
Hybrid Real-time Operating System for
Resource-constraint Wireless Sensor Nodes

1,2Xing Liu, 2*corresponding author Kun Mean Hou, 2Christophe de Vaulx, 1Chengcheng Guo,

2Hongling Shi, 2Bin Tian
1Laboratory of Internet and Information Technology, Wuhan University, Wuhan, China

Email: netgcc@whu.edu.cn
2LIMOS Laboratory UMR 6158 CNRS, Blaise Pascal University, Clermont-Ferrand, France

Email: {liu, kun-mean.hou, devaulx, shi}@isima.fr

Abstract—Wireless sensor network (WSN) has been used in
widespread domains, and the real-time response is required
by many WSN applications. However, due to the memory
resources limitation on the sensor nodes, the current WSN
OSs such as TinyOS, Contiki, SOS, mantisOS, etc., are not
real-time ones. To achieve the objective of designing a real-
time OS with low memory resource consumption, a new
WSN OS named HEROS is developed and presented in this
paper. For HEROS, it adopts a hybrid scheduling strategy.
Both the event-driven and multithreading schedulers are
implemented in parallel, and these two schedulers can
switch to each other when necessary. By this means,
HEROS take advantages of both the event-driven system's
low memory resource consumption as well as
multithreading system's high real-time performance.
Besides these, HEROS uncouples the applications from the
underlying systems by using the pre-linked mechanism
(PLM). With this mechanism, a user-friendly development
environment can be provided to the WSN users. Finally, to
evaluate the performance of HEROS, it is compared with
some other WSN OSs on the iLive platform (8-bit AVR
microcontroller). The final experimental and evaluation
results prove that HEROS is a memory resources efficient,
real-time supported and user-friendly OS, and can be used
on most resource-constrained sensor nodes to support the
diverse kinds of WSN applications.

Index Terms— operating system, real-time , hybrid, wireless
sensor network

I. INTRODUCTION AND BACKGROUAND

Wireless sensor nodes (WSN) have been used in
widespread domains ranging from the precise agriculture
to the military surveillance [1-4]. And for the software
development on sensor nodes, the operating system (OS)
is one of the key technologies. This is because an
outstanding OS can not only manage the platform
resources well, but also provide good services for the
WSN applications.

Currently, several challenges exist for the WSN OS
development. Firstly, the WSN platform resources are
constrained [5]. Most sensor nodes are small size and low
price ones with limited memory resources, e.g., the
sensor nodes equipped with the AVR ATmega1281
microcontroller has only 8 kilobytes RAM. Therefore, a
good WSN OS should have low memory resources

consumption. Secondly, the real-time response is required
by many WSN applications, such as the engine control
process in the industrial system, the heart pacemakers
monitoring in the medical system, etc. However, the
current popular WSN OSs, such as TinyOS, Contiki, etc.,
cannot support the real-time reaction well. Thirdly, the
WSN application development process is complicated for
the users since the underlying WSN hardware and
software platforms are diverse [6].

Up to now, several WSN OSs have been developed,
such as TinyOS [7], Contiki [8], SOS [9], MantisOS [10],
BitCloud OS [11], LIMOS [12], uCOS [13], AVRX [14],
etc. However, these OSs cannot address the above
challenges well. On one hand, most of these OS [7-9, 11,
12] are the event-driven scheduling OSs. For these OSs,
the advantage is the memory resource consumption is low,
whereas the real-time performance is poor as the
preemption cannot be supported. For the other OSs such
as [10, 13, 14], the multithreading scheduling model is
used. With the multithreading scheduler, the preemption
can be achieved by the thread switch. Consequently,
these OSs have the real-time performance better than the
event-driven ones. Nevertheless, the memory resource
consumption of these OSs is relatively high as each
thread needs to have its own run-time stacks. Thus, how
to achieve an OS which has good real-time performance
as well as consumes less memory resources become
essential for the current WSN OSs. On the other hand, the
monolithic system architecture is used in many current
WSN OSs [10-13]. For these OSs, the applications are
not uncoupled from the systems, thus it is difficult for the
WSN users to develop the applications as they are
required to understand the low-level system details. For
[7-9], the applications can be separated from the systems
either by the virtual machines (VMs) [7, 15, 16, 17] or by
the dynamic linking mechanisms (DLM) [18, 8, 9]. Yet,
they are still not sound. Because for [7], the applications
should be programmed by using the non-popular byte
code instructions directly. And for [8, 9], the memory
resource consumption of the DLM is high and the code
loading process in DLM is also complicated. Due to these
reasons, the design and implementation of a new WSN
OS becomes essential.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1767

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.7.1767-1780

In this paper, a hybrid real-time OS HEROS is
developed to address the challenges above. The key
features of HEROS include the following aspects: Firstly,
it adopts a hybrid scheduling mechanism. Both the event-
driven and multithreading schedulers are implemented.
Event-driven is used to dispatch the non real-time events
while the multithreading scheduler is used to dispatch the
real-time events. Secondly, it implements a dynamic
memory allocator which avoids some drawbacks of the
allocator in the current WSN OSs. By means of the
dynamic memory allocator as well as the hybrid
scheduler, HEROS can react to the time-critical events
with low memory resources consumption. Thirdly, the
applications in HEROS are uncoupled from the systems
by using the pre-linked mechanism (PLM). This
mechanism has been proved to be resources efficient.
With it, the user application development process can be
simplified.

The main structure of this paper is as follows: In
section IV, the hybrid HEROS scheduler is presented. In
section V, two kinds of HEROS dynamic memory
allocators are discussed. In section VI, the
implementation of the software timers is introduced. In
section VII, the HEROS PLM is designed and
implemented. From section VIII to XI, a new OS debug
method, the related work, the performance evaluation, the
conclusion and ongoing work are presented respectively.

II. BACKGROUND OF WSN OSS

In terms of the scheduling policy, the WSN OSs can be
classified into two types: the event-driven OSs and the
multithreading OSs. In the past research work, there exist
some debates and discussions about these two types of
OSs [19-23].

A. Event-driven WSN OSs
SOS and Bitcloud OS are all pure event-driven OSs. In

these OSs, a set of event handlers are defined, each
handler is related to an event. Once an event is triggered,
the related handler will be invoked. Each handler runs to
completion with respect to each other. The interruption is
enabled during a handler's executing process, but the
preemption from one handler to another is not allowed.
Since all the handlers are executed one by one, only one
stack is needed and be shared by all the handlers. Thus,
the memory consumption of event-driven system is low.
However, the real-time performance cannot be well
supported, e.g., after a time-critical event is triggered, it
cannot be executed immediately by preempting the
current executing handler, even if the current executing
handler is not a time-critical one.

B. Multithreading WSN OSs
The OSs such as MantisOS, uCOS are multithreading

ones. In multithreading system, each handler is executed
by one thread. All these threads do not execute one by
one like event-driven systems do, but run concurrently by
the thread switch. Since the thread switch exists, each
thread needs to have a private thread stack which will be
used for the storing of the thread's run-time context. By

means of the thread switch, the real-time performance in
multithreading systems can be better than that in the
event-driven systems. However, the memory resource
consumption is also higher if compared with that in the
event-driven one [19]. In Table I, a comparison between
the event-driven and the multi-threading OS is shown.

Besides the pure event-driven and multithreading OSs,
some current OSs have implemented both the event-
driven and multithreading schedulers in the system, such
as the TinyOS [7], Contiki [8] and LIMOS [12]. However,
the multithreading scheduler in these OSs is implemented
as an optional library upon the event-driven scheduler
(presented in detail in the related work in the section XI).
Therefore, these OSs [7,8,12] are not native hybrid
system, but still event-driven system in the native
scheduling layer.

TABLE I.
COMPARISON BETWEEN EVENT-DRIVEN OS AND MULTITHREADING OS

Features Event-driven OS Multithreading OS
Scheduling

Manner
All event handlers
execute one by one

All handlers run
concurrently

Preemption Not enable
Supported, thus the
overhead of stack

switch exists
Real-time
response

Cannot be
supported well

Can be well supported
by thread preemption

Stacks All handlers share
one global stack

Each thread should have
its own private stack

Computation
Resources

Shared among all
handlers in a

cooperative way

Divided among all
threads by thread switch

III. SYSTEM ARCHITECTURE OF HEROS

The basic terms in HEROS include the event, event
handler and the system process.

Event: Event is a system signal which indicates that the
condition to take some system action has been satisfied.
An event can be generated by a key pressing, a wireless
packet reception, an expired system timer, etc. In HEROS,
events are classified into three types in terms of their
emergence: the common events, the hard real-time events
and the soft real-time ones.

Common events are the ones which don’t have a strict
requirement to the response time, e.g., in the garden
caring applications, when the humidity value of the soil
decreases to a given level, an event should be triggered to
request the operation of opening the hydro valve to water
the flowers. In this case, this event is a common one
because the response delay of even tens of seconds to it
can still be accepted.

Hard real-time (HRT) events are the imperative ones
which should be responded within a strict deadline, if not,
a great disaster can be caused. They can be generated in
the systems such as the car engine control, the human life
medical care, etc. These events are rarely generated and
are triggered particularly in some emergent situations.

Soft real-time (SRT) events are the ones that should be
reacted immediately, but the response constraint time is
not so strict that a short time delay is still allowed, e.g.,
when a wireless packet is received, an event will be
generated to request the operations of processing this

1768 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

packet as well as sending back an acknowledgement
(ACK) packet to the sender. For this event, it can be
deferred for 1 or 2 seconds in case that the sender’s
retransmission operation is still not triggered. And this
event is a SRT one.

Event handler: Event handlers are a series of system
subroutines or methods. Each event handler is bound to at
least one event. Once an event is triggered, the handler
corresponding to it will be invoked.

Process: Several event handlers that are logically
connected or belong to an identical component can build
up together to form a process. A process can be regarded
as a wrapper of a set of handlers, it is proposed as it can
make the system organization to be clear as well as avoid
too many small pieces of handlers defined in the system.

Fig. 1 describes the event data structure in HEROS and
also its relationship with the system handlers and process.
Inside the event structure, a pointer member named
process is used to indicate the process which this event
will be posted to, and another member handler_id is used
to point out which event handler in this process will be
invoked by this event. Moreover, the pointers event_data
and data_size are used to point out respectively the event
data’s address and the data’s length.

Figure 1. Relationship among event, event handler and process.

IV. HYBRID SCHEDULER IN HEROS

In HEROS, a hybrid scheduling policy is adopted. The
event-driven scheduler is used to dispatch the common
and SRT events while the multithreading scheduler is
used to dispatch the HRT events. At any time, only one
kind of scheduler is active. If only the common and SRT
events exist in the system, the OS runs in the pure event-
driven model, in this case, all the common and SRT event
handlers are executed one by one. If one or more HRT
events are triggered, the execution of the current common
or SRT event handler will be suspended immediately, and
then the OS will switch into the multithreading model. In
this model, one thread will be created for each HRT event,
and the run method of each thread is to execute the event
handler related to this HRT event. The run-time context
of each thread is created dynamically. And after all the
HRT handlers run to completion, the related thread
contexts will be released, then the OS will switch back to
the event-driven model to continue the dispatching of the
common and SRT events.

Since HRT events are generated only in some typical
cases, HEROS runs in pure event-driven model most of

the times and this is the default scheduling model of
HEROS. Thus, the memory resource consumption of
HEROS is low. However, due to the scheduler switch
mechanism, the event-driven scheduler in HEROS can
switch to the multithreading one when required.
Therefore, the real-time reaction to the time-critical
events can also be achieved. And when HEROS runs in
the multithreading model, the thread run-time stacks are
allocated in a dynamical way. Consequently, HEROS can
achieve the objective of being an OS which supports the
real-time response on the resource-constraint WSN
platforms.

In this section, the design and implementation of the
event-driven and multithreading schedulers in HEROS
are presented in the part A and B respectively, and the
scheduler switch strategy is discussed in part C.

A. Event-driven Scheduler in HEROS
Due to the event-driven scheduler’s features, several

topics should be considered for the implementation of the
event-driven scheduler:

Events buffering mechanism: As the events are
dispatched one by one, the event dispatcher may not be
able to handle all the events as quickly as they arrive,
thus an event buffering system is needed to buffer the
upcoming events. Seen in the Fig. 2, after the events are
generated, they will be posted into the event queue, and
then be extracted and dispatched one by one by the event
dispatcher. After an event is dispatched, the related event
handler will be invoked.

Figure 2. Structure of event-driven scheduler in HEROS.

In HEROS, three kinds of event queues are defined:
the common event queue, the SRT event queue and the
postponed event queue.

Common event queue is used to buffer the common
events. Since the response time of the common events is
not so constrained, the simple FIFO (First Input, First
Output) algorithm is used to manage this queue.

SRT event queue is used to buffer the SRT events, the
SRT events are inserted into this queue in the sequence of
their event priorities. The priority value of a SRT event is
pre-defined in terms of this event’s emergency. The more
emergent an event is, the smaller its priority value will be.
And in order to prevent a low priority event becomes
stale by the keep coming high priority events, a dynamic
priority mechanism is adopted for the SRT events. With
this mechanism, the priority values of all the SRT events
will decrease by a given value every time the system PIT
(periodical interruption timer) is fired. By this means,
when a SRT event will be extracted is not only dependent
on the original priority, but also on the time that it has
been pending in the SRT event queue.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1769

© 2014 ACADEMY PUBLISHER

For the postponed event queue, it is used to buffer the
common or SRT events that cannot be processed for the
moment, e.g., an event is dispatched to send a packet out
from the wireless media, if the wireless media is detected
to be busy, this event can be transferred to the postponed
event queue. In Fig. 3, an example is shown about the
event initialization and posting process in HEROS.

Figure 3. Event initialization and post process in HEROS.

Events dispatcher: Event dispatcher runs in a loop, it
extracts the events one by one from the event queue, and
then invokes the corresponding event handler. In case that
no events exist in the event queue, the sensor node will
fall asleep.

For the extraction sequence, the events in the
postponed event queue are precedent over the other two
queues. Then it is the SRT event queue. And only when
the postponed and SRT event queues are empty, the
common event queue will be traversed.

Achievement of OS concurrency: In event-driven OS,
the handlers are not preempted. Every event handler
should run to completion before the next one can be
invoked. Thus, how to schedule all the handlers
concurrently becomes a challenge. And to address this
challenge, two problems should be solved. One is the
execution time of each handler should not be too long,
otherwise, the other time-critical events can become stale.
The other is that the execution of the event handlers
should not be blocked, if not, the system run-time process
will be hung up during the blocked time.

In Contiki, these problems are solved by the proto-
threads [24]. With the protothreads, a blocking run-time
context without the overhead of multithreading stacks can
be implemented in the event-driven system, and this is
achieved by defining a local continuations (LC) variable
in each process. By means of this variable, if a handler
needs to yield the control or be blocked, it can save the
current executing address into the LC variable. And then,
next time this handler is called again, it will not be
executed from the beginning, instead, the LC value will
be loaded and the execution resumes from the recorded
LC address.

For HEROS, the protothread method can also be used
to solve the resource sharing and blocking problems.
However, due to its special system architecture, the
handler phase-split mechanism is more suitable to be
used. With this mechanism, if a handler’s execution time
is too long, this handler will be split into more pieces.
Likewise, if a handler will be blocked at a given point, it
can also be split into two from the blocking address. By

these means, the problems of blocking and long-time
handlers can be avoided.

Compared with the Contiki protothread, the advantage
of HEROS handler split method is that it doesn’t need to
define the global LC variables for all the handlers, but it
shows the drawback in the structure control, e.g., if the
while loop is needed to be used between two split
handlers, the goto statement should be used, and this may
increase the handlers’ programming complexity.

Event-driven scheduling workflow: To understand how
the event-driven scheduler works in HEROS, an example
is shown in Fig. 4. In this figure, Hi (i=1,2,3,…)
represents the system handlers, ESi (i=1,2,3,..) represents
the SRT events, ECi (i=1,2,3,..) represents the common
events. After event ES1 is dispatched, the related event
handler H1 will be invoked. During the execution of H1,
another event ES6 will be posted, and ES6 will lead the
handler H4 to be called, etc. Assumed the priority of ESm
is higher than ESn in case that m is smaller than n.
Assumed the equation of nextEventExtract(E1, E2, E3, ...)
returns the next event to be extracted from the events (E1,
E2, E3, ...). And to simplify the explanation process,
assumed the priorities of all SRT events are static other
than dynamic updating. Then, the event-driven
scheduling workflow will be as follows:

Firstly, the dispatcher extracts one event from the
event queue. In result, nextEventExtract(ES1, EC1, ES3)
which is equal to ES1 is returned because its priority is
higher than ES3 and EC1. After ES1 is dispatched, H1 will be
invoked which generates a new event ES6. Later, when H1
runs to completion, the dispatcher will extract the next
event nextEventExtract(ES6, EC1, ES3), and this time ES3
will be extracted. For the next step, handler H3 will be
invoked, etc. Finally, the handlers’ scheduling sequence
will be as:

{H1-> H3 -> H4 -> H2 -> H6 -> H5 -> H7}. (1)
From this workflow, it can be seen that event-driven

OS is a cooperative scheduling system in which all the
event handlers cooperate with each other to share the
computation resources.

Figure 4. Event-driven scheduling workflow in HEROS.

B. Multithreading Scheduling Policy
For the HRT events, once they are generated, they

should be handled as soon as possible. In HEROS, this is
achieved by the multithreading scheduler. For the design
and implementation of a multithreading system, the
topics as follows should be discussed:

Thread control block (TCB) and thread stack: Once a
thread is created, a TCB as well as a thread stack will be
created. This TCB is used to record some key information
about this thread, such as the related HRT event, the
thread status, the thread stack pointer as well as the
synchronization queue pointer, etc.. And for the thread

1770 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

stack, it will be used both for the thread execution and the
thread switch context saving.

Thread scheduling and synchronization: If the HRT
events are generated in the system, the HRT threads will
be created correspondingly. All the HRT threads will
execute concurrently by the thread switch, and the static-
priority RMS (rate-monotonic scheduling) algorithm is
used for the thread scheduling. For the thread
synchronization in HEROS, the semaphore mechanism is
used.

Multithreading scheduling workflow: Different from
the event-driven OS in which the handlers are executed
one by one, in the multithreading OS, the HRT event
handlers run concurrently by the thread switch. Fig. 5
shows an example about the multithreading scheduling
workflow in HEROS. Assumed that the executing time of
all the HRT handlers is identical, and then the handler
execution sequence will be as follows:

{H1-> H2 -> H3 -> H4 -> H5 -> H6 -> H7}. (2)

Figure 5. Multithreading scheduling program in HEROS.

C. Scheduler Switch in HEROS
As both the event-driven and multithreading

schedulers are implemented in HEROS, how to switch
from one scheduler to another is an important topic. In
order to make the switch process to be more efficient and
easy-to-managed, the event-driven scheduling process in
HEROS is also considered as a thread "main_thread",
and this thread's run function is to extract and dispatch
the events one by one from the common/SRT/postponed
event queues, seen in the Fig. 6.

Therefore, the hybrid scheduling process in HEROS is
as follows:

• If there are no HRT events generated in the system,
only one thread main_thread exists. In this case,
the system runs in the pure event-driven model,
and this is HEROS’s default scheduling model.

• Once the HRT events are generated, the
main_thread will be suspended. Then, the OS
switches to multithreading scheduling model.

• If all the HRT threads run to completion or are
inactive, the main_thread will be resumed and the
common/SRT/postponed events will be dispatched
again. In this case, the OS becomes an event-
driven system once more.

• When a HRT thread is created, all the required
resources will be dynamically allocated. After it
runs to completion, these resources will be freed.

Figure 6. Hybrid scheduler model in HEROS.

V. MEMORY ALLOCATION

Since the RAM resources on the sensor nodes are
precious, the memory allocation becomes a key issue for
the WSN OS.

In Contiki, the memory area is statically reserved, but
dynamically allocated in block. Seen in the Fig. 7, a set of
block areas are pre-reserved for the different kinds of
system objects. Each block area is composed of a few
blocks. The number of the blocks in each block area is
pre-defined, and the block flag mechanisms are used for
the block management. The advantage of this allocation
method is that it is simple to be implemented. However,
since the memory areas are statically pre-reserved, two
drawbacks exist. Firstly, the memory resources in one
block area cannot be shared with the other areas.
Secondly, the number of the blocks in each block area is
difficult to be decided, because in different applicable
environments the required numbers can be different. And
in the Contiki system, in case that the pre-reversed block
number is not enough, an error will return. A common
method to solve this problem is to pre-reserve each block
area as large as it can be required, but the memory
resource consumption will increase greatly in this case.

Figure 7. Memory blocks allocation in Contiki.

In SOS, the allocation mechanism is similar with that
in Contiki. What is different is that the link queue other
than the block flags is used for the allocation manage-
ment. Compared with the flag mechanism, the queue
management is more complicated to be implemented, but
the free block can be quickly acquired by deleting
directly from the free queue head.

For mantisOS, the allocation is different from Contiki
and SOS. It doesn't use the block allocation. Instead, all
different kinds of objects are allocated in the same heap.
This method shows the advantages that no memory areas
are needed to be pre-reserved. However, the memory
fragments can appear after a few pairs of allocation and
free operations, seen in the Fig. 8. Currently in mantisOS,
no mechanism is implemented to solve this memory

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1771

© 2014 ACADEMY PUBLISHER

fragment problem, and this will decrease the utilization
efficiency of the memory resources.

Figure 8. Memory allocation in mantisOS.

From the memory allocation mechanisms in the above
OSs, it can be seen that there are mainly two challenges
for the allocation of the memory resources in embedded
system. The first results from the pre-reservation problem,
and the second results from the memory fragments.

In HEROS, to avoid the above drawbacks, a dynamic
allocation mechanism which supports fragment collection
is implemented.

Seen in the Fig. 9, the memory heap in HEROS is
divided into three parts: the object allocation area, the
virgin area and the reference area. Every time a new
object is required to be allocated, it will firstly be
allocated from the freed object queue. If not success, then
the allocation will be done from the virgin area. And in
order to clean up the memory fragments, the fragment
assembling mechanism is used. E.g., in the Fig. 9 (a),
there are two freed members in the freed object queue, if
a new 60-byte size object is required to be allocated, it
cannot be processed successfully as there is no
continuous memory space of which the size is as large as
60 bytes. However, the total size of the virgin area plus
the two memory fragments is larger than 60 bytes, thus
this allocation can be done successfully in case that all
these freed memory resources are assembled, seen in Fig.
9 (b). And to assemble these memory resources, the
chunks of object B&C need to be shifted. However, after
the shifting of these chunks, they can no more be
accessed correctly by the others as their addresses have
been changed. Therefore, to address this challenge, the
indirect memory access mechanism is used in the
HEROS memory allocator. With this mechanism, every
time a new object is allocated, a corresponding reference
pointer will be created and point to it, and the access to
the allocated objects will be done indirectly through these
reference pointers. By this way, if the allocated objects’
addresses changed after the fragments are assembled, the
value updating to these reference pointers can keep the
access to these objects still be available. Consequently,
the memory fragments can be collected in the HEROS
memory allocator, and the memory resources can be
utilized efficiently in this way.

VI. SOFTWARE TIMER

Software timer is a counter which will request the
system to take some actions when the counter value
meets a preset condition. Commonly, the software timers
are based on the hardware PIT.

Figure 9. HEROS allocator with fragment assembling support.

In HERSO, the timers can be classified into two types:
the one-slot timer (OsT) or the periodic timer (PrT). For
the one-slot timer, it will be deleted once it is expired. For
the periodic timer, it will be reset and restarted after its
expiration.

And the timers can also be classified into two modes:
real-time reaction (RtR) mode and asynchronous reaction
(AcR) mode. For the former mode, once the timer is fired,
a related callback function will be called directly. For the
later mode, after the timer is fired, an event will be posted
into the system event queue, and only when the event is
dispatched, the related event handler can be executed.

As for the implementation of the timers, HEROS
implements in two ways, one uses the relative counter
value (RCV) and the other uses the absolute counter value
(ACV). And a system timer queue needs to be created to
link all the started timers. Every time the PIT is
interrupted, this timer queue will be checked to see
whether some timers that have been fired. If a timer is
observed to be fired, the related timer handler will be
processed.

VII. USER APPLICATION DEVELOPMENT

As the application program usually requires the OS
services to perform the function, an excellent OS should
provide a friendly application development environment
to the users.

To develop the applications on sensor nodes,
programming and reprogramming are two important
processes. And one way to simplify these processes is to
uncouple the applications from the low-level systems, by
this way, the whole software system will be divided into
both the user application space and the system space, and
two executable images will be generated independently,
seen in the Fig. 10 and 11.

Figure 10. Architectures to uncouple the applications from systems.

1772 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

After this separation, for the persons who are WSN
experts, they can in charge of the system space and pre-
burn the system image onto the sensor node. Then, for the
WSN users, they only need to focus on the application
space without the necessity of considering the lower
system details.

Currently, several mechanisms have been developed to
uncouple the applications and the systems. One way is to
use the virtual machine (VM), and this method has been
used in TinyOS. For TinyOS, several VMs have been
implemented such as Maté [15], Bombilla [16], SwissQM
[17], etc. However, the users are required to program the
applications by the VM byte code instructions directly,
and only a limited instruction set is provided. To address
this challenge, many embedded Java VMs (EJVMs) are
developed to be used to the resource-constrained devices,
such as FijiVM [25], JamaicaVM [26], Squawk JVM [27],
Darjeeling VM [28], simpleRTJ [29], NanoVM [30], etc.
With the EJVMs, the users can program the applications
by the popular, robust, object-oriented and hardware
independent Java language. Yet, these JVMs either have
non-trivial memory resource consumption [25-29], or
support limited VM features [30]. Moreover, the byte
code execution efficiency is low, thus more energy
resources will be consumed on the node. Therefore, for
the high resource constrained sensor nodes, the EJVMs
are not a suitable choice. Besides the EJVM, the dynamic
loadable module (DLM) is another way, with this method
the WSN application are built into a loadable module and
then uploaded to the sensor nodes to be linked
dynamically before being executed. This method has
been used in the OSs such as Contiki and SOS [18]. In
these OSs, the applications are built into an optimized
ELF (Executable and Linkable Format) file, and on the
sensor devices, the function and variable references
inside this file will be resolved and linked in a dynamical
way. Compared with the JVM mechanism, the drawback
of DLM is that the applications need to be programmed
by the C language which is not so robust and user-
friendly as Java. Moreover, the DLM module needs to be
linked before being executed. However, after the DLM
module is resolved and linked, the final executive code is
the pure machine code with a high execution efficiency.

In HEROS, in order to provide a simple and efficient
method to separate the applications from the systems, the
pre-linked mechanism (PLM) is adopted. And there are
several reasons for this: 1). the size of the PLM
application image will be smaller as no resolving or
interpretation data is needed to be contained inside, and
this will improve the energy consumption as well as the
code transmission success probability in the application
reprogramming process. 2). most PLM work is done on
the PC other than the sensor device, thus the software
architecture on the sensor nodes can be simplified. 3).
since the PLM image uses the machine code which can
be executed directly without resolving or interpretation,
its execution efficiency is high.

However, several problems need to be solved for the
PLM method, such as the code flexibility, the parameters
passing between the PLM code and the system image, etc.

A. Implementation of HEROS PLM
To implement the HEROS PLM, two kinds of

functions need to be defined: the service provider
function (SPF) in the system space which provides the
system services for the application development, and the
service subscribe interface (SSI) in the application space
which can be used by the users to access to the system
services. For each SSI, a corresponding SPF will be
programmed, and the call of the SSI from the application
image will cause the related SPF in the system image to
be executed.

Since the application image and the system image are
built independently (Fig. 11), HEROS PLM should
function as a bridge between these two images to make
that they can interact with each other well:

Link of the SSI in the application image to the
corresponding SPF in the system image: By PLM, the
application image is build independently from the system
one, yet it needs to access to the system services. Thus,
how to pre-link an application SSI to the related system
SPF is the first problem to be solved.

A common way to solve this problem is to build the
system project firstly and generate a map file in which all
the system functions' addresses are listed. Then, the pre-
linking of the application SSI functions can be done in
terms of this list. The drawback of this method is that the
application image is inflexible as any change to the
system image can cause the application image to become
unavailable.

In order to make the application image be flexible, the
application SSIs in HEROS PLM are not linked directly
to the system SPFs. Instead, an intermediate function
jump table is provided in the system project, with this
table, the SSIs are linked indirectly to a given address in
this table, and then this table will redirect the function
call to the corresponding SPFs. By this means, the change
to the system image will not affect the validity of the
application image in case that the jump table is put at a
fixed address and the item order in it is not changed.

Fig. 11 depicts the application image development
process after the HEROS PLM is implemented. With the
information acquired from the object and ELF files, the
raw application image is modified once more to link all
the SSIs to the system function jump tables. All these
works are done on the PC other than the WSN devices.

For system image, it is pre-burned on the sensor node.
After this, if the node application needs to be changed,
only the application image is needed to be updated.

Figure 11. HEROS PLM development process

Parameters' passing between application SSI and
system SPF: Besides the pre-linking of an SSI to the

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1773

© 2014 ACADEMY PUBLISHER

relevant SPF, another problem to be solved is how to pass
the function parameter between SSI and SPF.

Assumed HEROS PLM is used on the AVR
microcontroller platform. Then, after the application
program is built, it can be observed from the AVR
assembler code that before the "CALL" directive of a SSI
is invoked, the function input parameters will be put into
the registers gradually from [R25, R24, ...]. And in the
SPF's assembler code, the function parameters will be
extracted one by one from [R25, R24, ...] as well. Thus,
there is no parameter passing gap between the SSIs and
the SPFs, this is because the same compiler is used for
both the application and system images, therefore, the
same operation rule is followed even if these images are
not built in different projects.

For the return parameter from the SPF to the SSI, it is
the same case as the input parameters, And the registers
[R25, R24] is always used to pass the return values.

Callback from the System Image to Application Image:
Once the function linking and parameter passing from the
SSIs to SPFs are achieved, the application image can
access the services in the system image. Yet, the reverse
callback operation is not supported.

However, this callback functionality is required in
many cases, e.g., the hardware interruption routine
service (ISR) is programmed in the lower system image.
If an ISR is expected to be programmed by the users in
the application image, then there should be a callback
operation which redirects the execution from the system
ISR to the given application ISR. In HEROS PLM, the
callback is achieved by a registration mechanism. If an
application function needs to be called back from the
system image, it should be registered by a registration
interface. After registered, this application function's
address will be passed into the system space, and then the
call back from the system image to this function can be
achieved.

With the mechanisms above, both the application
image and the system image can interact well with each
other in despite that they are built separately.

B. Performance Evaluation of HEROS PLM
To evaluate the performance of HEROS PLM, it is

compared with the Contiki DLM and the simpleRTJ
EJVM mechanisms. SimpleRTJ is chosen because it is a
clean room implementation JVM for the small embedded
devices.

Features and memory resource consumptions: The
features and memory resource comparison results are
shown in Table II. For simpleRTJ, it provides a good
Java development environment. However, the memory
resource consumption is high. For Contiki DLM, it
consumes more memory resources than HEROS PLM,
this is because it uses the dynamic linking mechanism.

Application Image Size: It is significant and economic
to reprogram a new WSN application to the sensor node
to adjust its functionality. And for the reprogramming
process, the application image size is a key factor. This is
because it will not only determine the success probability

of transmitting this image integrally, but also influence
the energy consumption on the sensor nodes [31].

TABLE II.
COMPARISON RESULTS OF FEATURES AND MEMORY CONSUMPTION

Comparison Titles
Mechanisms

Contiki
DLM

HEROS
PLM

EJVM
simpleRTJ

Application
programming language C C Java

Flexibility of
application image Well Average Well

Call from application
image to system image Supported Supported Supported

Callback from System to
Application Not support

Supported by
registration
mechanism

Supported by
Java thread

interface

Exception handle support No No Yes, more
robust

Garbage collection N/A N/A Yes

Required ROM (KB) 5.7 1 18-24

Required RAM (bytes) 18 15 200

For the comparison of different mechanisms, a basic

sensor sampling application example is implemented in
both C and Java language, with the results shown in the
Table III.

TABLE III.
IMAGE SIZE COMPARISON RESULTS OF DIFFERENT MECHANISMS

Mechanism / Application image format Code size (bytes)
Monolithic system in which

applications are not uncouple from systems 114786

Contiki DLM / Compacted ELF 769

EJVM simpleRTJ / Java byte code 2472

HEROS PLM / Pre-linked machine code 182

From the results, it can be seen that HEROS PLM has

the minimum size application image, this is because it
uses the pre-linked machine code in which no interpreting
or references resolving information is needed to be
contained.

Application image execution efficiency: For simpleRTJ,
the Java byte code is executed, and its execution
efficiency is lower than the machine code. For Contiki
DLM, after the application module is resolved and linked,
the final execution code is the pure machine code. For
HEROS PLM, it also uses the machine code, but the
access from the application SSIs to the system SPFs is
done through the intermediate function jump table, thus
the application image execution efficiency is a little lower
if compared with the Contiki DLM mechanism, and the
execution efficiency proportion value can be modeled as:

Rc = RHEROS/RContiki = (10*Cf+Ni)/Ni = 1+10*Cf/Ni. (3)
where Cf mean the numbers of the SSIs in the HEROS

PLM applications, 10 is the clock cycles of the jump
operation in the function jump table, Ni is the total clock
cycles cost for the application execution. In case that Ni is

1774 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

equal to 900 and the Cf is equal to 8, then the Rc will be
1.089.

Conclusion: From the evaluation results, it can be
concluded that, the EJVM mechanism can be a good
choice for the separation of the applications from the
systems if employed on the resource-abundant embedded
system. But for the platform of which the resources are
high constrained, the HEROS PLM will be a preferable
selection.

VIII. OS DEBUG METHOD

As the OS needs to dispatch and execute many system
programs concurrently, its run-time process is
complicated. Thus, it is essential to implement an
effective debug method during the OS development stage.

The traditional debug ways for the embedded system
include the usage of printf, the debug information sending
out from the serial port, the breakpoint setting, etc..
However, these methods cannot work well for the
debugging on the resource-constraint WSN devices. For
the usage of printf, it cannot be used on sensor nodes,
because there are commonly no screens on the sensor
devices. Moreover, the execution overhead of printf is too
high for the resource constrained sensor platforms. For
the serial port debug method, it is also not ideal, because
the sending speed of the debug data from the serial port is
much slower than the execution speed of the instruction
codes, thus the memory overflow problem will occur. As
for the breakpoint setting, it is still not effective, becasue
many interruptions and preemptions happened
concurrently inside the system, once a breakpoint is set,
the execution of the system will halt, so it is difficult to
know how the system runs in whole detail. Due to these
reasons, it is essential to develop a new OS debug method
which will have the following features: 1). has a low
execution overhead, thus will not influence the node’s
regular execution process. 2). can process the debug data
in a high speed.

To address these challenges, a multi-core WSN system
is designed and implemented. In this system, the sensor
board is divided into two parts: the working board and the
debug board. For the debug board, it is loaded only
during the OS development process, and will assist the
working board to undertake most of the debug work, such
as buffering the raw debug data, analyzing them and
displaying them out by string on the PC, etc.. By this
means, the debug programs on the working board will
become simple.

Seen in the Fig. 12, the working board iLive is
connected with the debug board Raspberry Pi through the
GPIO (global input and output) ports. Every time the
iLive node takes some actions, it can send some raw
debug code to the GPIO ports, and then let the left debug
work be undertaken by the Raspberry board, e.g., when a
new memory object is allocated on the iLive, three bytes
debug code "0xAC, 0x20, 0x1A" will be sent to the GPIO
ports. After Raspberry board receives these codes, it will
interpret "0xAC" as the operation "OS_malloc", "0x20,
0x1A" as the new allocated address 0x201A, and then

transfer these debug results to the PC and display them
out in the string or graphic format.

The reason of choosing GPIO ports for the board
connection is because the operation of sending debug
data to the GPIO ports is low in the overhead as well as
high in the transmission speed. And since the Raspberry
board is equipped with ARM BCM2835 controller of
which the processor frequency is 700 MHZ and the
SRAM size is 512 M bytes, thus it can be powerful
enough to process the raw debug codes quickly, even if
these codes are transmitted from the iLive with a high
frequency. Consequently, a high debug performance can
be achieved even on the severe resource constrained
iLive node.

Figure 12. Multi-core WSN system for OS debug support

IX. RELATED WORKS

Scheduling policy and memory allocator are two
important topics for an OS. For the memory allocator, the
different mechanisms have been discussed in the previous
section V, in this section the scheduling policy of
different WSN OSs will be focused and presented.

A. TinyOS
TinyOS is an event-driven OS. Like HEROS, it also

uses the event queue to buffer and dispatch the system
events, but only one kind FIFO event queue is used, thus
the intelligence of the system scheduler is not well
enough. And in order to ease the application
programming complexity, the multithreading scheduling
mechanism TOSThread [32] is also implemented in
TinyOS. With [32], the TinyOS applications can be
programmed simply by the threaded programming model.
However, the TOSThread thread scheduler is
implemented in the user level with a priority lower than
the TinyOS kernel scheduler, thus the event-driven
scheduler always runs in precedence as long as the event
queue is not empty, and the thread scheduler starts only
when the event-driven scheduler becomes idle. Thus,
TinyOS is still an event-driven OS in the native
scheduling layer, although the thread scheduler is also
implemented inside it.

B. SOS
SOS is also a pure event-driven OS, and uses the event

queue to dispatch the events. Different from TinyOS,
three kinds of priority-based queues are defined in SOS:
the high priority queue, the regular system queue and the
low priority queue. By means of this priority mechanism,
the time critical events in SOS can be processed better
than those in TinyOS.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1775

© 2014 ACADEMY PUBLISHER

C. BitCloud OS
Bitcloud OS is an OS used to support the full-featured

ZigBee PRO stack developed by the Atmel corporation.
Like SOS, it is a pure event-driven OS as well, however,
it doesn't use the event queue to dispatch the events.
Instead, it uses the priority-based event flag mechanism.
With this mechanism, every time an event is generated,
the flag related to this event will be set. And after an
event handler runs to completion, the scheduler will scan
all the event flags from the high priority to low priority
ones. If an event flag is set, then the given event handler
will be called.

D. MantisOS, uCOS and AVRX
Different from the OSs above, MantisOS [10], uCOS

[13] and AVRX [14] are the multithreading OSs. All the
system handlers are executed by threads, and every thread
has its own run-time stack, thus the memory resource
consumption of these OSs is higher than that of event-
driven OSs.

The main difference between MantisOS and [13, 14] is
that MantisOS is implemented dedicatedly to the WSN
platforms, thus some mechanisms such as the energy
resource reduction are realized inside this OS.

E. Contiki and LIMOS
For Contiki [8] and LIMOS [12], both the event-driven

and multithreading scheduling models are implemented,
seen in the Fig. 13 (a). Similar to the TOSThread in
TinyOS, the multithreading model in [8,12] is
implemented as an optional library upon the event-driven
model. By means of this scheduling model, the
preemption can be achieved among the child threads
inside a process. However, the real-time response to the
time-critical events can still not be well solved by this
scheduling structure, e.g., when the thread A-1 is in
running, if the thread A-3 needs to be executed quickly,
the thread switch from A-1 to A-3 can be achieved
quickly in real-time. But if process A is running and a
HRT event is triggered which needs to be processed by
the thread C-2. In [8, 12], this HRT event cannot be
responded immediately as all the processes are scheduled
by the event-driven scheduler. By this scheduler, process
A needs to run to completion before the other processes
can be scheduled. Therefore, Contiki and LIMOS are not
real hybrid OSs, but actually event-driven OSs in the
native layer.

F. HEROS
For HEROS, it is implemented as a native hybrid OS,

both the event-driven and multithreading schedulers are
implemented. Different from TinyOS, Contiki and
LIMOS, in HEROS the two kinds of schedulers are
implemented in parallel and can switch to each other
efficiently when required, seen in the Fig. 13 (b). With
this hybrid scheduler, the hard real-time reaction can be
achieved.

As for the differences between HEROS and the other
pure multithreading OSs [10, 13, 14], there are mainly
two aspects: 1). In the pure multithreading OS, all the
handlers will be processed by threads, thus the number of

the threads will be much more than that in HEROS, this
will increase the complexity of the system architecture as
well as the memory resource consumption, e.g., in
mantisOS, in order to manage all these threads well, it
needs to use a complicated thread TCB as well as 5
priority-based thread queues for the management of the
threads dispatching. 2). In the current pure multithreading
OSs, all the threads are started at the system initialization
process, and once a thread is started, the thread stack
needs to be allocated. Thus, a huge memory resources
need to be consumed. In HEROS, the threads are started
only when the HRT events are generated, and they will
released after the HRT handler runs to completion. Due
to these reasons, HEROS can support hard real-time
reaction, but consume less memory resources than the
pure multithreading OSs. And these results has been
validated in the next section.

Figure 13. Hybrid scheduling structure in Contiki, LIMOS and HEROS.

X. EXPERIMENT AND EVALUATION WORKS

In this section, the performance of HEROS is
evaluated from the aspects of OS features, memory
resource consumption, energy resource consumption,
execution efficiency and the portability.

A. Evaluation Platform
Currently, HEROS is implemented on the iLive node.

ILive node is equipped with the AVR ATmega1281
microcontroller, seen in the Fig. 14. It has 128 kilobytes
of FLASH and 8 kilobytes of RAM. Besides, it is
equipped with 11 sensors including 1 temperature sensor,
1 light sensor, 1 air humidity sensor, 3 decagon sensors
and 4 watermark sensors. As for the software
development environment, the AVR studio integrated
development tool [33] is used.

B. OS features
The feature comparison results are shown in Table IV.

1776 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

Figure 14. ILive sensor node.

TABLE IV.
OS FEATURES COMPARISON RESULTS

WSN
OSs

Features of Kernel

Scheduling
policy

Real-time
guarantee

Memory
management

Uncouple
APP from

system

OS
simu-
lation

TinyOS

Event-driven
OS +

multithread-
ing library

None Static
allocation

Yes, by
VMs

TOSS
IM [34]

Contiki
2.6

Event-driven
OS +

multithread-
ing library

Only
SRT

Dynamic (in
fixed size

block)

Yes, by
DLM

COOJ
A [35]

SOS
2.0.1 Event-driven Only

SRT

Dynamic
(in fixed size

block)

Yes, by
DLM N/A

Mantis
OS 1.0

Multithread-
ing

SRT
supported

Dynamic
 None XMO

S [36]
BitClou

d Event-driven None Static None None

LIMOS

Event-driven
OS +

multithread-
ing library

Only
SRT

Dynamic (in
fixed size

block)
None N/A

HEROS Native hybrid HRT
supported Dynamic Yes,

by PLM
QEM
U [37]

Since Contiki and LIMOS are actually native event-
driven OSs, only SRT response can be achieved to the
timer-critical events. For HEROS, the real time response
can be achieved by means of the multithreading thread
switch. For mantisOS, the preemption can be supported
by the multithreading scheduler, thus it has the real-time
performance better than that in the TinyOS, Contiki and
SOS. However, it doesn't implement any real-time
scheduling algorithm, thus it is still not a real real-time
OS, and can support only the soft real-time reaction. For
the simplification of the application development process,
TinyOS, Contiki, SOS and HEROS all uncouple the
applications from the systems by different mechanisms.
For MantisOS, it doesn’t separate the applications from
the systems, but in order to reduce the application
reprogramming code size, it uses the diff-patch code to
reprogram the new applications, and the reprogramming
performance can be greatly improved by this way. For the
OS simulation, different methods have been adopted [34-
37]. For HEROS, the QEMU [37] is used. [37] is generic
and open source. Moreover, it can stimulate the OS and
programs that are made on one machine on the other
machine, e.g., the AVR platform HEROS code can be
stimulated on the X86 PC.

C. Memory Resource Consumption
Memory resource consumptions of different OS

components are shown in the Table V.
For the required ROM resources of multithreading

scheduler, mantisOS consumes much more than Contiki
and HEROS, this is because it is a pure multithreading
OS. For it, no matter a handler is time-critical or not, one
thread should be created for its execution, thus more
threads are required to be created, and this increases the
system architecture complexity.

The required RAM resources of different components
is also shown in Table V. For the event-driven scheduler,
Contiki and HEROS requires (10+6e+8p) and (12+12e)
respectively, where e represents the number of system
events that have been generated but not yet been
processed, p presents the number of pre-defined system
processes, 8 is the Contiki process structure size, and 6
and 12 are the event structure size. For the memory
allocator, the Contiki block allocator requires (4+8*Nb),
where Nb is the number of the statically allocated block
areas, and 8 is the size of the block management structure.
For the multithreading scheduler, it needs the RAM
resources for the allocation of the thread TCB and the
thread stack: (Ctn, Mtn, Htn) are the reserved numbers of
TCB, (8, 22, 8) are the TCB structure size, and (Csk, Msk,
Hsk) are the stack size for the active threads.

TABLE V.
COMPARISON RESULTS OF MEMORY RESOURCE CONSUMPTION

Titles
ROM Code (bytes)

Contiki 2.6 MantisOS HEROS
Event-driven

scheduler 936 N/A 602

Multithreading 678 3232 988

Memory
allocator 298 708 832

timers 740 736 666

Total 2652 4676 3088

Titles
RAM Data (bytes)

Contiki 2.6 MantisOS HEROS
Event-driven

scheduler 10+6e+8p N/A 12+12e

Multithreading 8+8*Ctn+Csk 40+22*Mtn+Msk 4+8*Htn+Hsk
Memory
allocator 4 2 6

timers 10 10 2

Total 32+6e+8p+8Nb
8Ctn+Csk 52+22Mtn +Msk 24+12e+

8Htn +Hsk

To evaluate the required RAM data of different OSs,
assumed that e is equal to 15, p is equal to 10, Nb is equal
to 10. And for the thread numbers tn, mantisOS
commonly has the most and HEROS has the least, thus it
can be assumed that Ctn is 5, Mtn is 10 and Htn is 3.
Then, the total RAM consumption of these OSs will be as
follows:

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1777

© 2014 ACADEMY PUBLISHER

Contiki: (202+(40+Csk))
MantisOS: (272+Msk)
HEROS: (228+Hsk) (4)

For the thread stack, it is needed for the storing of the
thread run-time context, and its size is commonly as high
as 100 bytes. Assumed that the thread stack is set to 100
bytes, and the number of the threads that are active in
Contik, MantisOS and HEROS are 3, 6 and 2 respectively,
then the total RAM consumption of Contiki, mantisOS
and HEROS will be:
(SContiki, SMantisOS, SHEROS) = (542, 872, 428bytes). (5)

Since the multithreading in Contiki is used as an
optional library, it may not be required to be linked. And
in HEROS, the multithreading mechanism will also not
be launched if the HRT events are not triggered. Thus, for
these cases, the total RAM consumption of Contiki and
HEROS will be:
 (SContiki, SMantisOS, SHEROS) = (202, 872, 228bytes). (6)

From these results above, it can be concluded that: 1).
The RAM consumption of pure event-driven OS can be
much smaller than the multithreading one, seen in
equation (6), and this is because the creation of the thread
stack is high consumption in the RAM resources. 2).
HEROS consumes less RAM resources than the
multithreading mantisOS as well as the hybrid scheduling
Contiki, seen in the equation (5), this is because it
classifies the system events into three kinds, and only the
particular HRT events will be processed by threads, thus
the active thread number in HEROS can be less than
Contiki and mantisOS.

D. Energy Resource Consumption and Node Lifetime
Energy resources on most sensor nodes are constrained.

In order to reduce the energy consumption, the sleeping
mechanism is adopted in HEROS. By this mechanism,
sensor nodes are configured to sample and transmit the
sensor data periodically., Besides, in case that there are
no events existed in the HEROS event queue, the sensor
nodes will also fall asleep.

With the sleeping mechanism and the energy efficient
hardware design, iLive becomes an energy aware sensor
node. Currently, iLive node is powered by two 1.5V AA
standard batteries, and the energy consumption status is
listed in Table VI. It is computed that, if the temperature
and light sensors are loaded and the sensor data sampling
frequency is set to 3 minutes, the lifetime of iLive can be
as long as 826 days. This result is significant, because the
sensor nodes are prone to be deployed in some harsh
environments where the humans cannot access. Therefore,
by means of this energy efficient iLive system as well as
the HEROS PLM reprogramming mechanism, the sensor
nodes can be avoided to be brought back for the
application reprogramming after they have been deployed.

TABLE VI.
ENERGY CONSUMPTION STATUS OF ILIVE SENSOR NODE

Tasks Working Current Time cost

Instructions execution only 20.1mA N/A

Low-power sleep mode 1uA N/A

Tasks Working Current Time cost

Temperature&light sensors sampling 15.6mA 900ms

10 bytes FLASH programming 20.8mA 15ms

Wireless packet transmission 20.7mA N/A

50 bytes Wireless reception 21.5mA 140ms

E. Performance of basic OS Primitives
The clock cycles of different HEROS primitives are

shown in Table VII. In this table, q means the counts of
searching of the correct position in the freed memory
queue, r means the counts of searching the correct
reference from the chunk reference area, u means the
number of the references to be updated, s means the
memory size to be shifted, f means the count of searching
a free Contiki block flag, t means the count of searching
the next active thread from the TCBs, and p means the
count of searching the correct position in the mantisOS
priority-based thread queues. For HEROS memory
allocator, if the fragment assembling is not processed, the
allocation cost is (87+16q+8r) cycles. Otherwise, it will
be (136+16q+8r+9u+16s) cycles.

For the execution cost of the multithreading primitives,
Contiki is less than the others as the thread stacks in
Contiki are pre-reserved statically. For mantisOS, it costs
the more as it is a pure multithreading OS with more
threads defined, thus the thread management process is
more complicated.

In case that the main frequency of ATmega1281 on the
iLive node is set to 16 MHz, and the value of (q, r, t, u, s)
is (3, 5, 2, 4, 80) respectively, then the execution time of
the HEROS primitives can be calculated: For event post,
it is 3.63 us. For common and SRT event extraction, they
are 0.63 us and 1.12 us respectively. For memory
allocation and free operations, they are respectively 10.94
us and 6.13 us. If the first-time memory allocation is
failed, the fragments will be assembled, then the cost time
will be 96.25 us and this is the worst case of the memory
allocation cost. As for thread context creation, it is 13.5
us. And for the thread context switch, it is 8.38 us.

Since after a HRT event is generated, the time cost
between the generation of this event and the execution of
the related event handler is THRT = TCS + TSC, where TCS is
the time cost for creating this thread's run-time stack, and
TSC is the time cost for switching the thread context, then
the THRT can be computed and it is 21.88 us. As the
execution time is related to the processor frequency, if the
professor frequency increases, all these time value above
will decrease correspondingly.

From the results above, it can be concluded that the
dynamic memory allocator is not so complicated and
inefficient that it can be implemented on the resource-
constrained WSN system. Moreover, if used on the AVR
ATmega1281 microcontroller, HEROS can support the
HRT reaction with the response time limited to 21.88 us.
Thus, for the real-time WSN applications of which the
reaction time constraint is not as strict as this, the HEROS
system with the iLive node can be competent.

1778 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

TABLE VII.
PERFORMANCE OF BASIC OS PRIMITIVES

Basic OS
Primitives

Execution Cost (clock cycles)
[min, max]

HEROS Contiki MantisOS

Event post 22+12q 28
N/A

Event extraction [10, 18] 32
Memory

allocation
[87+16q+8r,

136+16q+8r+9u+16s] 28+12f 98+12q

Memory free 62+12q 38+12f 56
Thread

context creation 112+(56+16q) 106 96+(98+
12q)+16p

Thread context
switch 98+18t 116+16t 152+18p

F. Portability
The portability becomes essential for an OS as the

hardware platforms of WSN are diverse. To port HEROS
to a new hardware platform, all the code that is hardware
specific should be adjusted, and this mainly includes two
aspects. One is the variable type length, e.g., the integer
length on the ATmega1281 microcontroller is 2 bytes
while on AT91SAM7S256 it is 4 bytes, thus some data
structures should be adjusted. And the other is the
assembler codes in the OS components such as the basic
hardware initialization, the multithreading scheduler, the
software timers, etc. It is computed that to port HEROS
from the AVR ATmega1281 platform to the ARM
AT91SAM7S256 platform, 92 lines of code needs to be
adapted.

XI. CONCLUSION AND PERSPECTIVE

In this paper, a hybrid, resource-aware, real-time and
user development friendly OS HEROS is presented. The
final performance evaluation and experimental work
proves that HEROS can be used on the resource-
constrained sensor nodes to support the real-time WSN
applications.

For the ongoing work, the following topics will be
focused:

Fault-tolerant system: A fault-tolerant system can
make the sensor nodes to continue the normal working
even if some faults occur on the nodes. To achieve the
fault-tolerant system, some measures will be taken from
both the hardware and software aspects. For the hardware
aspect, the multi-cores WSN nodes are currently
developing in our team. With the multi-core platform, the
sensor node’s fault tolerance can improve by means of
the cooperation among the different microcontrollers. For
the software aspect, some dependable concepts such as
the state machine checking and validation, the run-time
monitoring profiler, the roll-back recovery, etc., will be
implemented in the next version HEROS.

Distributed system: Due to the development of multi-
core hardware platform, HEROS is currently developing
toward a distributed OS. This means that HEROS will be
capable of splitting a complicated system task into
several child tasks and distributing these child tasks to the
different microcontrollers. Moreover, it will support the

ability of sharing the memory resources on the different
microcontrollers.

Application code generation and reprogramming:
With the HEROS PLM implemented, the user application
project becomes very simple, thus it is feasible to
generate the application program automatically by the
GUI (Graphic User Interface) toolkit and reprogram the
application remotely by the webpage. With the GUI
toolkit, the users are not required to be professional in the
programming. Instead, they choose some graph modules,
connect them logically, configure the module parameters
and then generate the application programs. Later, these
programs will be transmitted by the web page to the
servers, to be built by the HEROS PLM and then updated
to the sensor nodes. Currently, such an integrated
development environment is under construction by our
team with the address: http://edss.isima.fr.

ACKNOWLEDGMENT

This work has been sponsored by the French
government research program "Investissements d'avenir"
through the IMobS3 Laboratory of Excellence (ANR-10-
LABX-16-01), by the European Union through the
program Regional competitiveness and employment
2007-2013 (ERDF–Auvergne region).

Our thanks also to the China Scholarship Council (No.
2009627016), the China National Natural Science (No.
60903195), and the support from the project "Space
satellite research on collaborative ad hoc networks" by
the Innovation Fund of Satellite Application Institute in
China Aerospace Science and Technology Corporation.

REFERENCES

[1] J Yick, B Mukherjee, D Ghosal. "Wireless sensor network
survey", Volume 52, Issue 12, August 2008.

[2] K. Shinghal, A. Noor et al. "Intelligent Humidity Sensor
For Wireless Sensor Network Agricultural Application",
Journal of Wireless&Mobile Networks, Vol. 3, No. 1, 2011.

[3] A. Flammini, Paolo Ferrari et al. "Wired and wireless
sensor networks for industrial applications". In
Microelectronics Journal, pp. 1322-1336, 2009.

[4] I. Kirbas et al.. HealthFace: A web-based remote
monitoring interface for medical healthcare systems based
on a wireless body area sensor network. Journal of
Electrical Engineering&Computer Sciences, pp. 629-638,
2012.

[5] W Dargie, C Poellabauer. "Fundamentals of wireless
sensor networks: theory and practice", Wiley Series on
Wireless Communications and Mobile Computing, 2010.

[6] WSN mini hardware survey. http://www.cse.unsw.edu.au/
~sensar/hardware/hardware_survey.html.

[7] J. Hill, R. Szewczyk, et al., “System architecture directions
for networked sensors,” in ACM SIGOPS Operating
Systems Review, vol. 34, pp. 93–104, December 2000.

[8] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki – a
lightweight and flexible operating system for tiny
networked sensors,” in International Conference on Local
Computer Networks, pp. 455–462, November 2004.

[9] C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava,
“A dynamic operating system for sensor nodes,” in Int'l
Conf. MobiSys, pp. 117–124, June 2005.

JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014 1779

© 2014 ACADEMY PUBLISHER

[10] S. Bhatti, J. Carlson, H. Dai, J. Deng et al.. "MANTIS OS:
An embedded multithreaded operating system for wireless
micro sensor platforms," ACM kluwer Mobile Networks &
Applications Journal, August 2005.

[11] Atmel AVR2050: Atmel BitCloud, developer guide. 2012.
[12] Hai-ying Zhou, Feng Wu, Kun-mean Hou. "An Event-

driven Multi-threading Real-time Operating System
Dedicated to Wireless Sensor Networks", Int'l Conf. on
Embedded Software and Systems, Chengdu, China, 2008.

[13] J. Labrosse, MicroC/OS-II: The Real-Time Kernel, 2nd
edition, CMP Books, June 2002.

[14] AVRX. Compact Real Time Scheduler, http://avrx.
sourceforge.net/.

[15] P. Levis and D. Culler. Mate: A tiny virtual machine for
sensor networks. In International Conference on ASPLOS,
San Jose, CA, USA, Oct. 2002.

[16] Philip Levis. Bombilla: A Tiny Virtual Machine for
TinyOS. Version 1.0. September 25, 2002.

[17] Rene Mueller, Gustavo Alonso et al.. "SwissQM: Next
Generation Data Processing in Sensor Networks", 3rd
Biennial Conference on Innovative Data Systems Research,
January, 2007, Asilomar, California, USA.

[18] A. Dunkels, N. Finne, J. Eriksson, and T. Voigt, “Run-time
dynamic linking for repro-gramming wireless sensor
networks,” in Proceedings of ACM SenSys, 2006.

[19] C. Duffy, U. Roedig, J. Herbert, and C. Sreenan, "A
Comprehensive Experimental Comparison of Event Driven
and Multi-Threaded Sensor Node Operating Systems",
Journal of Networks, Vol. 3, No. 3, March 2008.

[20] J. Hellerstein et al.. Events and threads. Lecturer Notes,
November 2005.

[21] J. K. Ousterhout. ”Why Threads Are A Bad Idea (for most
purposes)”, Presentation given at the 1996 Usenix Annual
Technical Conference, January 1996.

[22] R. von Behren Jeremy Condit et al.. Why events are a bad
idea (for high-concurrency servers). In 10th Workshop on
Hot Topics in Operating Systems (HotOS IX), May 2003.

[23] C. Duffy, U. Roedig, J. Herbert, and C. Sreenan, “A
performance analysis of TinyOS and MANTIS,” Tech.
Report. University College Cork, Ireland, November 2006.

[24] A. Dunkels, O. Schmidt, T. Voigt, and M. Ali,
“Protothreads: simplifying event-driven programming of
memory-constrained embedded systems,” in Proceedings
of ACM SenSys, 2006.

[25] PIZLO. F et al.. Towards Java on bare metal with the Fiji
VM. In Proc. Int'l Conf. JTRES’09. Madrid, Spain,
September 2009.

[26] Fridtjof Siebert. Realtime garbage collection in the
JamaicaVM 3.0. In Proc. of Int'l Conf. JTRES, September
2007, pages 277–278.

[27] D. Simon, C. Cifuentes, D. Cleal, J. Daniels, and D. White.
Java™ on the bare metal of wireless sensor devices: The
squawk Java virtual machine. In Proc. Int'l. Conf. VEE,
pages 78–88, New York, NY, 2006.

[28] N. Brouwers, K. Langendoen, and P. Corke, B. Darjeeling,
a feature-rich VM for the resource poor. in Proc. ACM
Sensys, 2009, pp. 169–182.

[29] RTJ Computing Pty. Ltd. simpleRTJ a small footprint
Java VM for embedded and consumer devices. Online
at http://www.rtjcom.com/.

[30] T. Harbaum, the NanoVM - Java for the AVR, http://www.
harbaum.org/ till/nanovm/index.shtml.

[31] Q. Wang, Y. Zhu, and L. Cheng, “Reprogramming
wireless sensor networks: Challenges and approaches,”
IEEE Network Magazine, vol. 20, no. 3, pp. 48–55, 2006.

[32] K. Klues, C.-J. M. Liang, J. yeup Paek, et al.,
“TOSThreads: Safe and Non-Invasive Preemption in
TinyOS,” in Proceedings of ACM SenSys, 2009.

[33] AVR Studio 6. The Studio to Design All Embedded
Systems. http://www.atmel.com/Microsite/atmel_studio6/.

[34] P. Levis, N. Lee, A. Woo, S. Madden, and D. Culler.
Tossim: Simulating large wireless sensor networks of
tinyos motes. Technical Report UCB/CSD-TBD, U.C.
Berkeley Computer Science Division, March 2003.

[35] Fredrik Österlind. "A Sensor Network Simulator for the
Contiki OS", SICS Technical Report, 2006.

[36] Hector Abrach, Shah Bhatti et al.. "Mantis - system
supports for multimodAl neTworks on in-situ sensors".
Conference On Embedded Networked Sensor Systems
(SenSys), pp. 336-337, California, USA, 2003.

[37] QEMU, a generic and open source machine emulator and
virtualizer. http://wiki.qemu.org/Main_Page.

Xing Liu received his bachelor
engineering degree in 2007 from the
Electronic Information School in Wuhan
University. In 2004, he obtains the
National First Classical Scholarship for
students (top 0.3% in the National key
universities). In 2007, he was
recommended to become a graduate
student of Wuhan University without the

necessity of participating in the National Entrance Examination
for MS. Candidates (top 10% of Wuhan University). In 2009, he
received the MS. Engineering Degree from the department of
Communication and Information System in Wuhan University.
From 2009 to now, he was assigned by the Chinese government
and China Scholarship Council to study in LIMOS (CNRS
UMR 6158, FRANCE) to pursue the PhD degree of University
Blaise Pascal. His research interests focus on the development
of embedded real-time operating system and embedded Java
virtual machine.

Kun-mean Hou was born in Cambodia
in 1956. He held a PhD degree in 1984
and a HDR degree in 1996 in Computer
Science from the University of
Technology of Compiègne (UTC). He
worked as associate professor at UTC
from 1984 to 1986. In 1986 he joined
IN2 as R&D engineer group leader.
From 1989 to 1996, he created a research

group which investigated parallel architecture dedicated to real-
time image processing at laboratory HEUDIASYC UMR CNRS.

In 1997 he joined the college of engineering school ‘ISIMA:
Institut Supérieur d’Informatique de Modélisation et de leurs
Applications’ as professor, where he created the SMIR
‘Systèmes Multisensoriels Intelligents integrés et Répartis’
team of the laboratory LIMOS UMR 6158 CNRS (10
researchers) working on the development of basic hardware and
software dedicated to WSN. Different sensor nodes (Bluetooth,
WiFi and ZigBee), embedded wireless communication and
embedded real-time kernel (SDREAM and LIMOS) are
implemented and deployed in different applications such as
telemedicine, intelligent transportation system and precision
agriculture. He holds 3 EU patents, and he evolved in 3 EU
projects and 10 technology transfers. He also evolved in several
scientific committees and boards.

1780 JOURNAL OF SOFTWARE, VOL. 9, NO. 7, JULY 2014

© 2014 ACADEMY PUBLISHER

