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Abstract—Recently, cloud computing has become a 
promising network platform for non-trivial applications. 
The key feature of cloud computing is on-demand resource 
provision by utility paradigm. Therefore, resource pricing 
mechanism plays an important role for realizing on-demand 
resource provision. Unfortunately, existing resource pricing 
mechanism will result in many negative effects on system 
performance, such as low-efficient negotiation, extra 
communication costs and etc. In this paper, we present a 
novel resource pricing mechanism, which is based on multi-
player gaming model and capable of realizing batch 
resource allocation in an efficient manner. In this 
mechanism, we introduce a set of virtual resource brokers 
which is responsible for figuring most rationale resource 
prices in elastic cloud environment. To investigate the 
effectiveness and performance of our pricing mechanism, 
extensive experiments are conducted, and we compare its 
performance with various approaches, include market-
based approaches and auction mechanisms. The results 
show that our pricing mechanism is more effective to 
realizing batch resource allocation, especially when the 
system workload is intensive. In addition, our mechanism 
can significantly reduce the negotiation costs comparing 
with exiting approaches. 
 
Index Terms—cloud computing, pricing mechanism, virtual 
resources, computing economy, cooperative game 
 

I.  INTRODUCTION 

Cloud computing has emerged as an promising 
technology and it has been increasingly adopted in many 
areas including science, engineering, and commercial 
business, due to its inherent flexibility, scalability and 
cost-effectiveness [1, 2].  Clouds are primarily 
motivated by the conception of utility computing, in 
which users have to pay resource providers for executing 
their applications. While the pay-per-use pricing model is 
very appealing for both service providers and consumers, 
conflicting objectives between the two parties hinder its 
effective application [3, 4]. In other words, the service 
provider aims to accommodate as many requests as 
possible with aiming to maximizing their profits, which 
inevitably conflict with consumer’s performance 
requirements. 

In the past few years, there have been plenty of studies 
exploiting market pricing mechanism for distributed 
resource allocation, and the well-known distributed 

systems [5, 6, 7, 8, 9, 10]. Beside this systems, many 
economic-based policies and scheduling algorithms have 
also be widely studied, include Resource Auction [11, 12], 
FirstPrice [13], FirstProfit [14], and Proportional-Share 
[15]. In typical distributed systems, economic-based 
model is has been proven to be effective for resource 
allocation, however, it also raise other problems that 
cannot be ignored [7, 8, 9]. Firstly, economic models 
bring about extra communicational and computational 
overhead to applications [8, 16]; Secondly, when the 
system is in presence of high-end applications that 
require co-allocating multiple resources across sites, the 
price negotiation process is often low-efficient [6, 9, 17]. 

Currently, many existing cloud systems adopted fixed 
pricing mechanism whose advantages are easy 
implementation and low maintain cost [17]. 
Unfortunately, fixed pricing mechanism will lead to 
many negative effects on system performance with the 
increasing of system scale, such as low resource 
utilization [17, 18; 19], load unbalancing [20], 
undesirable QoS satisfaction [21, 22]. To address the 
above issues, in this work we present a cloud resource 
pricing model with aiming at overcoming the 
shortcomings of existing price mechanisms in terms of 
efficiency and fairness. In our pricing model, virtual 
resource configuration and provision are defined as a 
two-phrase gaming procedure, in which cooperative 
gaming model is applied to optimize the resource benefits 
and non-cooperative gaming model is used to balance the 
user’s costs and provider’s benefits. 

The rest of this paper is organized as following: 
Section 2 presents the related work; In section 3, the 
gaming models are presented with problem description; ; 
In Section 4 the solutions of game models are presented 
theoretically; In section 5, experiments are conducted to 
examine the effectiveness of the proposed approach. 
Finally, Section 6 concludes the paper with a brief 
discussion of the future work. 

II.  RELATED WORK 

In December 2009, AWS launched Spot Instances (SI) 
mechanism [23], in which users are charged at a higher 
rate when the provider experiences overload. Its original 
objective is to encourage users to shift their flexible 
workload from provider's peak hours to off-peak hours 
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with monetary incentives. After profiling SI mechanism 
for about two years, Wee et al. found three interesting 
observations about SI [24]: (1) SI price is 52.3% cheaper 
than the standard price of equivalent instance type on 
average. Therefore users can achieve this cost savings by 
simply switching to SI instead of shitting their workload 
to cheaper periods; (2) Additional cost savings from 
shifting workload to cheaper hours is merely 3.7% on 
average. (3) Above two observations have not been 
changed over time. Based on the above observations, 
Wee concludes that AWS SI does not provide large 
enough monetary incentive for users to shift their 
workloads. 

In [17], the authors presented a dynamic pricing 
scheme which takes efforts on improving the efficiency 
of batch resource trading in federated cloud environments. 
In their scheme, the whole cloud system is considered as 
a uniformed resource market where resource supply and 
demand can be balanced by using macro-economic 
equivalence theory. Unfortunately, the scheme relies on 
market self to automatically obtaining equivalent price, 
therefore it is low-efficient comparing with the opening 
feature of cloud platform. 

In [25], the authors proposed a dynamic second-priced 
auction mechanism to solve the allocation problem of 
computation capacity in the environment of cloud 
computing. During the auction procedure, it assumes that 
resource pricing will be increased significantly when the 
system workload is in peak state. Such an assumption is 
validating for those systems whose resource quantity is 
constant during a long time interval. Even so, their works 
proofed that second-priced auction mechanism can ensure 
reasonable profit for cloud providers. 

In [26], the authors presented a three-tier cloud 
structure, which consists of infrastructure vendors, 
service providers and consumers. In such a framework, 
different cloud services are composited for serving user’s 
request, while the prices of cloud services are decided by 
taking the dependency of different user budget constraint. 
So, the main objective of their approach is increasing the 
QoS satisfactions of cloud users especially for those with 
limited budgets, while it ignores the profits of cloud 
providers.  

In [21], the authors proposed a decentralized economic 
approach, in which a set of agents were introduced to 
interact with the underlying infrastructures on behave of 
user applications. To meet the SLA performance and 
availability goals, an economic fitness is calculated by 
metrics including performance constraints, current 
workload, and resource utilization when allocating 
resources to an application. 

In [22], the authors proposed a hierarchical game 
model to analyze the decisions of resource providers 
when cloud resources are shared by both internal users 
and public users. The game model is composed of two 
interrelated cooperative games: (1) The low-level game 
model is to describe the revenue sharing process between 
various cloud providers, and its game solution can be 
figured out by stochastic linear programming technique; 
(2) The upper-level game model formulate the coalitional 

process when a group of providers contribute their 
resources to a common pool, and its analytical solution is 
presented by Markov Chain technique. 

III.  FRAMEWORK AND DEFINITIONS 

The framework of resource management in elastic 
clouds is shown in Figure 1. In such a framework, single 
cloud providers can serve as independent cloud system 
when it can provide sufficient resource for user 
application; if the resource capability of single cloud 
provider is not enough to satisfy the requirements of 
some large-scale applications, it can federate together and 
provide service for users. As shown in Figure 1, each 
cloud provider are independent in some times meanwhile 
keeping connected when needed. This work model is very 
similar to the ‘Production Broker’ model in normal 
business area [27]. Motivated by this, we introduce the 
conception of ‘Virtual Resource Broker’ (VRB) to 
describe the working of individual cloud providers with 
aiming at analyzing the resource provision and 
configuration in cloud platform. 

 

 
Figure 1.  Framework of Federated Elastic Clouds 

 
Let the set of cloud providers be as {S1,S2,…,Sn}, their 

resource quantity is noted as {v1,v2,…,vn}. The set of 
VRB be note as {B1,B2,…,Bn} and their resource quantity 
is noted as {c1,c2,…,cn}. The user application is consist of 
a set of tasks noting as {t1,t2,…,tm}, each being 
characterized as <ri, di>, where ri is the resource 
requirement and di is the deadline constraint. The utility 
function of cloud provider Si is noted as S

i iU p v= ⋅ , 
indicating the profits of Si when it sell its resource with 
price p . The utility function of VRB Bi is noted as 

B
i i i i iU p c p cμ= ⋅ ⋅ − ⋅ , where pi is retail price decided by 

Bi, μi is the resource utilization of Bi. Therefore, Ui
B 

indicating the profits of Bi when it sell its resource to 
users with price pi after it obtained resources from cloud 
providers with price p . The global utility function of the 
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federated cloud system is noted as ( )1
G S B

i i
n
k U UU = +=∑ , 

which is summation profits of cloud providers and virtual 
resource brokers. The utility function of user application 
is noted as ( )1

i
j i

mT
j r pU = ⋅=∑ , where rj

i is resource 

quantity that task ti obtained from Bi.  
It is clear that the profits of each VRB will be different 

after a period of time, since they use different retail prices. 
Therefore, we categorize them into three set by their 
profits. The set of VRB with positive profits is noted as 

( ) { 0 1... }| , [ ]B
i ip nB U iχ +

= > ∈ ; that with negative profits is 

noted as ( ) { 0 1... }| , [ ]B
i ip nB U iχ −

= < ∈ ; that with zero 

profits is noted 0
( ) { 0 1... }| , [ ]B

i ip nB U iχ = = ∈ . From the 
perspective of resource configuration, the profits of any 
VRB is decided by ci and p ; from the perspective of 
resource provision, it is affected by retail price pi and its 
resource utilization μi. Therefore, for any individual 

0( )iB pχ∈ , we say it is in balance state under condition 

,  ip c< > . If 0 ( )iB pχ∀ ∈ , then we say the whole resource 
trading system is in balance state under condition 

1 2, , ..., np c c c< < >> .  
Combing Figure 1 and the above definitions, we can 

see that there are three classes of participants: cloud 
providers, VRBs, and resource consumers. The cloud 
providers and VRBs cooperate with each other, since they 
both aim at maximizing resources utilization and resource 
profits. On the other hand, the relationship between the 
VRBs and the resource consumers is non-cooperative, as 
the clients hope to minimize their costs, which would 
inevitably lower down the benefits of cloud providers. 

IV.  GAMING MODELS AND ANALYSIS 

A.  Cooperative Gaming Model 
As mentioned in Section 3, the gaming model between 

cloud providers and VRBs is cooperative, and the former 
needs to decide an optimal resource price p , while the 
latter needs to decide the optimal resource configuration 
noted as {c1,c2,…,cn}. Therefore, the solution of this 
cooperative game can be noted as 1 2, , , , np c c c< < >>" . 

Since all the resource owned by cloud providers are 
brokered by VRBs, it satisfies 1 1

n n
i ii iv c= ==∑ ∑ . When the 

whole system is not in balancing state, we can have 

1( )i
nG

i iiU p cμ== ⋅ ⋅∑ . When the system is in balancing 
state, according to the definitions in Section 2, we know 
that 1 0

B
ik

n U= =∑ , therefore 1 1
n nG S

i ik iU U p v= == = ⋅∑ ∑ . 
That is saying, When the whole resource trading system 
is in balance state, the global profits UG is independent 
with p ; otherwise, UG  is decided only by p . 

Assuming that the system is in balancing state and the 
current condition is 1, , , np c c< < >>" , we note the 

VRBs’ profits as 1 2, , ,B B B
nU U U< >" . When the resource 

trading system is in balancing state, iB∀ satisfies 

0B
i i i i iU p c p cμ= ⋅ ⋅ − ⋅ = , that is 0i ip pμ ⋅ − = . Assume 

that the VBRs’ resource configurations are changed as 
1 1, , n nc c c c >< + Δ + Δ" , and their profits are noted as 

' ' '
1 2, , ,B B B

nU U U< >"  under condition 

1 1, ( , , )n np p c c c c< + Δ + Δ + Δ >" . So, we obtain that 
' [ ]( ) ( ) ( )B

i i i i i i iU c c p p p c c pμ= + Δ ⋅ − + Δ = − + Δ ⋅ Δ . As 
the total resource is constant, we know that 

1 1 1( )n n n
i i i ii i ic c c v= = =+ Δ = =∑ ∑ ∑ . Since the system is in 

balancing state, we know that 

1 1 1( )n n nG S B S
i i i ii i iU U U U p v= = == + = = ⋅∑ ∑ ∑ . Combing 

the above equations, under condition 
1 1,( , , )n np p c c c c< + Δ + Δ + Δ >" ,  the global profit 'GU  

satisfies 
' ' '

1

1 1

1 1

1

( )
( ) [ ( )]
( )

nG S B
i ii

n n
i i ii i

n n
i ii i

n G
ii

U U U
p p v p c c
p p v p v

p v U

=

= =

= =

=

= +
= + Δ ⋅ + −Δ ⋅ + Δ
= + Δ ⋅ − Δ ⋅
= ⋅ =

∑
∑ ∑
∑ ∑

∑

 (1) 

By Equation (1), we know that if the resource trading 
system is in balancing state under 
condition 1, , , np c c< < >>" , any change of 

1, , , np c c< < >>"  will not change the global profits UG. 
As the pricing policy of VRBs and cloud providers will 
not improve the global benefits UG when the resource 
trading system is in balancing state. Therefore, the Nash 
equivalent solution of cooperative gaming is the 
condition 1, , , np c c< < >>"  which can make the resource 
trading system in balancing state. 

When the system is not in balancing state under 
condition 1, , , np c c< < >>" , we need to find a feasible 
approach to improve UG. It can be done by the following 
steps: (S1) We pick out any Bk that belong to 

( )pχ + ≠ ∅ or ( )pχ − ≠ ∅ ;(S2)Change the resource price p  
as 'p , which satisfies ' k kp u p= ⋅ ∩ 'p p≠ . Meanwhile, 
we keep <c1,c2,…,cn> unchanged. Therefore, under 
condition 1', , , np c c< < >>" , we have the following 
conclusions: a) The system is still not in balancing state; 
b) UG is unchanged; c) Bk is in balancing state. (S3). 
According to the second conclusion in Step 2, we know 
that hB∃  satisfying ( ')hB pχ+∈ or ( ')hB pχ −∈ . Assuming 

( ')hB pχ+∈ , let the resource configuration of Bh being 
adjusted from ch to hc δ+ Δ , and the resource 
configuration of Bk being changed from ck to kc δ− Δ , 
where 0δΔ > . We have known that the above changing 
of Bh’s resource configuration will increase UG. At the 
same time, we also know that the above changing of Bk’s 
resource configuration will not affect UG, because Bk is 
now in balancing state. Therefore, under condition 

1',( , , , , , , )l k np c c c cδ δ< + Δ − Δ >" " " , we increase the 
global profit UG. 
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B.  Non-cooperative Gaming Model 
According to the definitions of Section 3, we use 

1 2, , , nM p p p< < >>"  to describe the gaming solution 
between VRBs and user applications, where M  is the 
resource trading matrix. According to definition 2, the 
profits of Bi is affected by pi, μi, p , and ci. During the 
cooperative gaming procedure, we have decided  p  and 
ci. At the same time, μi is not adjustable since we can only 
obtain it by statistics. Therefore, the pricing policy can be 
noted as pi(μi), which means that VRBs adjusts their retail 
price pi by observing its resource utilization μi. Therefore, 
the key point of solving the non-cooperative gaming 
model is figure out the pricing function of VRBs. 

Let pi(μi) be the pricing function of Bi. According to 
definition 2, we have ( )

B
i i i i i iU c p p cμ μ −= ⋅ ⋅ ⋅ . Let 

/ 0B
i idU dμ =  we have the equation 

( ) / ( ) 0i i i i i idp d pμ μ μ μ+ =⋅ , and Ui
B is maximized if this 

equation is solvable. By solve this equation, we can have 
following general solution as ,1 ,2( )i i ii iK Kp μ μ= − ⋅ , 
where Ki,1and Ki,2 are positive constant.  

If all {B1,B2,…,Bn} are independent, the condition of 
obtaining maximized profits is that the pricing function is 
inversely proportional to resource utilization. We can 
have multiple pricing function since Ki,1 and Ki,2 can be 
any positive constant. For example, assuming that the 
pricing bounds of Bi is min max[ , ]i ip p , then its pricing 
function can be defined as 

max max min( ) ( ) ii i i i ip p p p μμ = − − ⋅ . We can easily know that 

Bi have maximal profits when max max min/ 2( )i i i ip p pμ = − . 

If max 2ip p=  and min 0.5ip p= , then when 2/3iμ =  the 
Bi have maximal profits. Therefore, once Bi decides its 
pricing function, it can obtain its optimal resource 
utilization  by *

,1 ,2/(2 )i i iK Kμ = . During the running time, if 
it observed that μi < μi

* it can low down its retail price, 
otherwise increases its price. If μi = μi

*, then the current pi 
is optimal for maximizing profits. 

V.  EXPERIMENTS AND PERFORMANCE EVALUATION 

In the experiments, we use CloudSim [28] to construct 
a simulative cloud platform, which consists of twelve 
high-performance clusters as underlying resources. The 
topology and setting of individual clusters are deprived 
from the grid test-bed DAS-2. The experimental 
workload (tasks stream) is generated by using Lublin-
Feitelson model, which is derived from the workload logs 
of real supercomputers. In the experiment, we mainly 
concentrate on the effects of resource trading on 
application’s execution time. 

To analyze the performance, our hybrid gaming model 
(HGM) is compared with other four resource trading 
model, including Commodity Market Model (CMM) [29], 
Double Auction Model (DAM) [25]， Vickery Auction 
Model (VAM) [28]，Batch Auction Model  (BAM) [30]. 
To examine the efforts of resource requirements on 

performance, we enlarge the workload’s resource 
requirement β times. The experiments are conducted four 
time, with increasing β from 1.0 to 2.5. The results are 
shown in Figure 2. 

 

 
(a) β= 1.0 

 

 
(b) β= 1.5 

 

 
(c) β= 2.0 
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(d) β= 2.5 

Figure 2.  Comparison of Responsive Time 
 

The experimental results show that resource 
requirements affect not only the resource negotiation time 
but also the execution time. When the resource 
requirements is in low level (β=1.0), the performance of 
VAM an DAM is significantly higher that other policies, 
and their negotiation time is about 10.2% and 8.7% of the 
total completing time. As to HGM and BAM, the 
negotiation time is about 2.9% and 3.1% of the total 
completing time. With the increasing of β, the negotiation 
times of both VAM and DAM increase as well as their 
proportions to the total completing time. For example, 
when β = 2.5, negotiation time of VAM is about 3.82 
times of the case β = 1.0, and its proportion is increased 
to 21.3%. BAM is a batch resource trading model, and it 
is very effective to allocate multiple resources to 
application. However, it has to take many rounds to 
complete the auction procedure, especially when the 
resource requirements are very large. Therefore, when β 
= 1.0 its performance is almost equal to HGM; however, 
with increasing of  β, the time costs on auction procedure 
become dominator, which makes BAM’s performance 
reduced.  

Comparing with auction model, CMM is effective to 
reduce communication-related costs. However, our 
experimental results indicate that its negotiation time 
increases significantly when β increases to high level. By 
examining the logs, we found that re-negotiation occurs 
more frequently than before, that is, the CMM’s pricing 
policy can not efficiently finish the trading for all 
resource requirements. For example, when β = 2.5 about 
43% tasks need to negotiation 2 times to obtain the 
required resources, and about 7% tasks need to do it at 
the third negotiation.  

By the description of Section 3, we can see that 
HGM’s negotiation costs mainly come from the selection 
of suitable VRBs. As all VRBs decide their retail price 
independently according to their resource utilizations, 
therefore, it can avoids workload concentration which is 
very important for reducing the costs of re-negotiation. 
Before HGM is in balancing state, those VRB with 
positive profits will increase their resource configuration. 
By this mechanism, they can improve the capability of 
serving multi-resource requirements. Therefore, we can 
consider HGM as the combination of BAM and CMM. 

Based on the above experimental results, our conclusion 
is that HGM is effective to reduce the negotiation time, 
which in turn reduce the application execution time. 

Secondly, we all investigate the HGM’s performance 
under constraints to costs and deadline. Because of the 
deadline constraint, we can not compare the policies 
directly. As a result, we select four typical resource 
matching algorithms to integrate those pricing 
mechanisms, including Round-Robin (RR)，Capability-
based Random (CR)，Optimal Miss Rate (OMR) and 
Hierarchical Gaming Selection (HGS). The experiments 
conducted four times, each with different λ parameter 
which is used to define the arrival interval of tasks. The 
results are shown in Figure 3.  

 

 
Figure 3.  Resource costs with different policies and λ parameter 

 
As shown in Figure 3, the performance of RR is the 

best if we only consider the resource costs. However, RR 
will result in high deadline miss rate when λ increases. By 
our result logs, the deadline miss rate is about 61.22% 
when λ=10. By our experiment setting, if deadline occurs 
the user will not pay any cost for resource providers. That 
is the reason that the resource cost of RR is the lowest. 
Among the left policies, HGS can obtain lowest resource 
costs and its changes are very stable for different λ 
parameters. We notice that the rejection rate of HGS is 
very high, which is significantly different from HGM. 
For example, when λ=10 the rejection rate of HGM is 
only about 6.17%. By the gaming policy, we know that 
the pricing function in HGM is inversely proportional to 
the resource utilization. Because of this pricing policy, 
HGM is capably of maintain a low rejection rate.  As 
shown in the experimental results, when using the same 
pricing mechanism, CR and OMR perform very similar in 
terms of resource costs and rejection rate. However, their 
deadline miss rates are very different. In a whole, OMR is 
more effective to provide deadline guarantee than other 
policies especially when λ=0.05 and λ=0.10. However, 
when we increasing λ from 0.1 to 1.0, the rejection rate of 
OMR+BAM increases about 2 times, and the deadline 
miss rate increases about 2.5 times. Such a result happens 
on OMR+CMM.  That is, OMR is effective to reduce 
deadline miss rate when there is no cost constraint; when 
cost constraint should be considered, OMR is only 
suitable for those applications with uniform workloads. 
Based on this experiment, we can see that HGM is 
effective to maintain low rejection rate and obtain better 
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tradeoffs between resource costs and cloud provider’s 
profits. 

VI.  CONCLUSION 

To address the issue of resource pricing mechanism in 
cloud environments, a hybrid gaming based pricing 
model is proposed to overcome the demerits of existing 
price mechanisms in terms of efficiency and fairness. In 
the proposed pricing model, virtual resource 
configuration and provision are described as a two-phrase 
gaming procedure, in which cooperative gaming model is 
applied to optimize the resource benefits and non-
cooperative gaming model is used to balance the user’s 
costs and provider’s benefits. The validity and solution of 
the proposed price model are presented theoretically, and 
the experimental results indicate that the hybrid gaming 
model can significantly improve the price negotiation 
efficiency when a bundle of resources are negotiated 
concurrently, which in turn reduce the application 
execution latency that caused by conventional price 
negotiation mechanisms. In addition, it also outperforms 
other pricing mechanism in terms of user’s QoS 
requirements, such as resource cost and deadline 
guarantee, especially when the system workload is very 
intensive. In the future, we plan to incorporate resource 
reservation mechanism into our HGM framework, and 
design some elastic reservation mechanism to improve 
the QoS performance. 

ACKNOWLEDGMENT 

This work is supported by the Provincial Science & 
Technology plan project of Hunan (No.2012GK3075), 
the Projects Supported by Scientific Research Fund of 
Hunan Provincial Education Department (13B015). Also, 
it is a project supported by Hunan Provincial Natural 
Science Foundation of China (No. 13JJ9022). 

REFERENCES 
[1] J. Ju, J. Wu, J. Fu, Z. Lin, J. Zhang. “A survey on cloud 

storage”, Journal of Computers, vol.6, no.8, pp. 1764-1771, 
2011. 

[2] B. XU, N. Wang, C. Li. “A cloud computing 
infrastructure on heterogeneous computing resources”, 
Journal of Computers, Vol.6, No.8, pp.1789-1796, 2011. 

[3] J. Wu, Q. Shen, T. Wang, J. Zhu, J. Zhang. “Recent 
advances in cloud security”. Journal of Computers, vol.6, 
no.10, pp.2156-2163, 2011. 

[4] L. Rodero-Merino, E. Caron, A. Muresan et al., “Using 
clouds to scale grid resources: An economic model,” 
Future Generation Computer Systems, vol. 28, no. 4, pp. 
633-646, 2012. 

[5] R. Beck, M. Schwind, and O. Hinz, “Grid Economics in 
Departmentalized Enterprises,” Journal of Grid Computing, 
vol. 6, no. 3, pp. 277-290, Sep, 2008. 

[6] A. Di Stefano, and C. Santoro, “An economic model for 
resource management in a Grid-based content distribution 
network,” Future Generation Computer Systems, vol. 24, 
no. 3, pp. 202-212, 2008. 

[7] D. J. Veit, and W. Gentzsch, “Grid Economics and 
Business Models,” Journal of Grid Computing, vol. 6, no. 
3, pp. 215-217, Sep, 2008. 

[8] M. Macias, O. Rana, G. Smith et al., “Maximizing 
revenue in Grid markets using an economically enhanced 
resource manager,” Concurrency and Computation-
Practice & Experience, vol. 22, no. 14, pp. 1990-2011, Sep 
25, 2010. 

[9] A. Haque, S. M. Alhashmi, and R. Parthiban, “A survey 
of economic models in grid computing,” Future Generation 
Computer Systems, vol. 27, no. 8, pp. 1056-1069, 2011. 

[10] S. Parsa, F.-A. Parand, and H. Navidi, “Micro-economics 
based resource allocation in Grid-Federation environment,” 
Cluster Computing-the Journal of Networks Software 
Tools and Applications, vol. 14, no. 4, pp. 433-444, Dec, 
2011. 

[11] H. Izakian, A. Abraham, and B. T. Ladani, “An auction 
method for resource allocation in computational grids,” 
Future Generation Computer Systems, vol. 26, no. 2, pp. 
228-235, 2010. 

[12] R. Prodan, M. Wieczorek, and H. M. Fard, “Double 
Auction-based Scheduling of Scientific Applications in 
Distributed Grid and Cloud Environments,” Journal of 
Grid Computing, vol. 9, no. 4, pp. 531-548, Dec, 2011. 

[13] B. N. Chun, and D. E. Culler, “User-centric performance 
analysis of market-based cluster batch schedulers”, IEEE 
International Symposium on Cluster, Cloud and Grid 
Computing, pp. 30-38, 2002 

[14] F. I. Popovici  and J. Wilkes, J., “Profitable services in an 
uncertain world”, Proceedings of ACM/IEEE Conference 
on Supercomputing, pp. 1-8, 2005. 

[15] M. Feldman, K. Lai, and L. Zhang, “The Proportional-
Share Allocation Market for Computational Resources,” 
Ieee Transactions on Parallel and Distributed Systems, vol. 
20, no. 8, pp. 1075-1088, Aug, 2009. 

[16] R. Buyya, D. Abramson, and S. Venugopal, “The grid 
economy”, Proceeding of the IEEE, Vol. 93, No. 3, pp. 
698-714, 2005. 

[17] M. Mihailescu and Y. M. Teo, “Dynamic resource pricing 
on federated clouds”, IEEE International Symposium on 
Cluster, Cloud and Grid Computing, pp. 513-517, 2010 

[18] T. T. Huu, G. Koslovski, F. Anhalt et al., “Joint Elastic 
Cloud and Virtual Network Framework for Application 
Performance-cost Optimization,” Journal of Grid 
Computing, vol. 9, no. 1, pp. 27-47, Mar, 2011. 

[19] L. Wu, S. Garg and R. Buyya, R. “SLA-based resource 
allocation for software as a service provider (SaaS) in 
cloud computing environments”, IEEE International 
Symposium on Cluster, Cloud and Grid Computing, pp. 
195-204, 2011. 

[20] D. Ardagna, S. Casolari, M. Colajanni et al., “Dual time-
scale distributed capacity allocation and load redirect 
algorithms for cloud systems,” Journal of Parallel and 
Distributed Computing, vol. 72, no. 6, pp. 796-808, Jun, 
2012. 

[21] N. Bonvin, T. Papaioannou and K. Aberer, “Autonomic 
sla-driven provisioning for cloud applications”, IEEE 
International Symposium on Cluster, Cloud and Grid 
Computing, pp. 434-443, 2011. 

[22] D. Niyato, A. Vasilakos and Z. Kun, Z. “Resource and 
revenue sharing with coalition formation of cloud 
providers: game theoretic approach”, IEEE International 
Symposium on Cluster, Cloud and Grid Computing, pp. 
215-224, 2011. 

[23] N. Chohan, C. Castillo, M. Spreitzer and et al. “See spot 
run: using spot instances for mapreduce workflows”, 
Proceeding of International Hot Cloud, pp. 1-7, 2010. 

[24] S. Wee, S. “Debunking real-Time pricing in cloud 
computing”, IEEE International Symposium on Cluster, 
Cloud and Grid Computing, pp. 585-590, 2011. 

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1579

© 2014 ACADEMY PUBLISHER



[25] W. Lin, Y. Lin and H. Wei, “Dynamic auction mechanism 
for cloud resource allocation”, IEEE International 
Symposium on Cluster, Cloud and Grid Computing, pp. 
591-592, 2010. 

[26] Y. C. Lee, C. Wang, A. Y. Zomaya and B. Zhou, “Profit-
driven scheduling for cloud services with data access 
awareness”, Journal of Parallel and Distributed Computing, 
Vol. 72, No. 4, pp. 591-602, 2012. 

[27] M. Osborne, A. Rubinstein, A. A Course in Game Theory, 
The MIT Press, Cambridge UK, 1994. 

[28] R. N. Calheiros, R. Ranjan, A. Beloglazov et al., 
“CloudSim: a toolkit for modeling and simulation of cloud 
computing environments and evaluation of resource 
provisioning algorithms,” Software-Practice & Experience, 
vol. 41, no. 1, pp. 23-50, Jan, 2011. 

[29] R. Buyya, “Economic-based distributed resource 
management and scheduling for grid computing”, Australia: 
Computer Science and Software Engineering, Monash 
University, 2002. 

[30] H. Zhao and X. L. Li, “Efficient grid task-bundle 
allocation using bargaining based self-adaptive auction”, 
Proceedings of IEEE International Symposium on Cluster, 
Cloud and Grid Computing, pp. 4-11, 2009. 

 
 

Zhang Tienan was born in 1973. He 
received his master degree in Xiangtan 
University at 2008. Current he is a 
lecturer of Hunan Institute of 
Engineering. His research directions 
includes network computing, cloud 
Computing, distributed resource 
management.  
 

 
 

 
Peng Xiao was born in 1979. He 
received his master degree in Xiamen 
Universy in 2004 and Ph.D degree in 
CSU at 2009. Now, he works in Hunan 
Institute of Engineering. His research 
interests include cloud computing, 
parallel and distributed systems, network 
computing, distributed intelligence. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

1580 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER


