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Abstract—Scheduling divisible loads on heterogeneous 
distributed computing systems is addressed in this paper. 
The platform considered here is more general and realistic, 
where processors are connected in star topology with 
arbitrary communication and computation speeds and non-
zero start-up overheads. A new optimization algorithm, 
called WX-GA, is proposed to tackle the following four 
issues: (1) How many processors are needed in computation? 
(2) Finding the optimal distribution sequence among 
processors. (3) How much the load fraction should be 
assigned on each processor? (4) When workload is large 
enough, what is the sufficient and necessary condition for 
the minimum processing time? Finally, the experimental 
results indicate the efficiency and effectiveness of the 
proposed algorithm. 
 
Index Terms—divisible loads, distributed computing, start-
up overheads, optimal distribution sequence, weight-based 
crossover operator 
 

I.  INTRODUCTION 

Divisible loads are parallel tasks which can be divided 
into arbitrary number of fractions [1]. There are no 
precedence relationships among fractions, thus they can 
be processed independently on the processors in parallel. 
Such workload model is useful in many real world 
applications, e.g., signal processing, image processing, 
experimental data processing and so on.  

Divisible load theory has emerged as a powerful tool 
for modeling data-intensive computational problems, and 
a great amount of research on divisible load scheduling 
has been made in the last decades. Under certain 
conditions, closed-form expressions for the processing 
time and load fractions for processors involved in 
computation have been derived in both homogeneous 
systems and heterogeneous systems. 

In the earlier studies, relatively simple models without 
start-up overheads have been proposed. For homogeneous 
networks in blocking mode of communication, a closed-
form expression for the processing time of processors in 
linear topology was derived [2], and asymptotic 
performance analysis has been made for the cases of bus 
and tree topologies [3,4]. However, systems in reality are 
usually heterogeneous systems with arbitrary 
computation or communication speeds. For 
heterogeneous star networks, a closed-form expression 
for optimal processing time was derived by Ghose et al. 
[5]. It also has been proved that the sequence of load 

distribution should follow the order in which the 
communication speeds decrease in order to achieve the 
minimum processing time. In the case of heterogeneous 
tree networks, the effect of load distribution sequences on 
the processing time was analyzed by Kim et al. [6], and 
an algorithm which optimally determines the order of 
load distribution was developed. It was shown that the 
distribution order depends only on the communication 
speeds between processors but not on the computation 
speeds. 

All the above models considered the blocking mode of 
communication. Kim [7] first introduced the nonblocking 
mode of communication in homogeneous systems with 
processors connected in star topology, and the results on 
the optimal sequencing and arrangement are presented by 
Mani et al. [8]. All the above works do not take start-up 
overheads into consideration. However, zero start-up 
overheads are quite not realistic for most distributed 
systems. In the case of constant start-up time on bus 
networks with blocking mode of communication, Suresh 
et al. [9], Bharadwaj et al. [10], Blazewicz [11] analyzed 
the influence of start-up overheads on the optimal 
processing time and studied the effect of changing the 
distribution sequence on the processing time. In particular, 
Bharadwaj et al. [10] gave a necessary and sufficient 
condition for the existence of the optimal processing time, 
and it was shown that the processing time is minimized 
when the load distribution sequence follows the 
decreasing order of the computation speeds. For 
heterogeneous star systems with non-blocking mode of 
communication, closed-form expressions for the 
processing time and load fractions have been derived by 
Shang [12]. 

Given that the start-up overheads and computation 
speeds of processors are with arbitrary values but that the 
communication speeds are all different, Beaumont et al. 
[13] proved that if load fractions were sent to processors 
according to the decreasing order of communication 
speeds, then when the processing time becomes large 
enough, the workload finished during time units is 
optimal among all possible orderings. For general cases 
with workload to be completed in arbitrary time, however, 
the optimal distribution sequence has not been addressed. 

Based on the above study, many scholars have done a 
great deal of extended research [14-24], but the problem 
of deriving the optimal distribution sequence has not been 
solved. 
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In this paper, we propose a new optimization algorithm 
for divisible load scheduling on heterogeneous distributed 
systems in blocking mode of communication to address 
the following four issues: 

• whether all processors are needed in computation. If 
not, how many and which processors should be selected; 

• whether the distribution sequence has an effect on the 
processing time. If true, which order the load distribution 
should follow to achieve the minimum processing time; 

• given a certain distribution sequence, how much the 
load fraction should be assigned on each processor; 

•when workload is large enough, what is the sufficient 
and necessary condition for the minimum processing time. 

The reminder of this paper is outlined as follows. 
Section II presents the optimization model for divisible 
load scheduling. Section III proves that when workload is 
large enough, the sufficient and necessary condition for 
the minimum processing time is that the distribution 
sequence follows the decreasing order of the 
communication speeds. A novel genetic algorithm for 
divisible load scheduling is proposed in Section IV. 

Experiments and their analysis appear in Section V. In 
the last section, conclusions are made. 

II.   OPTIMIZATION MODEL FOR DIVISIBLE LOAD 
SCHEDULING 

Before we give the scheduling model for divisible load, 
some relevant notations and assumptions should first be 
introduced. The platform considered in this paper is 
heterogeneous distributed systems. Processors are 
connected in a star topology, where 0P  is the master 
processor, while { }1 2, ,..., mP P P are slave processors. 

0P connected with others by communication links 

{ }1 2, ,..., mL L L . The entire workload, denoted as totalW , 
will be first partitioned into fractions. Then they will be 
distributed to slave processors in some order by the 
master processor 0P . Processor 0P  does not participate in 
computation itself but only takes the responsibility of 
assigning load to others. 
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Figure 1. The time diagram of divisible load scheduling on heterogeneous distributed systems in blocking mode of communication. 

 
When distributing workload fractions, 0P  sends data to 

only one processor at a time and slave processors start 
computing when they have finished receiving their load 
fractions, that is, slave processors are in blocking mode of 
communication and cannot communicate and compute 
simultaneously. 

Since we focus on heterogeneous systems, slave 
processors are assumed with arbitrary computation and 
communication speeds. Communication and computation 
time is proportional to the amount of workload assigned 
to each processor. Let iw  be the time of processor iP  
computing a unit workload, while ig  be the time of link 

iL  communicating a unit workload. In this paper, we 
assume communication speeds are much faster than 
computation speeds; otherwise, only one or two 
processors should be enough to involve in computation 
[7]. 

Besides arbitrary communication speeds and 
computation speeds, there exists a start-up overhead 
during each communication from 0P  to iP , denoted as io . 
Similarly, a start-up overhead is  exists during each 
computation of processor iP . 

1
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Bharadwaj, V., et al proved that for various network 

models the optimality criterion of scheduling divisible 
loads is that all processors have to finish computing at the 
same time. If all processors do not stop computing at the 
same time, certainly the load can be transferred from 
busy processors to idle processors to minimize the 
processing time [25]. Therefore, the following equation 
can be obtained intuitively. 
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Equation (2) can be written as 
1 1 1

, 1, 2,..., 1
i i i i

i nσ σ σ σα ϕ δ α
+ + +

= + = −             (4) 

Expressing workload fraction 
iσα in terms of 

1σα  as 
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Combing Eq. (1) and Eq. (5), one can get 
1σα  by 
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Thus, the closed-form expression of the processing 
time is given by 
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The main objective of scheduling divisible load on 
heterogeneous distributed systems is to minimize the 
processing time T . It can be seen from Eq. (7) that 
processing time T  depends on parameters Φ  and Γ , 
which are directly decided by the distribution sequence 

( )1 2
, ,...,

n
P P Pσ σ σ of the processors participating in 

computation. Thus the divisible load scheduling problem 
on heterogeneous distributed systems can be modeled as 
determining the number n  of processors required in 
computation and the optimal distribution sequence so that 
the processing time is minimized, that is, an optimization 
model for scheduling divisible load on heterogeneous 
distributed systems in blocking mode of communication 
can be set up as follows. 
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The key issue of solving the above model is to find the 

optimal distribution sequence. Considering the practical 
needs, the easier to obtain the optimal distribution 
sequence, the better. Fortunately, when workload is large 
enough, such optimal distribution sequence can be 
obtained directly by theoretical analysis, which is 
presented in the following section. For other workload 
cases, the optimal distribution sequence can be derived 

efficiently by the proposed genetic algorithm introduced 
in Section IV. 

III. SCHEDULING LARGE ENOUGH WORKLOAD 

In this section we will prove that when workload is 
large enough, the sufficient and necessary condition for 
the minimum processing time is that the distribution 
sequence follows the decreasing order of the 
communication speeds. Before we prove this conclusion, 
the following lemmas are first introduced. 

Lemma 3.1 ([13]) For heterogeneous systems in the 
blocking mode of communication with zero start-up 
overheads ( )0i io s= =  and arbitrary communication 
and computation speeds, the distribution sequence should 
follow the decreasing order of communication speeds in 
order to achieve the minimum processing time. 

Lemma 3.2 ([13]) For heterogeneous systems in the 
blocking mode of communication with start-up overheads, 
arbitrary computation speeds and all different 
communication speeds, if the distribution sequence 
follows the decreasing order of communication speeds, 
when the processing time T  is large enough, the amount 
of processed workload during the time T  is optimal 
among all possible orderings. 

Theorem 3.3 For heterogeneous systems in the 
blocking mode of communication with startup overheads 
and arbitrary communication and computation speeds, 
when workload is large enough, the sufficient and 
necessary condition for the minimum processing time is 
that the distribution sequence follows the decreasing 
order of the communication speeds. 

Proof: 
 (1) Now we prove that when distribution sequence 

follows the decreasing order of the communication 
speeds, the corresponding processing time is minimized. 

Since the workload is large enough, then all processors 
should take participate in computation. Assume that there 
are n processors in the system, and sort them in the 
decreasing order of their communication speeds, that is, 
the increasing order of ig , where { }1,2,...,i n∈ . Assume 

the distribution sequence is denoted as ( )1 2
, ,...,

n
P P Pσ σ σ  

where 
1 2

...
n

g g gσ σ σ≤ ≤ ≤ . Let optT  be the processing 
time for the entire workload in that sequence. Since all 
processors stop processing at the same time, optT  is also 
the finish time 

i
Tσ  of each processor, where 1, 2,...,i n= . 

According to the model shown in Fig.1, we have 
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Now let 0
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o sσ σ= =  with 1, 2,...,i n= , which means 
that the start-up overheads are ignored, thus the finish 
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When i n= , ( )1n n k

n
opt k

T T s oσ σ σ=
= − +∑ . That is to 

say, at the time 
n

Tσ , processor 
n

Pσ  just finished its 
workload fraction, while the other processors are still in 
computation because 

i n
T Tσ σ>  according to Eq.(8). As is 

proved in Lemma 3.1, in the case of zero start-up 
overheads, when the distribution sequence follows the 
decreasing order of communication speeds, the 
processing time is the minimum. Let '

optT  be the optimal 
processing time in this case, thus 

( )1
.

n n k

n
opt optk

T T s o Tσ σ σ=
′= − + ≤∑               (10) 

Meanwhile, since start-up overheads are ignored, so 
.opt optT T′ ≤                                  (11) 

From Eq. (10) and Eq. (11), one can get 
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Since the workload is large enough, optT ′ → ∞ . Thus 
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Thus (1) is proved. 
(2) Next we prove that when the processing time is 

optimal, the distribution sequence must follow the 
decreasing order of the communication speeds.  

This will be proved by contradiction. 
If the workload is large enough, then all processors 

should take part in computation. Without loss of 
generality, the optimal distribution sequence is denoted as 

( )1 2
, ,...,

nseqp P P Pσ σ σ= . We will prove that 
1i i

g gσ σ +
≤  

holds. If it is not true, one can interchange the sequences 
of 

i
Pσ  and 

1i
Pσ +

. Since workload size is large enough, 
and then the processing time T  becomes large enough. 
According to Lemma 3.2, the amount of processed 
workload in the new order of workload distribution is 
larger than that of the former sequence, which contradicts 
the assumption that seqp  is the optimal sequence. 

Thus (2) is proved. 

IV. A NEW GENETIC ALGORITHM FOR DIVISIBLE LOAD 
SCHEDULING: WX-GA 

Task scheduling problems are among the well-known 
hardest combinatorial optimization problems. Here we 
choose genetic algorithms(GAs), invented by Holland 
[26], to solve the above model for the simple reason that 
genetic algorithms have been proven to be a promising 
technique for many application problems, for example, 
optimal design, control, and machine learning, etc. [27,28] 
and they are suitable to solve scheduling optimization 
problems [29]. 

A. Population Initialization 
The key point of finding the optimal distribution 

sequence by using genetic algorithms is to develop an 
encoding scheme that allows genetic operators to 

generate “legitimate children” without any constraint 
violation. Applying GA to the scheduling model 
proposed in this paper has an intrinsic issue: each 
sequence must contain exactly one instance of a 
processor and any omission or duplication of a processor 
or processors leads to an illegal distribution sequence. 

In this paper, a sequence with m  processors is directly 
represented as a permutation pmS  of m  elements from 1 

to m . Thus an individual I is denoted by ( ), pmI n S= , 
where n  represents the number of processors taking part 
in computation. 

After determining the encoding scheme, one can 
generate an initial population of N individuals by 
Algorithm 1. 

Note that the first gene in each individual, which 
denotes the number of processors used in computation, 
will be initialized to m, the total number of processors. It 
will be modified during the calculation of its cost value. 

Algorithm 1 Generate initial population 
Ensure: N initialized individuals ( )1 2, ,..., NI I I  
1: for 1, 2,...,i N=  do 
2:     generate individual ( )0 1, ,...,i i i i

mI c c c=  as follows; 

3:      let 0
ic m= ; 

4:      given an ordered list 1,2,...,L m= ; 
5:      for 1, 2,...,j m=  do 
6:          randomly take an element from L , assign it to 

i
jc  and then delete this element from L . 

7:       end for 
8: end for 

B. Cost Function 
The cost function, also called fitness function, is 

defined over the genetic representation and measures the 
quality of the represented solution [30]. In general, a cost 
function is derived from the main objective of the 
problem and used in successive genetic operations. The 
main objective of scheduling divisible load on 
heterogeneous distributed systems is minimizing the 
processing time. How to map this objective to cost 
function is presented in Algorithm 2. 
Algorithm 2 Cost function 
Require: An individual ( )0 1 2, , ,..., mI c c c c=  and a 

workload totalW  
Ensure: The cost function value ( )f I  of individual I , 

the processing time T , the number 0c  of  
processors required in computation and the 
workload fraction iα  for each processor with 

01,2,...,i c= . 
1: for 1,2,..., 1i m= −  do 
2:      calculate 1iϕ +  and 1iδ +  by Eq. (3); 
3: end for 
4: for 2,...,i m=  do 
5:      calculate iΓ  and 1i+Φ  by Eq. (5); 
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6: end for 
7: compute 1α and the processing time T  by Eq. (6) 

and Eq. (7) respectively; 
8: for 0 0, 1,...,1i c c= −  do 
9:       compute iα  according to Eq. (5); 
10:     if 0iα ≤  then  
11:         let 0 0 1c c= −  and go to step7; 
12       endif 
13: end for 

C. Weight-based Crossover Operator 
Depending on how the chromosome represents the 

solution, a direct swap such as N-point crossover may not 
be possible since the recombination of chromosome may 
violate the constraint of ordering and thus need to be 
repaired. In this paper, a novel crossover operator called 
weight-based crossover is designed to generate offspring. 

The easiest way to explain the weight-based crossover 
is by giving an example. Assume that there exists an 
ordered list L = (10, 9, 8, 7, 6, 5, 4, 3, 2, 1), which serves 
as a reference sequence, and that the two parents are 
represented by 

       ( )1 8,  3,  1,  2,  5,  7,  8,  9,  6,  4,  10parent =  and 

( )2 7,  3,  1,  8,  6,  5,  2,  7,  10,  9,  4parent = , 
where the number of processors used in 1parent  is 8 

and that in 2parent  is 7. 
The weight-based crossover operator should be 

executed on 1parent and 2parent as follows. 
(1) First according to the number of processors used in 

computation, assign weight values to each gene in 
1parent  and 2parent  as follows. As is shown in Table I , 

for individual ( )1 0 1, ,..., mparent c c c= , since the number 
of processors needed in computation is 0 8c = , then for 
the former 8 genes, from left to right, each of them takes 
the element of L  at the same position as their weight 
values. That is to say, the weight value of ic  for 1parent  
is assigned to iL , where 01,2,...,i c= . For the remaining 
genes, which represent the processors that do not take 
part in computation, let their weight values be zeros. 
Finally, we have the weight list for 1parent : (10, 9, 8, 7, 
6, 5, 4, 3, 0, 0). Similarly, the weight list (10, 9, 8, 7, 6, 5, 
4, 0, 0, 0, 0) for 2parent  can be obtained. 

TABLE I.   

AN EXAMPLE OF CROSSOVER OPERATOR. 

List 10 9 8 7 6 5 4 3 2 1
parent1 8 3 1 2 5 7 8 9 6 4 10
weight1 10 9 8 7 6 5 4 3 0 0
parent2 7 3 1 8 6 5 2 7 10 9 4
weight2 10 9 8 7 6 5 4 0 0 0

offspring 10 3 1 8 2 5 6 7 4 9 10
sumweight 20 18 13 13 13 10 10 4 0 0  

(2) Based on the weight lists of 1parent  and 2parent , 
the weight value of each processor is calculated in the 

following way. For each processor, say 1P , since its 
weight in 1parent  is 9 and in 2parent  is also 9, take the 
sum of them 9 + 9 = 18 as the final weight of processor 

1P . Repeat the above process until the weights of all 
processors are calculated. Finally, for processors 
( )1 2 3 4 5 6 7 8 9 10, , , , , , , , ,P P P P P P P P P P , the weight list (18, 13, 
20, 4, 13, 10, 10, 13, 0, 0) can be obtained. 

 (3) Sort the processors in the descending order of their 
weights. Thus we have the sorted processor list 
( )3 1 2 5 8 7 6 4 9 10, , , , , , , , ,P P P P P P P P P P  and its corresponding 
weight list (20, 18, 13, 13, 13, 10, 10, 4, 0, 0). 

 (4) Adjust the order of the processors with the same 
weight values. For the processors with the same non-zero 
weight, such as ( )6 7,P P , compare the positions of them 
in their parents. In 1parent , 7P  is at position 5 and 
appears in front of 6P , while in 2parent , 6P  is at 
position 4 and appears in front of 7P . Thus we put 6P  
with the smaller position indicator in front of 7P  in the 
final processor list. If processors are at the same position 
in their parents, such as ( )2 8,P P , then we can randomly 
select one of them in front of the other. For the processors 
with zero weight values, since they do not take part in 
computation, their orders do not matter. 

(5) Generate an offspring ( )0 1 2, , ,..., mO c c c c′ ′ ′ ′=  
according to the sorted processor list 
( )3 1 8 2 5 6 7 4 9 10, , , , , , , , ,P P P P P P P P P P , where 0c′  is initialized 
to m . Finally we can get O =  (10, 3, 1, 8, 2, 5, 6, 7, 4, 9, 
10). 

The proposed weight-based crossover operator has two 
advantages: first, it keeps the optimal subsequence of the 
parents into offspring, such as ( )3 1,P P ; second, it takes 
the order of processors in the distribution sequence into 
consideration because the more front the position of a 
processor is in the distribution sequence, the much load 
fraction it will be assigned, and thus the more important 
the processor is. 

D. Mutation Operator 
If we randomly change one number in a chromosome, 

we are left with one integer duplicated and another 
missing. The simplest solution is to randomly choose a 
chromosome to mutate, and then randomly choose two 
positions within that chromosome to exchange until a 
local optimal is found. The process of the mutation 
operator is shown in Algorithm 3 by the pseudo-code. 
Algorithm 3 Mutation operator 
Require: An individual ( )0 1 2, , ,..., mI c c c c=  and 

mutation probability mutp . 
Ensure: An offspring  0 1( , ,..., )mh h h h=  generated by 

mutation. 
1. Randomly generate a real number [ ]0,1r ∈ ; 
2: if mutr p≤  then 
3:     let h I= ; 
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4:     evaluate the cost value ( )f h  of individual h  by 
Algorithm 2; 

5:     let 0count =  and ( )*f f h= ; 

6:     randomly generate two integers [ ], 1,a b m∈ ; 
7:     swap ah  and bh ; 
8:   evaluate the cost value ( )f h  of individual h  by 

Algorithm 2; 
9:     if ( ) *f h f≥  then 
10:      swap back ah  and bh  and let 1count count= + ; 
11:       if count m> stop; otherwise go to step 6; 
12:   else  
13:      go to step 5; 
14:   endif 
15: endif    

E. A new GA for scheduling divisible loads: WX-GA 
Once the encoding scheme and the cost function are 

defined, a GA proceeds to initialize a population of 
solutions and then to improve it through repetitive 
application of the mutation, crossover and selection 
operators. Algorithm 4 presents the process of the 
proposed genetic algorithm: WX-GA. 
Algorithm 4 A new genetic algorithm for scheduling 
divisible load on heterogeneous systems 
1: (Initialization) Choose population size N , proper 

crossover probability crosp and mutation probability 

mutp  etc. Randomly generate initial population ( )0P  
by Algorithm 1. Let the generation number 0t = . 

2: (Crossover) Choose the parents for crossover in ( )P t  
with probability crosp . If the number of parents 
chosen is odd, then randomly choose an additional 
one from ( )P t . Afterwards, randomly match every 
two parents as a pair and the specific-designed weight 
based crossover operator is used on each pair to 
generate one offspring. All the new offspring 
constitute a set denoted by 1O . 

3: (Mutation) Select the parents for mutation from set 1O  
with probability mutp . For each chosen parent, the 
proposed mutation operator is used to generate a new 
offspring. These new offspring constitute a set by 2O . 

4: (Selection) The best E  solutions from the set 
( ) 1 2P t O O∪ ∪  are maintained in the next generation 

so that the convergence is faster. The roulette-wheel 
selection is used to select N E−  individuals among 
the set ( ) 1 2P t O O∪ ∪  as the next generation 

population ( )1P t + . 
5: Stopping Criteria: If termination conditions hold, 

then stop, and keep the best solution obtained as the 
global optimal solution of the problem; otherwise, go 
to step 2. 

V.  EXPERIMENTS AND ANALYSIS 

Several experiments are presented in this section to 
show the effectiveness and efficiency of the proposed 
algorithm. The parameters of the heterogeneous 
distributed system are shown in Table II [12]. In the 
proposed genetic algorithm, the following parameters are 
adopted: population size 100N = , crossover probability 

0.6crosp = , mutation probability 0.02mutp = , elitist 
number 5E =  and stop criterion 2000t = . 

TABLE  II.   

PARAMETERS OF THE HETEROGENEOUS DISTRIBUTED SYSTEM 

P o s g w 
p1 70.554750 57.951860 0.533424 2.895625
p2 30.194800 1.4017640 0.774740 7.607236
p3 81.449010 4.535275 0.709038 4.140327
p4 86.261930 37.353620 0.790480 9.619532
p5 87.144580 94.955670 0.056237 3.640187
p6 52.486840 5.350452 0.767112 5.924582
p7 46.870010 62.269670 0. 298165 6.478212
p8 26.379290 82.980160 0. 279342 8. 246021
p9 58.916300 91.096430 0. 986093 2.268660
p10 69.511550 24.393140 0. 980003 5.338731
p11 10.636970 67.617590 0. 999415 1.570390
p12 57.518380 10.302260 0. 100052 7.988844
p13 28.448030 29.577290 0. 045649 3.820107
p14 30.090500 97.982940 0. 948571 4.013743
p15 27.828000 16.282160 0. 160442 6.465871

In the first experiment, the workload size ranges from 
100 to 10000. For convenience, let GA represents the 
algorithm WX-GA proposed in this paper, IG indicates 
the algorithms given by Beaumont et al. [13] and Shang 
[12], which schedules divisible load in the sequence of 
increasing value of ig , while IW given by Bharadwaj et 
al. [10], which schedules workload in the sequence of 
increasing value of iw . The processing time and used 
machine numbers for different workload by these three 
scheduling algorithms are recorded in Table III. 

It can be seen from Table III that the processing time 
used by the proposed algorithm is much less than that 
used by other two compared algorithms for all test cases. 

Fig. 2(a) intuitively shows the processing time 
difference between algorithm IW and WX-GA, while Fig. 
2(b) shows the time difference between IG and WX-GA. 
As is shown in Fig. 2(a), with the increasing size of 
workload, the difference of processing time is found in 
linear growth between the proposed algorithm IW and 
WX-GA. In other words, the proposed algorithm is much 
more effective in finding the optimal distribution 
sequence. Similarly, it can be seen from Fig. 2(b) that 
when workload size ranges from 100 to 9900, the 
processing time obtained by IG is larger than that by 
WX-GA. What’s more, we show the numbers of 
processors that are selected to participate in computation 
obtained by algorithm WX-GA and IG in Fig. 3. 
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TABLE III.   

PROCESSING TIME FOR DIFFERENT WORKLOAD FROM 100  TO 9900. 

Alg Size No Time Size No Time Size No Time Size No Time 
GA 

100 
5 209.255 

300 
7 411.123

500
9 572.316

700 
10 700.423

IG 4 285.379 8 475.671 10 609.918 10 735.025
IW 2 295.481 3 581.707 5 809.344 7 1004.95
GA 

900 
11 818.945 

1100 
12 930.701

1300
12 1041.08

1500 
13 1149.98

IG 11 859.494 11 980.935 13 1096.19 13 1207.3
IW 8 1199.39 9 1386.48 10 1569.33 10 1748.7
GA 

1700 
13 1256.35 

1900 
13 1362.33

2100
13 1468.04

2300 
14 1573.51

IG 15 1318.42 15 1426.03 15 1526.87 15 1627.71
IW 10 1928.07 12 2102.19 12 2274.43 13 2444.43
GA 

2500 
14 1677.21 

2700 
14 1779.98

2900
14 1882.75

3100 
14 1985.41

IG 15 1728.54 15 1829.38  15 1930.22 15 2031.06
IW 13 2613.90 13 2783.37 13 2952.85 14 3119.95
GA 

3300 
15 2087.43 

3500 
15 2189.35

3700
15 2291.26

3900 
15 2393.17

IG 15 2131.89 15 2232.73 15 2333.57 15 2434.4
IW 15 3286.37 15 3451.4 15 3616.43 15 3781.46
GA 

4100 
15 2494.61 

4300 
15 2595.9

4500
15 2697.19  

4700 
15 2798.48

IG 15 2535.24 15 2636.08 15 2736.91 15 2837.75  
IW 15 3946.49 15 4111.52  15 4276.55  15 4441.58
GA 

4900 
15 2899.77 

5100 
15 3001.06

5300
15 3102.35

5500 
15 3203.63

IG 15 2938.59 15 3039.43 15 3140.26 15 3241.10
IW 15 4606.61 15 4771.64 15 4936.67 15 5101.70
GA 

5700 
15 3304.92 

5900 
15 3406.21

6100
15 3507.5

6300 
15 3608.79  

IG 15 3341.94 15 3442.77 15 3543.61 15 3644.45
GA 15 5266.73  15 5431.76 15 5596.79 15 5761.82
IG 

6500 
15 3710.07 

6700 
15 3811.3

6900
15 3912.54

7100 
15 4013.77

IW 15 3745.28 15 3846.12 15 3946.96 15 4047.79
IG 15 5926.85 15 6091.88 15 6256.91  15 6421.94
IW 

7300 
15 4115.00 

7500 
15 4216.23

7700
15 4317.47

7900 
15 4418.70

IW 15 4148.63 15 4249.47 15 4350.31 15 4451.14
IW 15 6586.97 15 6752.00 15 6917.03 15 7082.06
IW 

8100 
15 4519.93 

8300 
15 4621.17

8500
15 4722.4

8700 
15 4823.63

IW 15 4551.98 15 4652.82 15 4753.65 15 4854.49
IW 15 7247.09 15 7412.12 15 7577.15 15 7742.17
IW 

8900 
15 4924.86 

9100 
15 5026.10

9300
15 5127.33

9500 
15 5228.56

IW 15 4955.33 15 5056.16 15 5157.00 15 5257.84  
IW 15 7907.2 15 8072.23 15 8237.26 15 8402.29  
IW 

9700 
15 5329.79 

9900 
15 5431.03

 IW 15 5358.67 15 5459.51
IW 15 8567.32 15 8732.35

 
From Fig. 2(b) and Fig. 3, we can come to the 

following conclusions: (1) For divisible load scheduling 
problems on heterogeneous distributed systems in 
blocking mode of communication, the proposed 
algorithm is much more effective than other compared 
algorithms because processors involved in computation 
after scheduling by WX-GA is fewer than that by IG and 
meanwhile the processing time obtained by WX-GA is 
smaller than that by other compared algorithms. (2) 
Distribution sequence plays a significant influence on the 
processing time, since algorithms with different 
distribution schemes lead to distinct experimental results. 

In the second experiment, the workload size ranges 
from 1 × 104 to 2 × 105. The processing time and used 
machine numbers for different workload by Algorithm 
WX-GA, IW and IG are recorded in Table IV. 

It can be seen from Table IV that the processing time 
used by the proposed algorithm is less than or at least 
equal to that used by other two compared algorithms for 
all test cases. Fig. 4(a) shows the processing time 
difference between algorithm IW and WX-GA, while 
Fig.4(b) shows the time difference between IG and WX-
GA.  
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Figure 2.  Comparative experiment 1: (a) the processing time difference between IW and WX-GA. (b) the time difference between IG and WX-GA. 

 
From Fig. 4(a), one can see that the larger the 

workload, the greater the difference of the processing 
time between IW and WX-GA. On the contrary, Fig. 4(b) 
shows that the larger the workload, the smaller the 
difference of the processing time between IG and WX-
GA. Especially, when workload is large enough, the 
processing time obtained by WX-GA and IG are the same, 
because all processors are needed in computation and the 
two scheduling algorithms get the same distribution 
sequence, which follows the decreasing order of the 
communication speeds. The experimental results are 
consistent with the conclusion given by Theorem 3.3 in 
Section 3. That is to say, the experimental results 
reconfirmed the validity of the conclusion.  

Figure 3.  Numbers of processors selected to participate in computation 
obtained by algorithm WX-GA and IG. 

TABLE IV.  

PROCESSING TIME FOR DIFFERENT WORKLOAD FROM 41 10×   TO 52 10× . 

Alg. Size No. Time Size No Time Size No. Time 
GA 

41 10×  
15 5481.64 

42 10×
15 10535.0 

43 10×
15 15579.5 

IG 15 5509.93 15 10551.8 15 15593.6 
IW 15 8814.87 15 17066.4 15 25317.8 
GA 

44 10×  
15 20622.8 

45 10×
15 25665.7 

46 10×
15 30708.6 

IG 15 20635.5 15 25677.3 15 30719.2 
IW 15 33569.3 15 41820.8 15 50072.3 
GA 

47 10×  
15 35751.5 

48 10×
15 40794.5 

49 10×
15 45837.4 

IG 15 35761 15 40802.9 15 45844.7 
IW 15 58323.8 15 66575.3 15 72429.2 
GA 

51 10×  
15 50880.3 

51.1 10×
15 55923.2 

51.2 10×  
15 60966.2 

IG 15 50886.6 15 55928.4 15 60970.2 
IW 15 83078.3 15 91329.7 15 99581.2 
GA 

51.3 10×  
15 66009.1 

51.4 10×
15 71052.0 

51.5 10×  
15 76094.9 

IG 15 66012.1 15 71053.9 15 76095.8 
IW 15 107833 15 116084 15 124336 
GA 

51.6 10×  
15 81137.6 

51.7 10×
15 86179.5 

51.8 10×  
15 91221.3 

IG 15 81137.6 15 86179.5 15 91221.3 
IW 15 132587 15 140839 15 149090 
GA 

51.9 10×  
15 96263.2 

52 10×
15 101305 

 IG 15 96263.2 15 101305 
IW 15 157342 15 165593 
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Figure 4. Comparative experiment 2: (a) the processing time difference between IW and WX-GA. (b) the time difference between IG and WX-GA. 

 

VI. CONCLUSIONS 

The goal of this paper was to find an optimal 
scheduling for divisible load on heterogeneous distributed 
systems in blocking mode of communication. The goal 
was successfully achieved by designing a novel genetic 
algorithm WX-GA. In order to examine the performance 
of the proposed algorithm, a set of experiments were 
carried out. From the experimental results, the following 
conclusions can be drawn. First, distribution sequence 
plays a significant role in processing time. Second, the 
proposed algorithm greatly decreases the processing time. 
Third, when workload is large enough, in order to achieve 
minimum processing time, the optimal distribution 
sequence should follow the decreasing order of the 
communication speeds. 
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