boundaries: The starting page Ws and the
terminating page We demarcate the model bound-
aries. Ws and We may be represented by physical
web pages or could be dummy nodes [1]. Ws may
have in/out edges while We has only in edges. A
full test path is defined as sequence of one or many
edge-node-edge, bounded by Ws and We.

3) Reachability: Except for the Ws and We, all other
nodes must be reachable from Ws and must ulti-
mately lead to We (i.e. FSMWeb cannot contain
disconnected subgraphs/orphan nodes).

4) FSMWeb’s Contingent Node-Existence Rela-
tionship: Since the successive decomposition of
FSMWeb, except the Ws and We, must be entirely
comprised of LWPs and edges (transitions), hence,
the presence of a LWP in a thread of hierarchy im-
plies the potential existence of subsystem(s) and/or
component(s). i.e. the existence of a subsystem
and/or component is contingent upon the even-
tual presence of a LWP in a thread of hierarchy.
Otherwise, their presence are not allowed. Further,
roles of subsystems and components for a given
thread of a hierarchy are interchangeable based on
semantic of the software application under study.
The items 4a, 4b, and 4c are the formalization of the
FSMWeb’s contingent node-existence relationships
and are summarized in Table I. The following

relations exist among the subsystems, components,
and LWPs in FSMWeb:

a) The presence of subsystems (ss)/components
(c) implies that subsystems/components lead
to one or more LWPs (page). Otherwise, sub-
systems/components cannot exist.
(∀ss ∈ (f) = ∅) ∨ ((∀ci ∈ comp(ss) ∨ ss) =

∅) | (pagei(ci) = ∅)
∨

(∀ss ∈ (f) 6= ∅) ∩ ((∀ci ∈ comp(ss) ∩ ss) 6=
∅) | (pagei(ci) 6= ∅)

where ss, c, and page are instances of sub-
systems, components, and web pages (LWPs),
respectively.

b) Components cannot exist without their corre-
sponding subsystems (components do not have
intrinsic value of their own. Their existence is
to facilitate creation of layer(s) of indirection
when a subsystem needs to be further decom-
posed due to its level of complexity).
(∀ci ∈ comp(ss) 6= ∅) ∨ (∀ci ∈ comp(ss) =

∅) | (∀ss ∈ f) 6= ∅)
c) Presence of a subsystem implies existence of

one or more LWPs irrespective of component’s
existence.

((∀ss ∈ f) 6= ∅) ∨ ((∀ss ∈ f) = ∅) |
(∀pagei ∈ ci) 6= ∅)

In Table I, the designation of zero and one under
the columns, ss, c, and page, represent absence
or presence of subsystems, components, and pages
considering their inter-dependent relationships.

TABLE I: FSMWeb’s Contingent Node-Existence
Relationship

Row
# ss c LWP Result Explanation

1 0 0 0 Allowed An empty hierarchical path
(null case)

2 0 0 1 Allowed A single function

3 0 1 0 Not
Allowed

A clustered node must
terminate to a LWP node

4 0 1 1 Allowed
Roles of components and

subsystems are
interchangeable

5 1 0 0 Not
Allowed

A Subsystem can not exist
without its constituent LWPs

6 1 0 1 Allowed
Roles of components and

subsystems are
interchangeable

7 1 1 0 Not
Allowed

clustered nodes must
terminate to a LWP node

8 1 1 1 Allowed All levels exist

5) Heterogeneity in Hierarchical Levels : The en-
tities (subsystems, components, LWPs) may co-
exist alongside of the other entities at the same
hierarchical level. Entities at the same hierarchical
level may navigate to the other entities at the same
or different hierarchical levels.

6) Coupling: Given the two states Si, and Sj (i 6= j)
, we say Si is the predecessor node, if Si occurs

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1793

© 2014 ACADEMY PUBLISHER



	  
	  Node	  1	  

Clustered	  node	  
to	  be	  expanded	  

Node	  2	  

Node	  1	  

Node	  2	  

e1	   e2	  

e3	  

e4	  

e5	  e6	  

(b)	  

Node	  1	  

Node	  2	  

e1	   e2	  
e3	  

e4	   e5	  

e6	  

nDI	  

⨁

nDo	  

(c)	  (a)	  

⨁

Fig. 2: Transformation of Multi-edge Connection Graph
to SESE Graph

before Sj with respect to Ws for a given full test
path. In this case, Sj is the successor node in
relation to Si with respect to Ws in a full test path.
We say Sj is coupled to Si if changes in Si affect
state of Sj (Ammann et al. [6] uses the term dom-
inant to refer to predecessor node, when coupling
is involved). FSMWeb must be constructed in such
a way (considering the application’s semantics) in
order for the dependent nodes to follow the node
on which they depend. Modifications to predecessor
node(s) may affect the succeeding node(s).

7) Classification of Edges: Similar to [7], the edges
are classified into 1) external and 2) internal. An
edge connecting a pair of LWP nodes is considered
an internal edge. Otherwise, the edge is said to be
external.

8) Single Entry/Single Exit (SESE): All transitions
(edges) among nodes are represented through a
single edge (entering or exiting to and from nodes).
The Single Entry/Single Exit (SESE) [6] edges
serve to keep FSMWeb model in a simpler graphical
representation as opposed to multiple-edge connec-
tion among nodes (see Fig. 2(b)). The nDI and
nDO represent dummy in and dummy out nodes,
respectively. nDI , and nDO could be viewed as
mechanisms through which a single incoming edge
expands into one or many edges upon entering into
a cluster node and subsequently collapses multiple
edges into a single edge upon exiting the cluster
node. The annotation of external edges with exclu-
sive OR symbol (⊕), indicates that the single edge
(in or out) incident on a cluster node maps to one
and only one edge within the cluster node. The use
of exclusive OR as an edge-subscript is strictly for
simpler graphical representation purposes to enforce
SESE property - the actual selection of a single
edge from many choices of edges occurs within the
action (act) parameter of the annotated edge.

C. FSMWeb Graphical Notations

The followings is a set of graphical notations as aids
when depicting FSMWeb during model construction and
maintenance.

1) Nodes are depicted by ovals.
a) Clustered/sub-cluster nodes are depicted by

dashed contour lines (implying decomposabil-
ity).

b) LWP nodes are depicted by solid contour lines
(implying non-decomposability).

c) Navigation among nodes (cluster and/or
LWPs) are represented through single edges.

2) Edges are depicted with solid (implying non-
decomposability) directed arrows where the arrow
direction implies direction of the transition. The
direction of an arrow indicates whether the edge
is entering into (in) a node or exiting out of a node.

3) A subscripted-Exclusive OR (XOR) notation for an
in/out edge for a cluster node is used if the in/out
edge through a dummy nDI /nDO fans out to the
different nodes within that cluster node (see Fig. 2
(c)). For example, an incoming XOR-subscripted
edge, ea⊕b⊕c, fans out to distinct edges of ea,
eb, and ec within the cluster node. A bracketed
variation of XOR-subscripted edge notation is used
when the fan out includes more than three edges
within the cluster node. For example, an incoming
XOR-subscripted edge, e[a1⊕a5] fans out to distinct
edges of ea1, ea2, ea3, ea4, and ea5 within the
cluster node.

4) The nodes, and the edges are depicted in bold when
they are affected in the presence of changes to
FSMWeb. For example, a newly added cluster node
will be shown in a contour line and bold, etc.

IV. TEST GENERATION IN FSMWEB

Generally, the process of test generation starts with
selecting one or many test coverage criterion/criteria (crit)
that fulfill a set of test requirements (TR). The individual
test requirements (tr ∈ TR) may or may not utilize the
same test coverage criterion [6]. Nonetheless, the test
coverage criterion must fulfill the given test requirement
(the reverse holds true as well: a test requirement is
realized through proper selection of a test criterion) in
order to be feasible; Otherwise, it is infeasible. i.e. The
selection of improper coverage criterion for a test require-
ment leads to infeasibility. In this paper, we assume that
coverage criteria are properly selected for their respective
test requirements. In [6] there is a listing of coverage
criteria and subsumption relationships. In this paper, we
avoid test coverage criteria that involve use of value (e.g.
definition-use pairs, etc.) since the focus of this work are
abstract test cases.

A. Formalizing FSMWeb Test Generation

A test case is a set of inputs corresponding (through
test case execution) to a set of expected (test oracle)
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outputs. In FSMWeb, the shortest test path is identified
by a current state (si), an out edge from si (ei), and the
next state (si+1). Longer test paths are realized through
cascading: assuming that si+1 is the new current state,
ei+1 is the new out edge, and si+2 is the next new state,
etc. A test path bounded by Ws and We, is a full test
path and contains only LWPs connected by internal edges;
otherwise, it is a partial test path. In this paper, the goal
is to produce a test suite comprised of all full test paths.
In FSMWeb there are two somewhat similar methods in
which test cases could be generated. However, both of the
methods result to the generation of identical suite of test
cases.

The first method, starts at the most refined level of
FSMWeb (i.e. where there are only LWPs and connecting
(internal) edges) and generates partial test paths bounded
by nDI and nDO nodes. The number of partial test
paths depend on both the direction of edges and the
coverage criterion (we are considering edge coverage
in this paper). The next step is to consider the more
abstract node (moving toward more abstract levels) and
prepend node(s) and edge(s) on the nDI side to the
partial paths and append node(s) and edge(s) on the nDO

side to the partial paths, etc. This process terminates
when the prepending/appending actions encounter Ws,
We nodes. The first method could be viewed as full path
test generation from inside out.

The second method considers the outside in approach
where the test paths are initially bounded by Ws and We

but contain at least one cluster node. By successively ex-
panding the cluster nodes and prepending/appending the
partial test paths, the full test paths are generated. In this
section, we formalize the test generation (TG) outlined
in [1] by incorporating the selection of coverage criteria
(crit) and partial path aggregation (agg) parameters into
the model’s data structure (equation 1). Partial paths are
the test paths that are not bounded by Ws and We nodes.
The aggregation is the consolidation of the partial paths
(through appending and/or prepending) the nodes in such
a way to elongate the test paths. A full test path is a test
path that is bounded by Ws and We nodes, contains only
LWPS, and connected by edges.

Now, we formalize TG as a test generation function
where TG: HFSM × {critl, aggl}nl=0 → TC
, where l represents the various levels of abstractions, and
TC is a set of test cases. Substituting equation 1 into the
aforementioned test generation function (TG), we obtain

TG : {Ml, critl, aggl}nl=0 → TC (2)

Note: equation 2 has ignored the test value selection
step outlined in [1] since the focus of this work involves
abstract test cases. It is possible to apply different cov-
erage criteria in the different levels of hierarchy for the
same hierarchical thread of FSMWeb. However, use of
the coverage criteria belonging to the same subsumption
coverage hierarchy [6] in the same thread of the model’s
hierarchy may produce the same set of partial test paths
(and perhaps the same set of test cases). We call this side
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Fig. 3: Test Cases Generation

effect coverage masking where the choice of a particular
coverage criterion may be masked by another coverage
criterion under certain conditions due to hierarchical
nature of FSMWeb. For example, when edge coverage
criterion and edge-pair coverage criterion (both belonging
to the same level of subsumption coverage hierarchy [6])
are applied in the same thread of hierarchy, they may
produce the same test case (the same test path) depending
on the specific order of abstraction levels in which they
are applied. Test case generation could be done manually
or could be automated using the external edges and nDI

and nDO nodes.

B. Test Case Generation Example

Using Fig. 3, we illustrate the process of test case gener-
ation in FSMWeb using the first method. The aforemen-
tioned figures depict the nc cluster node before, and after
expansion. Since nc node after expansion only contains
LWP nodes and edges, we create the partial paths for nc

cluster node. We choose the edge coverage as a coverage
criterion of choice for this example.

1) partial-path 1: nDI , e1, n3, e4, n4, e6, nDO

2) partial-path 2: nDI , e2, n5, e5, nDO

3) partial-path 3: nDI , e1, n3, e7, n5, e5, nDO

The next step is to aggregate n1, and n2 (by replacing
nDI and nDO with n1 and n2, respectively) with partial-
path 1 through partial-path 3, to obtain new partial-path
1A through partial-path 1C.

1) partial-path 1A: n1, e1, n3, e4, n4, e6, n2

2) partial-path 1B: n1, e2, n5, e5, n2

3) partial-path 1C: n1, e1, n3, e7, n5, e5, n2

The last step is to aggregate (by prepending Ws followed
by es, and appending ee followed by appending We to)
partial-path 1A through partial-path 1C, to obtain test
paths TC1 through TC3 as follows:

1) TC1: Ws, es, n1, e1, n3, e4, n4, e6, n2, ee, We

2) TC2: Ws, es, n1, e2, n5, e5, n2, ee, We

3) TC3: Ws, es, n1, e1, n3, e7, n5, e5, n2, ee, We
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, where es, and ee are outgoing, and incoming edges
from/to Ws and We, respectively. Ws, We, es, and ee

are not shown in Fig. 2a and Fig. 2b for the purpose of
brevity.

V. REGRESSION TESTING USING CLASSIFICATION

The test case classification approach introduced by
Andrews et al. [5] uses a general regression testing
framework [8]. We formalize types of changes to the
FSMWeb models based on changes to the web application
(its inputs, Logical Web Pages - LWPs, and navigation be-
tween them). We adopt the approach in [9] to classify tests
into reusable, retestable, and obsolete tests by specifying
rules for classification based on the types of changes to
the model. In this context, the regression testing problem
for the FSMWeb model becomes the following:
Given a FSMWeb model, HFSM, a test set T (used to test
HFSM) and a modified version of HFSM, HFSM′, find a
way of making use of T, to gain sufficient confidence in
the correctness of the application modeled by HFSM′.
Similar to [8], we propose the following steps as an
outline of our approach to solve this problem:

1) Identify and classify changes made to HFSM that
result in HFSM′. Specify the effect of each type of
change on tests t ∈ T . Using these rules, classify
tests in T into mutually exclusive sets of test cases:
obsolete (OT ), retestable (RT ), and reusable (UT ).

2) Use the results of step 1 to select a set of retestable
test cases T ′ ⊆ RT that may reveal change-related
faults in HFSM′.

3) Use T ′ to test HFSM′.
4) Determine if any parts of the system have not been

tested adequately and generate a new set of tests
T ′′.

5) Test the web application with T ′′.
Generally speaking, the two types of changes are node
changes and edge changes. After these changes have been
identified, they need to be classified as to their impact
on existing test cases. Further, these changes could be
path affecting changes (PAC) or non-path affecting (NPC)
changes. This determines whether tests are obsolete,
retestable, or reusable.

The test paths that visit deleted or modified nodes
and/or tour the deleted or modified edges become ob-
solete. The test paths that have node(s) or edge(s) added
and are PAC become obsolete (o). The test paths that have
node(s) or edge(s) added and are NPC become retestable
(r). The test cases that are not obsolete nor retestable
are reusable (u) [5].The interested reader should consult
section 4 in [5] for test case classification details. Table
II is a summary of the aforementioned discussion.

VI. TEST CASE PATCHING

In most regression testing approaches [3], [32], [33],
the test cases affected by changes (whether major or
minor) are regenerated. However, the test cases affected

TABLE II: Test Case Classification into Obsolete (o),
Retestable (r) based on Edge Coverage

PAC NPC

NODE
ADD o r
DEL o o
MOD o o

EDGE
ADD o r
DEL o o
MOD o o

by changes could be repaired [24] rather than performing
a full test case regeneration. This paper refers to repairing
as test case patching. Patching requires test case clas-
sification [5] as a vital step in improving testing costs.
Patching becomes favorable when only minor changes
are needed for a large amount of obsolete test cases.
The term, minor is context sensitive with respect to the
nature of a change. For example, a change involving
variable name modification affecting many test cases is
considered minor (since fixing entails replacing all the
previous variable names with the new variable names)
whereas a variable used for computations or for logical
considerations (e.g. branching to different pieces of code,
etc.) is not considered to be a minor change because the
rest of the test path may be affected as a result of the
change. Patching may lead to cost saving depending on
nature of the change and the number of affected test cases.
The following section enumerates patching rules as a set
of guidelines when patching may or may not lead to cost
savings.

A. Rules of Patching

The followings are rules of thumb when patching is
favorable versus full test case regeneration:

1) When the change is a non-path affecting change
(NPC).

2) When there are a small number of changes. small
could be defined as a ratio of the number of changes
over the number of test cases and compared against
a desired threshold.

3) When the changes are local (versus design changes
that may affect many test cases, many elements per
test case, and/or cross cluster node boundaries).

4) When the changes do not affect the test path length
(i.e some changes may elongate or shorten test
path lengths).

The followings are rules of thumb when patching is NOT
favorable versus full test case regeneration:

1) When the change is a path affecting change (PAC).
a) PAC occurs towards the beginning of the test

path (making most of the test path unusable).
b) The change affects a shared element across

many test cases. The change propagates (RIP:
Reachability, Infections, and Propagation [6])
to other test cases as well.

1796 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER



c) When the changes involve design or high-level
requirement changes (e.g. use case).

B. Patching Procedure

The following is the procedural (algorithmic) approach
to patching for a given set of obsolete test cases. Patching
does not apply to obsolete test cases that are no longer
valid due to high level requirement changes.:

1) When the change (adding, deleting, modifying)
involves an edge or a LWP node:

a) Identify the affected test case corresponding
to the change, and locate the change (e.g. the
affected edge).

b) Determine whether the change is PAC or NPC.
c) If PAC, generate a new partial path starting

from the affected element (edge or LWP node)
to the end of the test path replacing the af-
fected partial path. This applies to longer test
path lengths. For short path lengths test case
regeneration is more appropriate.

d) If NPC, replace the affected element (edge
or LWP node) in the test path with a newly
generated element.

2) The cases involving multiple edges or LWP nodes
of type NPC follow the handling of multiple cases
of single edge/LWP nodes with NPC-type changes.

3) In the cases involving multiple changes to a single
test case of mixed NPC and PAC types, the first
PAC change closest to the beginning of the test path
dominates the subsequent changes (whether PAC or
NPC).

4) When the change involves conversion of a LWP
node to a cluster node:

a) Replace the LWP node with a newly created
cluster node with corresponding Single Entry
(nDI ), and Single Exit (nDO) nodes.

b) Create partial paths and aggregate them with
the test paths that tour the newly created
partial paths (See section IV-B).

5) When the change involves the conversion of a
cluster node to an LWP node:

a) For all the paths pt that are members of the
abstract test case (pt ∈ AT ), replace the LWP
to be node-changed (LWPnc) with the new
cluster node (CLi). Assuming that the external
edges of CLi are represented by ex1 ,...,exm

then
b) For all the paths that belong to ta that tours

exi (i=1,...,m), replace partial path exi ,...,exj

with LWPnc before path aggregation.
or let pt be the paths that visit CLi and replace
the predicate on the outgoing edge with ptnc

and annotate the node with nc (see Fig. 4).
The follwing is a formalization of the two
aforementioned steps: Let ex1 ,...,exm be the
external edges of CLi.

Fig. 4: Changing a Cluster Node to a LWP Node

Then, ∀pt ∈ AT : pt tours exi
(i=1,...m)

replace partial path exi
,...,exj

with LWPnc

VII. COST AND TRADE OFFS

In the context of this paper, cost is the mechanism
for comparing several different regression testing ap-
proaches in order to select the most favorable approach
(reduced cost). Additionally, cost refers to required re-
sources. These resources may include analysis, set up,
generation/regeneration, execution, etc. Our work is
more focused in several respects: 1) it concentrates on
the costs associated with obsolete test cases (the iden-
tification, execution, and regeneration), and the use of
a patching approach for the further cost reduction of
obsolete test cases, 2) it considers only black-box test-
ing/regression testing approaches, and 3) it only considers
typical web applications (web applications such as Ajax
with specially-crafted user interfaces are not considered).
A comprehensive cost model combining all factors are
beyond the scope of this paper and is left as a future
work.

Similar to [9], [18], [19], we start by constructing
cost models for selective retesting using classification,
patching, retest-all, and brute force regression testing
approaches followed by selecting the parameters that in-
fluence the cost for a given approach subject to certain as-
sumptions. Next, we analyze (compare) the costs incurred
in patching versus retest-all, and brute force approaches.
Arithmetically, the comparison between two different
regression testing approaches amounts to subtracting the
cost of one approach from the other approach, simplifying
- when identical parameters exist, and checking whether
inequality holds. Trade offs are considered in the post
cost-analysis phase of the process in order to determine
the most favorable cost.

A. FSMWeb Regression Testing Cost Model

To construct a cost model for regression testing ap-
proaches, we start by categorizing the costs into three
groups for Selective retesting using classification, Retest-
all, and Brute-Force. The high level cost-related param-
eters associated with Selective Regression Testing are:

1) Classification of the existing test cases (classT ),
2) Execution of the existing test cases (execT ),
3) Generation of new test cases (genT ′′ ),
4) Execution of new test cases (execT ′′ ).
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The high level cost-related parameters associated with
Retest-all Regression Testing are:

1) Generation of all test cases (gen),
2) Execution of all the test cases (exec).

The high level cost-related parameters associated with
Brute-Force Regression Testing are:

1) Execution of existing test cases (execT )
2) Validation of existing test cases (valT ),
3) Generation (potentially) of brand new test cases

(genT ′′′ ).
At high level, table III summarizes the costs for each
category of regression testing. CSR−C , CRA, and CBF

represent costs for selective retesting using classification,
retest-all, and brute force, respectively.

TABLE III: Different Cost Categories and Associated
Parameters in Regression Testing

Types of Regression
Testing

Costs

Selective retesting using
classification

CSR−C = classT + execT + genT ′′ +
execT ′′

Retest-all CRA = gen + exec
Brute-Force CBF = execT + valT + genT ′′′ + execT ′′′

B. Cost Computation using a Classification and Patching
Approaches

We compute the cost of selective retesting using clas-
sification approach (CSR C) with respect to obsolete test
cases. First, the test cases (T) are classified into 3 distinct
(non-overlapping) set of test cases of, obsolete (OSR C),
retestable (RSR C), and reusable (USR C). Second, by
executing the retestable test cases, a portion of test cases
pass and become reusable (UR−SR C - implying they are
reusable and must be added to the pool of the reusable
test cases) and the other portion of test cases fails and
become obsolete (OR−SR C - implying they are obsolete
and must be added to the pool of the obsolete test cases).
Third, by analyzing the newly formed pool of the obsolete
test cases (OR−SR C + OSR C), we determine whether
the obsolescence is due to elimination of application
functionality(ies). If the functionality(ies) still exist, then,
replacement test cases are generated in order to maintain
the existing functionality(ies) (Orep−SR C). Otherwise,
the old functionality(ies) no longer exist and there is no
need for generation of test cases (skip test case gen-
eration - Oskip−SR C). Last, the generated replacement
test cases are added to pool of the reusable test cases
(USR C +UR−SR C) and further combined with new test
cases (Onew−SR C) for new functionality(ies).

The only difference between patching the test cases
and the classification approaches is in the analysis of the
combined obsolete test cases (OR−SR C +OSR C). In the
patching approach, instead of generating test cases for
replacement purposes, the existing (obsolete) test cases
are analyzed and portion of them are patched (repaired).
Figure 5 is the depiction of the foregoing elaboration and

(T)	  test	  suite	  (in	  presence	  of	  changes)	  

USR_C	   RSR_C	   OSR_C	  

USR_C+UR-‐SR_C	  
	  

OR-‐SR_C+OSR_C	  
	  

Classifica=on	  

exec	   exec	  

new	  –	  if	  needed	  

(T’’’)	  test	  suite	  to	  replace	  T	  

replace	  

Oskip-‐SR_C	  
	  

Orep-‐SR_C	  
	  

analyze+gen	  

+	   +	  
+	  
+	  

analyze	  

Oskip-‐SR_C	  
	  

Opatch-‐SR_C	  
	  

analyze	   analyze+patch	  

Fig. 5: Regression Testing using Classification and/or
Patching

it shows the patching work using dash-line format.

CSR C = Cclass + (Cexec ∗RSR C)+
Can ∗ (OR−SR C + OSR C)+
(Cgen ∗Orep−SR C) + Cnew SR C (3)

Cpatch = Cclass + (Cexec ∗RSR C)+
Can ∗ (OR−SR C + OSR C)+
(Cpatch ∗Orep−SR C) + Cnew SR C (4)

Cclass, Cexec, Can, Cgen, and Cpatch represent costs of
test case classification, execution, analysis, generation,
and patching, respectively. The comparison of the cost of
selective regression testing using classification (equation
3) and cost of regression testing using patching (equation
4) reveals that the theoretical difference between the two
approaches is in the 4th terms. This point emphasizes that
the patching approach requires some of the steps in the
classification approach.

C. Cost Computation using a Retest-all Approach

The computation of the cost for the retest-all approach
follows the same methodology as outlined in the section
VII-B. First, execute the test cases (T) resulting to some
test cases passing and becoming reusable (URA), and
some other test cases failing and becoming obsolete
(ORA). second, analyze the obsolete test cases (ORA) to
determine whether the obsolescence is due to elimination
of application functionality(ies). If the functionality(ies)
still exist, then, replacement test cases need to be
generated maintaining the existing functionality(ies)
(Orep−RA). Otherwise, the old functionality(ies) no
longer exist and there is no need for generation of test
cases (skip test case generation - Oskip−RA). Last, the
newly generated (replacement) test cases need to be
combined with the reusable test cases (URA).

CRA = (Cexec ∗ T ) + (Can ∗ORA) + (Cgen ∗Orep−RA)
(5)
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(T)	  test	  suite	  (in	  presence	  of	  changes)	  

URA	  
	  

ORA	  
	  

+	  

(T’’’)	  test	  suite	  to	  replace	  T	  

replace	  

exec	  

Oskip	  
	  

Orep-‐RA	  
	  

analyze	   analyze+gen	  

+	   +	  

+	  

Fig. 6: Regression Testing using Retest-all

One of the differences between equations 5, and equation
3 and/or equation 4 is that equation 5 does not have
a cost representation for new test cases. This is due to
the way retest-all approach operates in which the cost of
generation of the new test cases is absorbed in the cost
of analysis and generation for the replacement of the test
cases.

D. Cost Computation using a Brute Force Approach

In the brute force regression testing approach, each and
every test case needs to be executed (exec) and validated
(val). If the validation fails, then a new test case must be
generated (gen), re-executed, and re-validated. Depending
on test case length and number of changes present in a
particular test case a test case may go through one or
many generate-execute-validate cycles until the test case
pass. We designate, K, as a required number of cycles for
a given test case before it pass. For practical purposes,
K could be a configurable parameter with a maximum
value over which the brute force may be deemed as an
unsuitable regression testing approach for a given web
application. Figure 7 depicts the brute force regression
testing approach

CBF =
n∑

i=1

[(Cexec+Cval)+
K∑

j=0

(Cgen+Cexec+Cval)j ]i

(6)
, where n represent number of test cases, and i and j are
looping indices through the summation operations.

E. Cost Comparisons

For industrial-strength web applications with large
numbers of test cases, and in the presence of major
changes (i.e. changes in use case, design, etc.), the brute
force or retest-all testing paradigms may seem more
plausible than the selective retesting approach. However,
our assumption is that the changes to the web applications
being tested are minor (i.e. local changes to a particular
test case does not affect the other test cases). The un-
derlying assumption in the following cost comparisons is

(T)	  test	  suite	  (in	  presence	  of	  changes)	  

exec	  

	  	  	  	  	  	  	  	  	  	  	  validate	  

	  	  	  	  	  	  	  	  	  	  	  	  (T’’’)	  test	  suite	  to	  replace	  T	  
	  

failed	  

	  	  	  	  	  	  	  	  	  	  generate	  

replace	  

Fig. 7: Regression Testing using Brute Force

that the cost of test case generation dominates the other
costs.
In the following sections, we use the cost models de-
veloped in the preceding sections to perform a pairwise
cost comparisons. The pairwise comparison of four cost
models involves six different comparisons. However, for
brevity purposes we show only the three comparisons
for which costs of the regression testing approaches are
progressively decreasing.

1) BruteForce and Retest-all Cost Comparison: In
order to compare the cost of a brute force approach
against a retest-all approach, we check the validity of the
inequality 7:

CBF − CRA > 0 (7)

Substituting the equations 6 and 5 in inequality 7, we
obtain the inequality 8

n∑
i=1

[(Cexec + Cval) +
K∑

j=0

(Cgen + Cexec + Cval)j ]i−

[(Cexec ∗ T ) + (Can ∗ORA)+
(Cgen ∗Orep−RA)] > 0

(8)

The brute force approach costs more than retest-all ap-
proach since brute force approach operations involves all
the test cases versus retest-all operations that involves a
subset of test cases (n > Orep−RA) and on average there
are more iterations through generate-execute-validate se-
quence (K > 1). Therefore, inequality 8 holds.

2) Retest-all and Classification Cost Comparison: We
follow the same approach for costs comparison as section
VII-E1:

CRA − CSR C > 0 (9)

We substitute the equations 3 and 5 in inequality 9 and
simplify to obtain the inequality 10

[(Cexec ∗ T ) + (Can ∗ORA)+
(Cgen ∗Orep−RA)]−
[Cclass + (Cexec ∗RSR C)+
Can ∗ (OR−SR C + OSR C)+
(Cgen ∗Orep−SR C) + Cnew SR C ] > 0 (10)

As mentioned in “Cost Comparison” sub-section (VII-E),
the cost of replacing (by generating test cases) the obso-
lete test cases (maintaining the existing functionalities) is
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greater than the combined cost of replacing the test cases
in selective retesting and generation of new test cases
([Cgen∗Orep−RA] > [(Cgen∗Orep−SR C)+Cnew SR C ])
for minor changes ( [Cgen ∗ Orep−RA] dominates the
other terms). This implies that the inequality 9 (and
subsequently inequality 10) holds.

3) Patching and Classification Cost Comparison: In
the sections VII-E1, and VII-E2, we assumed that the
dominating cost factor is the cost of test generation
for replacing (maintaining the existing functionalities)
obsolete test cases. This is because test generation in
FSMWeb involves models (Ml), coverage criteria (critl),
and the aggregation of test subpaths (aggl) in different
hierarchical levels (see equation 2). A change to a test
case may be path affecting (PAC) implying that the
patching and regeneration cost is nearly the same (Cpatch

u Cgen). However, for non-path affecting changes (NPC)
the cost of patching would be less in comparison to
full test case regeneration. The assumption is that the
number of node or edge changes in non-path affecting
change (NPC) is lower than the number of nodes and
edges for a given test path (corresponding to a test
case). This leads to the conclusion that based on the
assumptions (in section VII-E), Cgen > Cpatch. Based on
this analysis, the conclusion is that the brute force, and
the retest-all regression testing approaches yield higher
costs among the four approaches under comparisons when
there are minor changes. This result is also intuitive since
brute force, and retest-all involves processing of all the
test cases and both approaches incur the overhead cost
that could be avoided with analysis (e.g. classification).
Further, the cost of patching approach is less than the
cost of selective retesting using classification approach
given that changes are NPC for test paths of considerable
number of nodes and edges.

VIII. AN EXPERIMENT RESULTS

This section discusses the results of a run of a scaled-
down Medical Emergency Response (MER) web applica-
tion with minor versioning. MER is comprised of three
use cases (subsystem clusters) of: 1) On-site Care, 2)
Emergency Department, and 3) Application Administra-
tion. An authorized user must login (through a LWP)
before having access to MER’s features. Using the test
generation in section IV, we decomposed MER into nodes
and internal edges and produced 24 test cases (test paths)
of which 2 test cases were redundant. We made 5 minor
changes to existing requirements (versioning MER) and
added a new LWP (previously non-existing). Employing
classification using selective regression testing approach,
8 test cases became obsolete, and 14 test cases were
identified as reusable. There were no retestable test cases
since we assumed the changes were all of NPC types.
Further, 2 new test cases were produced due to the new
change. Using patching, we repaired (patched) 3 test cases
in contrast to regeneration of 8 test cases for replacing the
obsolete test cases. In this experiment, patching proved to
be the favorable (least costly) regression testing approach.

IX. CONCLUSION AND FUTURE WORK

The goal of this paper was to perform cost analysis and
trade offs in comparing cost of four different regression
testing approaches. However, some missing works had to
be done before proceeding with the cost analysis work
(see section I). However, the prerequisite in achieving
this goal entailed the formalization the FSMWeb test
model followed by the test generation process. Next,
was to create cost models for different categories of
regression testing approaches. It was determined that the
most favorable approach was patching by considering it’s
corresponding cost subject to certain assumptions and
trade offs. Overall, performing an accurate comparisons
among the different regression testing approaches and ap-
plying an appropriate trade off analysis is a difficult task.
The existence of many types of costs and the inter-relation
between cost and value is further compounded by many
additional validity constraints swaying the future research
toward multi-objective regression test optimization [34].
In the context of this paper, it is due to the fact that web
application changes are not controllable, at least from the
perspective of the testing system or methodology. Dy-
namic dependencies among the web application changes
may have a compounding impact on test cases when
performing regression testing. With this said, the patching
approach shows promise when there are few and/or minor
changes with respect to number of test cases in the test
suite.

The future work will extend the FSMWeb test model
to include failure and error recovery features in order to
represent a real-life web application.
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