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Abstract—Wireless sensor network (WSN) has been used in 
widespread domains, and the real-time response is required 
by many WSN applications. However, due to the memory 
resources limitation on the sensor nodes, the current WSN 
OSs such as TinyOS, Contiki, SOS, mantisOS, etc., are not 
real-time ones. To achieve the objective of designing a real-
time OS with low memory resource consumption, a new 
WSN OS named HEROS is developed and presented in this 
paper. For HEROS, it adopts a hybrid scheduling strategy. 
Both the event-driven and multithreading schedulers are 
implemented in parallel, and these two schedulers can 
switch to each other when necessary. By this means, 
HEROS take advantages of both the event-driven system's 
low memory resource consumption as well as 
multithreading system's high real-time performance. 
Besides these, HEROS uncouples the applications from the 
underlying systems by using the pre-linked mechanism 
(PLM). With this mechanism, a user-friendly development 
environment can be provided to the WSN users. Finally, to 
evaluate the performance of HEROS, it is compared with 
some other WSN OSs on the iLive platform (8-bit AVR 
microcontroller). The final experimental and evaluation 
results prove that HEROS is a memory resources efficient, 
real-time supported and user-friendly OS, and can be used 
on most resource-constrained sensor nodes to support the 
diverse kinds of WSN applications.  
 
Index Terms— operating system, real-time , hybrid, wireless 
sensor network 

I.  INTRODUCTION AND BACKGROUAND 

Wireless sensor nodes (WSN) have been used in 
widespread domains ranging from the precise agriculture 
to the military surveillance [1-4]. And for the software 
development on sensor nodes, the operating system (OS) 
is one of the key technologies. This is because an 
outstanding OS can not only manage the platform 
resources well, but also provide good services for the 
WSN applications.  

Currently, several challenges exist for the WSN OS 
development. Firstly, the WSN platform resources are 
constrained [5]. Most sensor nodes are small size and low 
price ones with limited memory resources, e.g., the 
sensor nodes equipped with the AVR ATmega1281 
microcontroller has only 8 kilobytes RAM. Therefore, a 
good WSN OS should have low memory resources 

consumption. Secondly, the real-time response is required 
by many WSN applications, such as the engine control 
process in the industrial system, the heart pacemakers 
monitoring in the medical system, etc. However, the 
current popular WSN OSs, such as TinyOS, Contiki, etc., 
cannot support the real-time reaction well. Thirdly, the 
WSN application development process is complicated for 
the users since the underlying WSN hardware and 
software platforms are diverse [6].  

Up to now, several WSN OSs have been developed, 
such as TinyOS [7], Contiki [8], SOS [9], MantisOS [10], 
BitCloud OS [11], LIMOS [12], uCOS [13], AVRX [14], 
etc. However, these OSs cannot address the above 
challenges well. On one hand, most of these OS [7-9, 11, 
12] are the event-driven scheduling OSs. For these OSs, 
the advantage is the memory resource consumption is low, 
whereas the real-time performance is poor as the 
preemption cannot be supported. For the other OSs such 
as [10, 13, 14], the multithreading scheduling model is 
used. With the multithreading scheduler, the preemption 
can be achieved by the thread switch. Consequently, 
these OSs have the real-time performance better than the 
event-driven ones. Nevertheless, the memory resource 
consumption of these OSs is relatively high as each 
thread needs to have its own run-time stacks. Thus, how 
to achieve an OS which has good real-time performance 
as well as consumes less memory resources become 
essential for the current WSN OSs. On the other hand, the 
monolithic system architecture is used in many current 
WSN OSs [10-13].  For these OSs, the applications are 
not uncoupled from the systems, thus it is difficult for the 
WSN users to develop the applications as they are 
required to understand the low-level system details. For 
[7-9], the applications can be separated from the systems 
either by the virtual machines (VMs) [7, 15, 16, 17] or by 
the dynamic linking  mechanisms (DLM) [18, 8, 9]. Yet, 
they are still not sound. Because for [7], the applications 
should be programmed by using the non-popular byte 
code instructions directly. And for [8, 9],  the memory 
resource consumption of the DLM is high and the code 
loading process in DLM is also complicated. Due to these 
reasons, the design and implementation of a new WSN 
OS becomes essential.  
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In this paper, a hybrid real-time OS HEROS is 
developed to address  the challenges above. The key 
features of HEROS include the following aspects: Firstly, 
it adopts a hybrid scheduling mechanism. Both the event-
driven and multithreading schedulers are implemented. 
Event-driven is used to dispatch the non real-time events 
while the multithreading scheduler is used to dispatch the 
real-time events. Secondly, it implements a dynamic 
memory allocator which avoids some drawbacks of the 
allocator in the current WSN OSs. By means of the 
dynamic memory allocator as well as the hybrid 
scheduler, HEROS can react to the time-critical events 
with low memory resources consumption. Thirdly, the 
applications in HEROS are uncoupled from the systems 
by using the pre-linked mechanism (PLM). This 
mechanism has been proved to be resources efficient. 
With it, the user application development process can be 
simplified.  

The main structure of this paper is as follows: In 
section IV, the hybrid HEROS scheduler is presented. In 
section V, two kinds of HEROS dynamic memory 
allocators are discussed. In section VI, the 
implementation of the software timers is introduced. In 
section VII, the HEROS PLM is designed and 
implemented. From section VIII to XI, a new OS debug 
method, the related work, the performance evaluation, the 
conclusion and ongoing work are presented respectively.  

II.  BACKGROUND OF WSN OSS 

In terms of the scheduling policy, the WSN OSs can be 
classified into two types: the event-driven OSs and the 
multithreading OSs. In the past research work, there exist 
some debates and discussions about these two types of 
OSs [19-23]. 

A.  Event-driven WSN OSs 
SOS and Bitcloud OS are all pure event-driven OSs. In 

these OSs, a set of event handlers are defined, each 
handler is related to an event. Once an event is triggered, 
the related handler will be invoked. Each handler runs to 
completion with respect to each other. The interruption is 
enabled during a handler's executing process, but the 
preemption from one handler to another is not allowed. 
Since all the handlers are executed one by one, only one 
stack is needed and be shared by all the handlers. Thus, 
the memory consumption of event-driven system is low. 
However, the real-time performance cannot be well 
supported, e.g., after a time-critical event is triggered, it 
cannot be executed immediately by preempting the 
current executing handler, even if the current executing 
handler is not a time-critical one.  

B.  Multithreading WSN OSs 
The OSs such as MantisOS, uCOS are multithreading 

ones. In multithreading system, each handler is executed 
by one thread. All these threads do not execute one by 
one like event-driven systems do, but run concurrently by 
the thread switch. Since the thread switch exists, each 
thread needs to have a private thread stack which will be 
used for the storing of the thread's run-time context. By 

means of the thread switch, the real-time performance in 
multithreading systems can be better than that in the 
event-driven systems. However, the memory resource 
consumption is also higher if compared with that in the 
event-driven one [19]. In Table I, a comparison between 
the event-driven and the multi-threading OS is shown. 

Besides the pure event-driven and multithreading OSs, 
some current OSs have implemented both the event-
driven and multithreading schedulers in the system, such 
as the TinyOS [7], Contiki [8] and LIMOS [12]. However, 
the multithreading scheduler in these OSs is implemented 
as an optional library upon the event-driven scheduler 
(presented in detail in the related work in the section XI). 
Therefore, these OSs [7,8,12] are not native hybrid 
system, but still event-driven system in the native 
scheduling layer.  

TABLE I.   
COMPARISON BETWEEN EVENT-DRIVEN OS AND MULTITHREADING OS 

Features Event-driven OS Multithreading OS 
Scheduling 

Manner 
All event handlers 
execute one by one 

All handlers run 
concurrently 

Preemption Not enable 
Supported, thus the 
overhead of stack 

switch exists 
Real-time 
response 

Cannot be  
supported well 

Can be well supported 
by thread preemption 

Stacks All handlers share 
one global stack 

Each thread should have 
its own private stack 

Computation 
Resources

Shared among all 
handlers in a 

cooperative way 

Divided among all 
threads by thread switch 

III.  SYSTEM ARCHITECTURE OF HEROS 

The basic terms in HEROS include the event, event 
handler and the system process.  

Event: Event is a system signal which indicates that the 
condition to take some system action has been satisfied. 
An event can be generated by a key pressing, a wireless 
packet reception, an expired system timer, etc. In HEROS, 
events are classified into three types in terms of their 
emergence: the common events, the hard real-time events 
and the soft real-time ones.  

Common events are the ones which don’t have a strict 
requirement to the response time, e.g., in the garden 
caring applications, when the humidity value of the soil 
decreases to a given level, an event should be triggered to 
request the operation of opening the hydro valve to water 
the flowers. In this case, this event is a common one 
because the response delay of even tens of seconds to it 
can still be accepted. 

Hard real-time (HRT) events are the imperative ones 
which should be responded within a strict deadline, if not, 
a great disaster can be caused. They can be generated in 
the systems such as the car engine control, the human life 
medical care, etc. These events are rarely generated and 
are triggered particularly in some emergent situations. 

Soft real-time (SRT) events are the ones that should be 
reacted immediately, but the response constraint time is 
not so strict that a short time delay is still allowed, e.g., 
when a wireless packet is received, an event will be 
generated to request the operations of processing this 
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packet as well as sending back an acknowledgement 
(ACK) packet to the sender. For this event, it can be 
deferred for 1 or 2 seconds in case that the sender’s 
retransmission operation is still not triggered. And this 
event is a SRT one.  

Event handler: Event handlers are a series of system 
subroutines or methods. Each event handler is bound to at 
least one event. Once an event is triggered, the handler 
corresponding to it will be invoked. 

Process: Several event handlers that are logically 
connected or belong to an identical component can build 
up together to form a process. A process can be regarded 
as a wrapper of a set of handlers, it is proposed as it can 
make the system organization to be clear as well as avoid 
too many small pieces of handlers defined in the system.  

Fig. 1 describes the event data structure in HEROS and 
also its relationship with the system handlers and process. 
Inside the event structure, a pointer member named 
process is used to indicate the process which this event 
will be posted to, and another member handler_id is used 
to point out which event handler in this process will be 
invoked by this event. Moreover, the pointers event_data 
and data_size are used to point out respectively the event 
data’s address and the data’s length.  

 

 

 

Figure 1.  Relationship among event, event handler and process. 

IV.  HYBRID SCHEDULER IN HEROS  

In HEROS, a hybrid scheduling policy is adopted. The 
event-driven scheduler is used to dispatch the common 
and SRT events while the multithreading scheduler is 
used to dispatch the HRT events. At any time, only one 
kind of scheduler is active. If only the common and SRT 
events exist in the system, the OS runs in the pure event-
driven model, in this case, all the common and SRT event 
handlers are executed one by one. If one or more HRT 
events are triggered, the execution of the current common 
or SRT event handler will be suspended immediately, and 
then the OS will switch into the multithreading model. In 
this model, one thread will be created for each HRT event, 
and the run method of each thread is to execute the event 
handler related to this HRT event. The run-time context 
of each thread is created dynamically. And after all the 
HRT handlers run to completion, the related thread 
contexts will be released, then the OS will switch back to 
the event-driven model to continue the dispatching of the 
common and SRT events. 

Since HRT events are generated only in some typical 
cases, HEROS runs in pure event-driven model most of 

the times and this is the default scheduling model of 
HEROS. Thus, the memory resource consumption of 
HEROS is low. However, due to the scheduler switch 
mechanism, the event-driven scheduler in HEROS can 
switch to the multithreading one when required. 
Therefore, the real-time reaction to the time-critical 
events can also be achieved. And when HEROS runs in 
the multithreading model, the thread run-time stacks are 
allocated in a dynamical way. Consequently, HEROS can 
achieve the objective of being an OS which supports the 
real-time response on the resource-constraint WSN 
platforms. 

In this section, the design and implementation of the 
event-driven and multithreading schedulers in HEROS 
are presented in the part A and B respectively, and the 
scheduler switch strategy is discussed in part C.  

A.  Event-driven Scheduler in HEROS 
Due to the event-driven scheduler’s features, several 

topics should be considered for the implementation of the 
event-driven scheduler:  

Events buffering mechanism: As the events are 
dispatched one by one, the event dispatcher may not be 
able to handle all the events as quickly as they arrive, 
thus an event buffering system is needed to buffer the 
upcoming events. Seen in the Fig. 2, after the events are 
generated, they will be posted into the event queue, and 
then be extracted and dispatched one by one by the event 
dispatcher. After an event is dispatched, the related event 
handler will be invoked.  

 

Figure 2.  Structure of event-driven scheduler in HEROS. 

In HEROS, three kinds of event queues are defined: 
the common event queue, the SRT event queue and the 
postponed event queue.  

Common event queue is used to buffer the common 
events. Since the response time of the common events is 
not so constrained, the simple FIFO (First Input, First 
Output) algorithm is used to manage this queue. 

SRT event queue is used to buffer the SRT events, the 
SRT events are inserted into this queue in the sequence of 
their event priorities. The priority value of a SRT event is 
pre-defined in terms of this event’s emergency. The more 
emergent an event is, the smaller its priority value will be. 
And in order to prevent a low priority event becomes 
stale by the keep coming high priority events, a dynamic 
priority mechanism is adopted for the SRT events. With 
this mechanism, the priority values of all the SRT events 
will decrease by a given value every time the system PIT 
(periodical interruption timer) is fired. By this means, 
when a SRT event will be extracted is not only dependent 
on the original priority, but also on the time that it has 
been pending in the SRT event queue. 
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For the postponed event queue, it is used to buffer the 
common or SRT events that cannot be processed for the 
moment, e.g., an event is dispatched to send a packet out 
from the wireless media, if the wireless media is detected 
to be busy, this event can be transferred to the postponed 
event queue. In Fig. 3, an example is shown about the 
event initialization and posting process in HEROS.  
 

 

Figure 3.  Event initialization and post process in HEROS. 

Events dispatcher: Event dispatcher runs in a loop, it 
extracts the events one by one from the event queue, and 
then invokes the corresponding event handler. In case that 
no events exist in the event queue, the sensor node will 
fall asleep.  

For the extraction sequence, the events in the 
postponed event queue are precedent over the other two 
queues. Then it is the SRT event queue. And only when 
the postponed and SRT event queues are empty, the 
common event queue will be traversed. 

Achievement of OS concurrency: In event-driven OS, 
the handlers are not preempted. Every event handler 
should run to completion before the next one can be 
invoked. Thus, how to schedule all the handlers 
concurrently becomes a challenge. And to address this 
challenge, two problems should be solved. One is the 
execution time of each handler should not be too long, 
otherwise, the other time-critical events can become stale. 
The other is that the execution of the event handlers 
should not be blocked, if not, the system run-time process 
will be hung up during the blocked time.  

In Contiki, these problems are solved by the proto-
threads [24]. With the protothreads, a blocking run-time 
context without the overhead of multithreading stacks can 
be implemented in the event-driven system, and this is 
achieved by defining a local continuations (LC) variable 
in each process. By means of this variable, if a handler 
needs to yield the control or be blocked, it can save the 
current executing address into the LC variable. And then, 
next time this handler is called again, it will not be 
executed from the beginning, instead, the LC value will 
be loaded and the execution resumes from the recorded 
LC address.  

For HEROS, the protothread method can also be used 
to solve the resource sharing and blocking problems. 
However, due to its special system architecture, the 
handler phase-split mechanism is more suitable to be 
used. With this mechanism, if a handler’s execution time 
is too long, this handler will be split into more pieces. 
Likewise, if a handler will be blocked at a given point, it 
can also be split into two from the blocking address. By 

these means, the problems of blocking and long-time 
handlers can be avoided.  

Compared with the Contiki protothread, the advantage 
of HEROS handler split method is that it doesn’t need to 
define the global LC variables for all the handlers, but it 
shows the drawback in the structure control, e.g., if the 
while loop is needed to be used between two split 
handlers, the goto statement should be used, and this may 
increase the handlers’ programming complexity. 

Event-driven scheduling workflow: To understand how 
the event-driven scheduler works in HEROS, an example 
is shown in Fig. 4. In this figure, Hi (i=1,2,3,…) 
represents the system handlers, ESi (i=1,2,3,..) represents 
the SRT events, ECi (i=1,2,3,..) represents the common 
events. After event ES1 is dispatched, the related event 
handler H1 will be invoked. During the execution of H1, 
another event ES6 will be posted, and ES6 will lead the 
handler H4 to be called, etc. Assumed the priority of ESm 
is higher than ESn in case that m is smaller than n. 
Assumed the equation of nextEventExtract(E1, E2, E3, ...) 
returns the next event to be extracted from the events (E1, 
E2, E3, ...). And to simplify the explanation process, 
assumed the priorities of all SRT events are static other 
than dynamic updating. Then, the event-driven 
scheduling workflow will be as follows: 

Firstly, the dispatcher extracts one event from the 
event queue. In result, nextEventExtract(ES1, EC1, ES3) 
which is equal to ES1 is returned because its priority is 
higher than ES3 and EC1. After ES1 is dispatched, H1 will be 
invoked which generates a new event ES6. Later, when H1 
runs to completion, the dispatcher will extract the next 
event nextEventExtract(ES6, EC1, ES3), and this time ES3 
will be extracted. For the next step, handler H3 will be 
invoked, etc. Finally, the handlers’ scheduling sequence 
will be as:  

{H1-> H3 -> H4 -> H2 -> H6 -> H5 -> H7}.   (1) 
From this workflow, it can be seen that event-driven 

OS is a cooperative scheduling system in which all the 
event handlers cooperate with each other to share the 
computation resources. 

 

Figure 4.  Event-driven scheduling workflow in HEROS. 

B.  Multithreading Scheduling Policy 
For the HRT events, once they are generated, they 

should be handled as soon as possible. In HEROS, this is 
achieved by the multithreading scheduler. For the design 
and implementation of a multithreading system, the 
topics as follows should be discussed: 

Thread control block (TCB) and thread stack: Once a 
thread is created, a TCB as well as a thread stack will be 
created. This TCB is used to record some key information 
about this thread, such as the related HRT event, the 
thread status, the thread stack pointer as well as the 
synchronization queue pointer, etc.. And for the thread 
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stack, it will be used both for the thread execution and the 
thread switch context saving.  

Thread scheduling and synchronization: If the HRT 
events are generated in the system, the HRT threads will 
be created correspondingly. All the HRT threads will 
execute concurrently by the thread switch, and the static-
priority RMS (rate-monotonic scheduling) algorithm is 
used for the thread scheduling. For the thread 
synchronization in HEROS, the semaphore mechanism is 
used.  

Multithreading scheduling workflow: Different from 
the event-driven OS in which the handlers are executed 
one by one, in the multithreading OS, the HRT event 
handlers run concurrently by the thread switch. Fig. 5 
shows an example about the multithreading scheduling 
workflow in HEROS. Assumed that the executing time of 
all the HRT handlers is identical, and then the handler 
execution sequence will be as follows: 

{H1-> H2 -> H3 -> H4 -> H5 -> H6 -> H7}.    (2) 
 

 

Figure 5.  Multithreading scheduling program in HEROS. 

C.  Scheduler Switch in HEROS 
As both the event-driven and multithreading 

schedulers are implemented in HEROS, how to switch 
from one scheduler to another is an important topic. In 
order to make the switch process to be more efficient and 
easy-to-managed, the event-driven scheduling process in 
HEROS is also considered as a thread "main_thread", 
and this thread's run function is to extract and dispatch 
the events one by one from the common/SRT/postponed 
event queues, seen in the Fig. 6.  

Therefore, the hybrid scheduling process in HEROS is 
as follows: 

• If there are no HRT events generated in the system, 
only one thread main_thread exists. In this case, 
the system runs in the pure event-driven model, 
and this is HEROS’s default scheduling model. 

• Once the HRT events are generated, the 
main_thread will be suspended. Then, the OS 
switches to multithreading scheduling model.  

• If all the HRT threads run to completion or are 
inactive, the main_thread will be resumed and the 
common/SRT/postponed events will be dispatched 
again. In this case, the OS becomes an event-
driven system once more. 

• When a HRT thread is created, all the required 
resources will be dynamically allocated. After it 
runs to completion, these resources will be freed. 

 
 

 

Figure 6.  Hybrid scheduler model in HEROS. 

V.  MEMORY ALLOCATION 

Since the RAM resources on the sensor nodes are 
precious, the memory allocation becomes a key issue for 
the WSN OS. 

In Contiki, the memory area is statically reserved, but 
dynamically allocated in block. Seen in the Fig. 7, a set of 
block areas are pre-reserved for the different kinds of 
system objects. Each block area is composed of a few 
blocks. The number of the blocks in each block area is 
pre-defined, and the block flag mechanisms are used for 
the block management. The advantage of this allocation 
method is that it is simple to be implemented. However, 
since the memory areas are statically pre-reserved, two 
drawbacks exist. Firstly, the memory resources in one 
block area cannot be shared with the other areas. 
Secondly, the number of the blocks in each block area is 
difficult to be decided, because in different applicable 
environments the required numbers can be different. And 
in the Contiki system, in case that the pre-reversed block 
number is not enough, an error will return. A common 
method to solve this problem is to pre-reserve each block 
area as large as it can be required, but the memory 
resource consumption will increase greatly in this case. 

 

 

Figure 7.  Memory blocks allocation in Contiki. 

In SOS, the allocation mechanism is similar with that 
in Contiki. What is different is that the link queue other 
than the block flags is used for the allocation manage-
ment. Compared with the flag mechanism, the queue 
management is more complicated to be implemented, but 
the free block can be quickly acquired by deleting 
directly from the free queue head.  

 

For mantisOS, the allocation is different from Contiki 
and SOS. It doesn't use the block allocation. Instead, all 
different kinds of objects are allocated in the same heap. 
This method shows the advantages that no memory areas 
are needed to be pre-reserved. However, the memory 
fragments can appear after a few pairs of allocation and 
free operations, seen in the Fig. 8. Currently in mantisOS, 
no mechanism is implemented to solve this memory 
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fragment problem, and this will decrease the utilization 
efficiency of the memory resources.  

 

 

Figure 8.  Memory allocation in mantisOS. 

From the memory allocation mechanisms in the above 
OSs, it can be seen that there are mainly two challenges 
for the allocation of the memory resources in embedded 
system. The first results from the pre-reservation problem, 
and the second results from the memory fragments. 

In HEROS, to avoid the above drawbacks, a dynamic 
allocation mechanism which supports fragment collection 
is implemented. 

Seen in the Fig. 9, the memory heap in HEROS is 
divided into three parts: the object allocation area, the 
virgin area and the reference area. Every time a new 
object is required to be allocated, it will firstly be 
allocated from the freed object queue. If not success, then 
the allocation will be done from the virgin area. And in 
order to clean up the memory fragments, the fragment 
assembling mechanism is used. E.g., in the Fig. 9 (a), 
there are two freed members in the freed object queue, if 
a new 60-byte size object is required to be allocated, it 
cannot be processed successfully as there is no 
continuous memory space of which the size is as large as 
60 bytes. However, the total size of the virgin area plus 
the two memory fragments is larger than 60 bytes, thus 
this allocation can be done successfully in case that all 
these freed memory resources are assembled, seen in Fig. 
9 (b). And to assemble these memory resources, the 
chunks of object B&C need to be shifted. However, after 
the shifting of these chunks, they can no more be 
accessed correctly by the others as their addresses have 
been changed. Therefore, to address this challenge, the 
indirect memory access mechanism is used in the 
HEROS memory allocator. With this mechanism, every 
time a new object is allocated, a corresponding reference 
pointer will be created and point to it, and the access to 
the allocated objects will be done indirectly through these 
reference pointers. By this way, if the allocated objects’ 
addresses changed after the fragments are assembled, the 
value updating to these reference pointers can keep the 
access to these objects still be available. Consequently, 
the memory fragments can be collected in the HEROS 
memory allocator, and the memory resources can be 
utilized efficiently in this way.  

VI.  SOFTWARE TIMER 

Software timer is a counter which will request the 
system to take some actions when the counter value 
meets a preset condition. Commonly, the software timers 
are based on the hardware PIT. 

 

 

Figure 9.  HEROS allocator with fragment assembling support. 

In HERSO, the timers can be classified into two types: 
the one-slot timer (OsT) or the periodic timer (PrT). For 
the one-slot timer, it will be deleted once it is expired. For 
the periodic timer, it will be reset and restarted after its 
expiration. 

And the timers can also be classified into two modes: 
real-time reaction (RtR) mode and asynchronous reaction 
(AcR) mode. For the former mode, once the timer is fired, 
a related callback function will be called directly. For the 
later mode, after the timer is fired, an event will be posted 
into the system event queue, and only when the event is 
dispatched, the related event handler can be executed. 

As for the implementation of the timers, HEROS 
implements in two ways, one uses the relative counter 
value (RCV) and the other uses the absolute counter value 
(ACV). And a system timer queue needs to be created to 
link all the started timers. Every time the PIT is 
interrupted, this timer queue will be checked to see 
whether some timers that have been fired. If a timer is 
observed to be fired, the related timer handler will be 
processed. 

VII.  USER APPLICATION DEVELOPMENT 

As the application program usually requires the OS 
services to perform the function, an excellent OS should 
provide a friendly application development environment 
to the users. 

To develop the applications on sensor nodes, 
programming and reprogramming are two important 
processes. And one way to simplify these processes is to 
uncouple the applications from the low-level systems, by 
this way, the whole software system will be divided into 
both the user application space and the system space, and 
two executable images will be generated independently, 
seen in the Fig. 10 and 11.  

 

 

Figure 10.  Architectures to uncouple the applications from systems. 
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After this separation, for the persons who are WSN 
experts, they can in charge of the system space and pre-
burn the system image onto the sensor node. Then, for the 
WSN users, they only need to focus on the application 
space without the necessity of considering the lower 
system details.  

Currently, several mechanisms have been developed to 
uncouple the applications and the systems. One way is to 
use the virtual machine (VM), and this method has been 
used in TinyOS. For TinyOS, several VMs have been 
implemented such as Maté [15], Bombilla [16], SwissQM 
[17], etc. However, the users are required to program the 
applications by the VM byte code instructions directly, 
and only a limited instruction set is provided. To address 
this challenge, many embedded Java VMs (EJVMs) are 
developed to be used to the resource-constrained devices, 
such as FijiVM [25], JamaicaVM [26], Squawk JVM [27], 
Darjeeling VM [28], simpleRTJ [29], NanoVM [30], etc. 
With the EJVMs, the users can program the applications 
by the popular, robust, object-oriented and hardware 
independent Java language. Yet, these JVMs either have 
non-trivial memory resource consumption [25-29], or 
support limited VM features [30]. Moreover, the byte 
code execution efficiency is low, thus more energy 
resources will be consumed on the node. Therefore, for 
the high resource constrained sensor nodes, the EJVMs 
are not a suitable choice. Besides the EJVM, the dynamic 
loadable module (DLM) is another way, with this method 
the WSN application are built into a loadable module and 
then uploaded to the sensor nodes to be linked 
dynamically before being executed. This method has 
been used in the OSs such as Contiki and SOS [18]. In 
these OSs, the applications are built into an optimized 
ELF (Executable and Linkable Format) file, and on the 
sensor devices, the function and variable references 
inside this file will be resolved and linked in a dynamical 
way. Compared with the JVM mechanism, the drawback 
of DLM is that the applications need to be programmed 
by the C language which is not so robust and user-
friendly as Java. Moreover, the DLM module needs to be 
linked before being executed. However, after the DLM 
module is resolved and linked, the final executive code is 
the pure machine code with a high execution efficiency. 

In HEROS, in order to provide a simple and efficient 
method to separate the applications from the systems, the 
pre-linked mechanism (PLM) is adopted. And there are 
several reasons for this: 1). the size of the PLM 
application image will be smaller as no resolving or 
interpretation data is needed to be contained inside, and 
this will improve the energy consumption as well as the 
code transmission success probability in the application 
reprogramming process. 2). most PLM work is done on 
the PC other than the sensor device, thus the software 
architecture on the sensor nodes can be simplified. 3). 
since the PLM image uses the machine code which can 
be executed directly without resolving or interpretation, 
its execution efficiency is high. 

However, several problems need to be solved for the 
PLM method, such as the code flexibility, the parameters 
passing between the PLM code and the system image, etc.  

A.  Implementation of HEROS PLM 
To implement the HEROS PLM, two kinds of 

functions need to be defined: the service provider 
function (SPF) in the system space which provides the 
system services for the application development, and the 
service subscribe interface (SSI) in the application space 
which can be used by the users to access to the system 
services. For each SSI, a corresponding SPF will be 
programmed, and the call of the SSI from the application 
image will cause the related SPF in the system image to 
be executed.  

Since the application image and the system image are 
built independently (Fig. 11), HEROS PLM should 
function as a bridge between these two images to make 
that they can interact with each other well: 

Link of the SSI in the application image to the 
corresponding SPF in the system image: By PLM, the 
application image is build independently from the system 
one, yet it needs to access to the system services. Thus, 
how to pre-link an application SSI to the related system 
SPF is the first problem to be solved. 

A common way to solve this problem is to build the 
system project firstly and generate a map file in which all 
the system functions' addresses are listed. Then, the pre-
linking of the application SSI functions can be done in 
terms of this list. The drawback of this method is that the 
application image is inflexible as any change to the 
system image can cause the application image to become 
unavailable.  

In order to make the application image be flexible, the 
application SSIs in HEROS PLM are not linked directly 
to the system SPFs. Instead, an intermediate function 
jump table is provided in the system project, with this 
table, the SSIs are linked indirectly to a given address in 
this table, and then this table will redirect the function 
call to the corresponding SPFs. By this means, the change 
to the system image will not affect the validity of the 
application image in case that the jump table is put at a 
fixed address and the item order in it is not changed. 

Fig. 11 depicts the application image development 
process after the HEROS PLM is implemented. With the 
information acquired from the object and ELF files, the 
raw application image is modified once more to link all 
the SSIs to the system function jump tables. All these 
works are done on the PC other than the WSN devices.  

For system image, it is pre-burned on the sensor node. 
After this, if the node application needs to be changed, 
only the application image is needed to be updated.  

 
 

 

Figure 11.  HEROS PLM development process 

Parameters' passing between application SSI and 
system SPF: Besides the pre-linking of an SSI to the 
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relevant SPF, another problem to be solved is how to pass 
the function parameter between SSI and SPF. 

Assumed HEROS PLM is used on the AVR 
microcontroller platform. Then, after the application 
program is built, it can be observed from the AVR 
assembler code that before the "CALL" directive of a SSI 
is invoked, the function input parameters will be put into 
the registers gradually from [R25, R24, ...]. And in the 
SPF's assembler code, the function parameters will be 
extracted one by one from [R25, R24, ...] as well. Thus, 
there is no parameter passing gap between the SSIs and 
the SPFs, this is because the same compiler is used for 
both the application and system images, therefore, the 
same operation rule is followed even if these images are 
not built in different projects. 

For the return parameter from the SPF to the SSI, it is 
the same case as the input parameters, And the registers 
[R25, R24] is always used to pass the return values. 

Callback from the System Image to Application Image: 
Once the function linking and parameter passing from the 
SSIs to SPFs are achieved, the application image can 
access the services in the system image. Yet, the reverse 
callback operation is not supported.  

 

However, this callback functionality is required in 
many cases, e.g., the hardware interruption routine 
service (ISR) is programmed in the lower system image. 
If an ISR is expected to be programmed by the users in 
the application image, then there should be a callback 
operation which redirects the execution from the system 
ISR to the given application ISR. In HEROS PLM, the 
callback is achieved by a registration mechanism. If an 
application function needs to be called back from the 
system image, it should be registered by a registration 
interface. After registered, this application function's 
address will be passed into the system space, and then the 
call back from the system image to this function can be 
achieved. 

 
 

 

With the mechanisms above, both the application 
image and the system image can interact well with each 
other in despite that they are built separately. 

B.  Performance Evaluation of HEROS PLM 
To evaluate the performance of HEROS PLM, it is 

compared with the Contiki DLM and the simpleRTJ 
EJVM mechanisms. SimpleRTJ is chosen because it is a 
clean room implementation JVM for the small embedded 
devices.  

 

Features and memory resource consumptions: The 
features and memory resource comparison results are 
shown in Table II. For simpleRTJ, it provides a good 
Java development environment. However, the memory 
resource consumption is high. For Contiki DLM, it 
consumes more memory resources than HEROS PLM, 
this is because it uses the dynamic linking mechanism. 

Application Image Size: It is significant and economic 
to reprogram a new WSN application to the sensor node 
to adjust its functionality. And for the reprogramming 
process, the application image size is a key factor. This is 
because it will not only determine the success probability 

of transmitting this image integrally, but also influence 
the energy consumption on the sensor nodes [31].  

 

TABLE II.   
COMPARISON RESULTS OF FEATURES AND MEMORY CONSUMPTION 

Comparison Titles 
Mechanisms 

Contiki 
DLM 

HEROS 
PLM 

EJVM 
simpleRTJ

Application  
programming language C C Java 

Flexibility of  
application image Well Average Well 

Call from application 
image to system image Supported  Supported Supported

Callback from System to 
Application Not support 

Supported by 
registration 
mechanism 

Supported by 
Java thread 

interface 

Exception handle support No No Yes, more 
robust 

Garbage collection N/A N/A Yes 

Required ROM (KB) 5.7 1 18-24 

Required RAM (bytes) 18 15 200 

 
For the comparison of different mechanisms, a basic 

sensor sampling application example is implemented in 
both C and Java language, with the results shown in the 
Table III.  

TABLE III.   
IMAGE SIZE COMPARISON RESULTS OF DIFFERENT MECHANISMS 

Mechanism / Application image format Code size (bytes)
Monolithic system in which  

applications are not uncouple from systems 114786 

Contiki DLM / Compacted ELF 769 

EJVM simpleRTJ / Java byte code 2472 

HEROS PLM / Pre-linked machine code 182 

 
From the results, it can be seen that HEROS PLM has 

the minimum size application image, this is because it 
uses the pre-linked machine code in which no interpreting 
or references resolving information is needed to be 
contained. 

Application image execution efficiency: For simpleRTJ, 
the Java byte code is executed, and its execution 
efficiency is lower than the machine code. For Contiki 
DLM, after the application module is resolved and linked, 
the final execution code is the pure machine code. For 
HEROS PLM, it also uses the machine code, but the 
access from the application SSIs to the system SPFs is 
done through the intermediate function jump table, thus 
the application image execution efficiency is a little lower 
if compared with the Contiki DLM mechanism, and the 
execution efficiency proportion value can be modeled as: 

Rc = RHEROS/RContiki = (10*Cf+Ni)/Ni = 1+10*Cf/Ni.           (3) 
where Cf mean the numbers of the SSIs in the HEROS 

PLM applications, 10 is the clock cycles of the jump 
operation in the function jump table, Ni is the total clock 
cycles cost for the application execution. In case that Ni is 
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equal to 900 and the Cf is equal to 8, then the Rc will be 
1.089.  

Conclusion: From the evaluation results, it can be 
concluded that, the EJVM mechanism can be a good 
choice for  the separation of the applications from the 
systems if employed on the resource-abundant embedded 
system. But for the platform of which the resources are 
high constrained, the HEROS PLM will be a preferable 
selection. 

VIII.  OS DEBUG METHOD 

As the OS needs to dispatch and execute many system 
programs concurrently, its run-time process is 
complicated. Thus, it is essential to implement an 
effective debug method during the OS development stage. 

The traditional debug ways for the embedded system 
include the usage of printf, the debug information sending 
out from the serial port, the breakpoint setting, etc.. 
However, these methods cannot work well for the 
debugging on the resource-constraint WSN devices. For 
the usage of printf, it cannot be used on sensor nodes, 
because there are commonly no screens on the sensor 
devices. Moreover, the execution overhead of printf is too 
high for the resource constrained sensor platforms. For 
the serial port debug method, it is also not ideal, because 
the sending speed of the debug data from the serial port is 
much slower than the execution speed of the instruction 
codes, thus the memory overflow problem will occur. As 
for the breakpoint setting, it is still not effective, becasue 
many interruptions and preemptions happened 
concurrently inside the system, once a breakpoint is set, 
the execution of the system will halt, so it is difficult to 
know how the system runs in whole detail. Due to these 
reasons, it is essential to develop a new OS debug method 
which will have the following features: 1). has a low 
execution overhead, thus will not influence the node’s 
regular execution process. 2). can process the debug data 
in a high speed. 

To address these challenges, a multi-core WSN system 
is designed and implemented. In this system, the sensor 
board is divided into two parts: the working board and the 
debug board. For the debug board, it is loaded only 
during the OS development process, and will assist the 
working board to undertake most of the debug work, such 
as buffering the raw debug data, analyzing them and 
displaying them out by string on the PC, etc.. By this 
means, the debug programs on the working board will 
become simple.  

Seen in the Fig. 12, the working board iLive is 
connected with the debug board Raspberry Pi through the 
GPIO (global input and output) ports. Every time the 
iLive node takes some actions, it can send some raw 
debug code to the GPIO ports, and then let the left debug 
work be undertaken by the Raspberry board, e.g., when a 
new memory object is allocated on the iLive, three bytes 
debug code "0xAC, 0x20, 0x1A" will be sent to the GPIO 
ports. After Raspberry board receives these codes, it will 
interpret "0xAC" as the operation "OS_malloc", "0x20, 
0x1A" as the new allocated address 0x201A, and then 

transfer these debug results to the PC and display them 
out in the string or graphic format.  

The reason of choosing GPIO ports for the board 
connection is because the operation of sending debug 
data to the GPIO ports is low in the overhead as well as 
high in the transmission speed. And since the Raspberry 
board is equipped with ARM BCM2835 controller of 
which the processor frequency is 700 MHZ and the 
SRAM size is 512 M bytes, thus it can be powerful 
enough to process the raw debug codes quickly, even if 
these codes are transmitted from the iLive with a high 
frequency. Consequently, a high debug performance can 
be achieved even on the severe resource constrained 
iLive node. 

 

 

Figure 12.  Multi-core WSN system for OS debug support 

IX.  RELATED WORKS 

Scheduling policy and memory allocator are two 
important topics for an OS. For the memory allocator, the 
different mechanisms have been discussed in the previous 
section V, in this section the scheduling policy of 
different WSN OSs will be focused and presented.   

A.  TinyOS 
TinyOS is an event-driven OS. Like HEROS, it also 

uses the event queue to buffer and dispatch the system 
events, but only one kind FIFO event queue is used, thus 
the intelligence of the system scheduler is not well 
enough. And in order to ease the application 
programming complexity, the multithreading scheduling 
mechanism TOSThread [32] is also implemented in 
TinyOS. With [32], the TinyOS applications can be 
programmed simply by the threaded programming model. 
However, the TOSThread thread scheduler is 
implemented in the user level with a priority lower than 
the TinyOS kernel scheduler, thus the event-driven 
scheduler always runs in precedence as long as the event 
queue is not empty, and the thread scheduler starts only 
when the event-driven scheduler becomes idle. Thus, 
TinyOS is still an event-driven OS in the native 
scheduling layer, although the thread scheduler is also 
implemented inside it. 

B.  SOS 
SOS is also a pure event-driven OS, and uses the event 

queue to dispatch the events. Different from TinyOS, 
three kinds of priority-based queues are defined in SOS: 
the high priority queue, the regular system queue and the 
low priority queue. By means of this priority mechanism, 
the time critical events in SOS can be processed better 
than those in TinyOS.  
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C.  BitCloud OS 
Bitcloud OS is an OS used to support the full-featured 

ZigBee PRO stack developed by the Atmel corporation. 
Like SOS, it is a pure event-driven OS as well, however, 
it doesn't use the event queue to dispatch the events. 
Instead, it uses the priority-based event flag mechanism. 
With this mechanism, every time an event is generated, 
the flag related to this event will be set. And after an 
event handler runs to completion, the scheduler will scan 
all the event flags from the high priority to low priority 
ones. If an event flag is set, then the given event handler 
will be called.  

D.  MantisOS, uCOS and AVRX 
Different from the OSs above, MantisOS [10], uCOS 

[13] and AVRX [14] are the multithreading OSs. All the 
system handlers are executed by threads, and every thread 
has its own run-time stack, thus the memory resource 
consumption of these OSs is higher than that of event-
driven OSs.  

The main difference between MantisOS and [13, 14] is 
that MantisOS is implemented dedicatedly to the WSN 
platforms, thus some mechanisms such as the energy 
resource reduction are realized inside this OS.  

E.  Contiki and LIMOS 
For Contiki [8] and LIMOS [12], both the event-driven 

and multithreading scheduling models are implemented, 
seen in the Fig. 13 (a). Similar to the TOSThread in 
TinyOS, the multithreading model in [8,12] is 
implemented as an optional library upon the event-driven 
model. By means of this scheduling model, the 
preemption can be achieved among the child threads 
inside a process. However, the real-time response to the 
time-critical events can still not be well solved by this 
scheduling structure, e.g., when the thread A-1 is in 
running, if the thread A-3 needs to be executed quickly, 
the thread switch from A-1 to A-3 can be achieved 
quickly in real-time. But if process A is running and a 
HRT event is triggered which needs to be processed by 
the thread C-2. In [8, 12], this HRT event cannot be 
responded immediately as all the processes are scheduled 
by the event-driven scheduler. By this scheduler, process 
A needs to run to completion before the other processes 
can be scheduled. Therefore, Contiki and LIMOS are not 
real hybrid OSs, but actually event-driven OSs in the 
native layer.  

F.  HEROS 
For HEROS, it is implemented as a native hybrid OS, 

both the event-driven and multithreading schedulers are 
implemented. Different from TinyOS, Contiki and 
LIMOS, in HEROS the two kinds of schedulers are 
implemented in parallel and can switch to each other 
efficiently when required, seen in the Fig. 13 (b). With 
this hybrid scheduler, the hard real-time reaction can be 
achieved. 

As for the differences between HEROS and the other 
pure multithreading OSs [10, 13, 14], there are mainly 
two aspects: 1). In the pure multithreading OS, all the 
handlers will be processed by threads, thus the number of 

the threads will be much more than that in HEROS, this 
will increase the complexity of the system architecture as 
well as the memory resource consumption, e.g., in 
mantisOS, in order to manage all these threads well, it 
needs to use a complicated thread TCB as well as 5 
priority-based thread queues for the management of the 
threads dispatching. 2). In the current pure multithreading 
OSs, all the threads are started at the system initialization 
process, and once a thread is started, the thread stack 
needs to be allocated. Thus, a huge memory resources 
need to be consumed. In HEROS, the threads are started 
only when the HRT events are generated, and they will 
released after the HRT handler runs to completion. Due 
to these reasons, HEROS can support hard real-time 
reaction, but consume less memory resources than the 
pure multithreading OSs. And these results has been 
validated in the next section. 

 
 

 

 

 

Figure 13.  Hybrid scheduling structure in Contiki, LIMOS and HEROS. 

X.  EXPERIMENT AND EVALUATION WORKS 

In this section, the performance of HEROS is 
evaluated from the aspects of OS features, memory 
resource consumption, energy resource consumption, 
execution efficiency and the portability. 

A.  Evaluation Platform 
Currently, HEROS is implemented on the iLive node. 

ILive node is equipped with the AVR ATmega1281 
microcontroller, seen in the Fig. 14. It has 128 kilobytes 
of FLASH and 8 kilobytes of RAM. Besides, it is 
equipped with 11 sensors including 1 temperature sensor, 
1 light sensor, 1 air humidity sensor, 3 decagon sensors 
and 4 watermark sensors. As for the software 
development environment, the AVR studio integrated 
development tool [33] is used. 

B. OS features 
The feature comparison results are shown in Table IV.  
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Figure 14.  ILive sensor node. 

TABLE IV.   
OS FEATURES COMPARISON RESULTS 

WSN 
OSs 

Features of Kernel 

Scheduling 
policy 

Real-time 
guarantee 

Memory 
management 

Uncouple 
APP from 

system 

OS 
simu-
lation

TinyOS 

Event-driven 
OS + 

multithread-
ing library 

None Static 
allocation 

Yes, by 
VMs 

TOSS
IM [34]

Contiki 
2.6 

Event-driven 
OS + 

multithread-
ing library 

Only 
SRT 

Dynamic (in 
fixed size 

block) 

Yes, by 
DLM 

COOJ
A [35]

SOS 
2.0.1 Event-driven Only 

SRT 

Dynamic 
(in fixed size 

block) 

Yes, by 
DLM N/A 

Mantis 
OS 1.0 

Multithread-
ing 

SRT 
supported 

Dynamic  
 None XMO

S [36] 
BitClou

d Event-driven None Static None None

LIMOS 

Event-driven 
OS + 

multithread-
ing library 

Only 
SRT 

Dynamic (in 
fixed size 

block) 
None N/A 

HEROS Native hybrid  HRT 
supported Dynamic Yes,  

by PLM 
QEM
U [37]

 

Since Contiki and LIMOS are actually native event-
driven OSs, only SRT response can be achieved to the 
timer-critical events. For HEROS, the real time response 
can be achieved by means of the multithreading thread 
switch. For mantisOS, the preemption can be supported 
by the multithreading scheduler, thus it has the real-time 
performance better than that in the TinyOS, Contiki and 
SOS. However, it doesn't implement any real-time 
scheduling algorithm, thus it is still not a real real-time 
OS, and can support only the soft real-time reaction. For 
the simplification of the application development process, 
TinyOS, Contiki, SOS and HEROS all uncouple the 
applications from the systems by different mechanisms. 
For MantisOS, it doesn’t separate the applications from 
the systems, but in order to reduce the application 
reprogramming code size, it uses the diff-patch code to 
reprogram the new applications, and the reprogramming 
performance can be greatly improved by this way. For the 
OS simulation, different methods have been adopted [34-
37]. For HEROS, the QEMU [37] is used. [37] is generic 
and open source. Moreover, it can stimulate the OS and 
programs that are made on one machine on the other 
machine, e.g., the AVR platform HEROS code can be 
stimulated on the X86 PC. 

C. Memory Resource Consumption 
Memory resource consumptions of different OS 

components are shown in the Table V. 
For the required ROM resources of multithreading 

scheduler, mantisOS consumes much more than Contiki 
and HEROS, this is because it is a pure multithreading 
OS. For it, no matter a handler is time-critical or not, one 
thread should be created for its execution, thus more 
threads are required to be created, and this increases the 
system architecture complexity. 

The required RAM resources of different components 
is also shown in Table V. For the event-driven scheduler, 
Contiki and HEROS requires (10+6e+8p) and (12+12e) 
respectively, where e represents the number of system 
events that have been generated but not yet been 
processed, p presents the number of pre-defined system 
processes, 8 is the Contiki process structure size, and 6 
and 12 are the event structure size. For the memory 
allocator, the Contiki block allocator requires (4+8*Nb), 
where Nb is the number of the statically allocated block 
areas, and 8 is the size of the block management structure. 
For the multithreading scheduler, it needs the RAM 
resources for the allocation of the thread TCB and the 
thread stack: (Ctn, Mtn, Htn) are the reserved numbers of 
TCB, (8, 22, 8) are the TCB structure size, and (Csk, Msk, 
Hsk) are the stack size for the active threads.  

TABLE V.   
COMPARISON RESULTS OF MEMORY RESOURCE CONSUMPTION 

Titles 
ROM Code (bytes) 

Contiki 2.6 MantisOS HEROS 
Event-driven 

scheduler 936 N/A 602 

Multithreading 678 3232 988 

Memory 
allocator 298 708 832 

timers 740 736 666 

Total 2652 4676 3088 

 

Titles 
RAM Data (bytes) 

Contiki 2.6 MantisOS HEROS 
Event-driven 

scheduler 10+6e+8p N/A 12+12e 

Multithreading 8+8*Ctn+Csk 40+22*Mtn+Msk 4+8*Htn+Hsk
Memory 
allocator 4 2 6 

timers 10 10 2 

Total 32+6e+8p+8Nb
8Ctn+Csk 52+22Mtn +Msk 24+12e+ 

8Htn +Hsk 
 

To evaluate the required RAM data of different OSs, 
assumed that e is equal to 15, p is equal to 10, Nb is equal 
to 10. And for the thread numbers tn, mantisOS 
commonly has the most and HEROS has the least, thus it 
can be assumed that Ctn is 5, Mtn is 10 and Htn is 3. 
Then, the total RAM consumption of these OSs will be as 
follows: 
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Contiki:   (202+(40+Csk)) 
MantisOS:  (272+Msk) 
HEROS:  (228+Hsk)                  (4) 

For the thread stack, it is needed for the storing of the 
thread run-time context, and its size is commonly as high 
as 100 bytes. Assumed that the thread stack is set to 100 
bytes, and the number of the threads that are active in 
Contik, MantisOS and HEROS are 3, 6 and 2 respectively, 
then the total RAM consumption of Contiki, mantisOS 
and HEROS will be: 
(SContiki, SMantisOS, SHEROS) = (542, 872, 428bytes).    (5) 

Since the multithreading in Contiki is used as an 
optional library, it may not be required to be linked. And 
in HEROS, the multithreading mechanism will also not 
be launched if the HRT events are not triggered. Thus, for 
these cases, the total RAM consumption of Contiki and 
HEROS will be: 
 (SContiki, SMantisOS, SHEROS) = (202, 872, 228bytes).   (6) 
 

From these results above, it can be concluded that: 1). 
The RAM consumption of pure event-driven OS can be 
much smaller than the multithreading one, seen in 
equation (6), and this is because the creation of the thread 
stack is high consumption in the RAM resources. 2). 
HEROS consumes less RAM resources than the 
multithreading mantisOS as well as the hybrid scheduling 
Contiki, seen in the equation (5), this is because it 
classifies the system events into three kinds, and only the 
particular HRT events will be processed by threads, thus 
the active thread number in HEROS can be less than 
Contiki and mantisOS. 

D. Energy Resource Consumption and Node Lifetime 
Energy resources on most sensor nodes are constrained. 

In order to reduce the energy consumption, the sleeping 
mechanism is adopted in HEROS. By this mechanism, 
sensor nodes are configured to sample and transmit the 
sensor data periodically., Besides, in case that there are 
no events existed in the HEROS event queue, the sensor 
nodes will also fall asleep. 

With the sleeping mechanism and the energy efficient 
hardware design, iLive becomes an energy aware sensor 
node. Currently, iLive node is powered by two 1.5V AA 
standard batteries, and the energy consumption status is 
listed in Table VI. It is computed that, if the temperature 
and light sensors are loaded and the sensor data sampling 
frequency is set to 3 minutes, the lifetime of iLive can be 
as long as 826 days. This result is significant, because the 
sensor nodes are prone to be deployed in some harsh 
environments where the humans cannot access. Therefore, 
by means of this energy efficient iLive system as well as 
the HEROS PLM reprogramming mechanism, the sensor 
nodes can be avoided to be brought back for the 
application reprogramming after they have been deployed. 

TABLE VI.   
ENERGY CONSUMPTION STATUS OF ILIVE SENSOR NODE 

Tasks Working Current Time cost

Instructions execution only 20.1mA N/A 

Low-power sleep mode 1uA N/A 

Tasks Working Current Time cost

Temperature&light sensors sampling 15.6mA 900ms 

10 bytes FLASH programming 20.8mA 15ms 

Wireless packet transmission  20.7mA N/A 

50 bytes Wireless reception 21.5mA 140ms 

E. Performance of basic OS Primitives  
The clock cycles of different HEROS primitives are 

shown in Table VII. In this table, q means the counts of 
searching of the correct position in the freed memory 
queue, r means the counts of searching the correct 
reference from the chunk reference area, u means the 
number of the references to be updated, s means the 
memory size to be shifted, f means the count of searching 
a free Contiki block flag, t means the count of searching 
the next active thread from the TCBs, and p means the 
count of searching the correct position in the mantisOS 
priority-based thread queues. For HEROS memory 
allocator, if the fragment assembling is not processed, the 
allocation cost is (87+16q+8r) cycles. Otherwise, it will 
be (136+16q+8r+9u+16s) cycles. 

For the execution cost of the multithreading primitives, 
Contiki is less than the others as the thread stacks in 
Contiki are pre-reserved statically. For mantisOS, it costs 
the more as it is a pure multithreading OS with more 
threads defined, thus the thread management process is 
more complicated.  

In case that the main frequency of ATmega1281 on the 
iLive node is set to 16 MHz, and the value of (q, r, t, u, s) 
is (3, 5, 2, 4, 80) respectively, then the execution time of 
the HEROS primitives can be calculated: For event post, 
it is 3.63 us. For common and SRT event extraction, they 
are 0.63 us and 1.12 us respectively. For memory 
allocation and free operations, they are respectively 10.94 
us and 6.13 us. If the first-time memory allocation is 
failed, the fragments will be assembled, then the cost time 
will be 96.25 us and this is the worst case of the memory 
allocation cost. As for thread context creation, it is 13.5 
us. And for the thread context switch, it is 8.38 us.  

Since after a HRT event is generated, the time cost 
between the generation of this event and the execution of 
the related event handler is THRT = TCS + TSC, where TCS is 
the time cost for creating this thread's run-time stack, and 
TSC is the time cost for switching the thread context, then 
the THRT can be computed and it is 21.88 us. As the 
execution time is related to the processor frequency, if the 
professor frequency increases, all these time value above 
will decrease correspondingly.  

From the results above, it can be concluded that the 
dynamic memory allocator is not so complicated and 
inefficient that it can be implemented on the resource-
constrained WSN system. Moreover, if used on the AVR 
ATmega1281 microcontroller, HEROS can support the 
HRT reaction with the response time limited to 21.88 us. 
Thus, for the real-time WSN applications of which the 
reaction time constraint is not as strict as this, the HEROS 
system with the iLive node can be competent.  
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TABLE VII.   
PERFORMANCE OF BASIC OS PRIMITIVES 

Basic OS  
Primitives 

Execution Cost (clock cycles) 
[min, max] 

HEROS Contiki MantisOS

Event post 22+12q 28 
N/A 

Event extraction [10, 18] 32 
Memory 

allocation 
[87+16q+8r, 

136+16q+8r+9u+16s] 28+12f 98+12q 

Memory free 62+12q 38+12f 56 
Thread  

context creation 112+(56+16q) 106 96+(98+
12q)+16p

Thread context 
switch 98+18t 116+16t 152+18p

F. Portability 
The portability becomes essential for an OS as the 

hardware platforms of WSN are diverse. To port HEROS 
to a new hardware platform, all the code that is hardware 
specific should be adjusted, and this mainly includes two 
aspects. One is the variable type length, e.g., the integer 
length on the ATmega1281 microcontroller is 2 bytes 
while on AT91SAM7S256 it is 4 bytes, thus some data 
structures should be adjusted. And the other is the 
assembler codes in the OS components such as the basic 
hardware initialization, the multithreading scheduler, the 
software timers, etc. It is computed that to port HEROS 
from the AVR ATmega1281 platform to the ARM 
AT91SAM7S256 platform, 92 lines of code needs to be 
adapted. 

XI.  CONCLUSION AND PERSPECTIVE 

In this paper, a hybrid, resource-aware, real-time and 
user development friendly OS HEROS is presented. The 
final performance evaluation and experimental work 
proves that HEROS can be used on the resource-
constrained sensor nodes to support the real-time WSN 
applications. 

For the ongoing work, the following topics will be 
focused: 

Fault-tolerant system: A fault-tolerant system can 
make the sensor nodes to continue the normal working 
even if some faults occur on the nodes. To achieve the 
fault-tolerant system, some measures will be taken from 
both the hardware and software aspects. For the hardware 
aspect, the multi-cores WSN nodes are currently 
developing in our team. With the multi-core platform, the 
sensor node’s fault tolerance can improve by means of 
the cooperation among the different microcontrollers. For 
the software aspect, some dependable concepts such as 
the state machine checking and validation, the run-time 
monitoring profiler, the roll-back recovery, etc., will be 
implemented in the next version HEROS. 

Distributed system: Due to the development of multi-
core hardware platform, HEROS is currently developing 
toward a distributed OS. This means that HEROS will be 
capable of splitting a complicated system task into 
several child tasks and distributing these child tasks to the 
different microcontrollers. Moreover, it will support the 

ability of sharing the memory resources on the different 
microcontrollers.  

Application code generation and reprogramming: 
With the HEROS PLM implemented, the user application 
project becomes very simple, thus it is feasible to 
generate the application program automatically by the 
GUI (Graphic User Interface) toolkit and reprogram the 
application remotely by the webpage. With the GUI 
toolkit, the users are not required to be professional in the 
programming. Instead, they choose some graph modules, 
connect them logically, configure the module parameters 
and then generate the application programs. Later, these 
programs will be transmitted by the web page to the 
servers, to be built by the HEROS PLM and then updated 
to the sensor nodes. Currently, such an integrated 
development environment is under construction by our 
team with the address: http://edss.isima.fr. 
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