
Parallel Clone Code Detector in MapReduce1

Lin Ye
College of Information Science and Technology, Jinan University, 510632, Guangzhou, China

Email:ye_lin@126.com

 Guoxiang Yao2

College of Information Science and Technology, Jinan University, 510632, Guangzhou, China
Email: yao@jnu.edu.cn

Abstract—Programmers often copy code to improve
efficiency, and different developers may write the same code
independently, these behaviors bring clone code to the
project. Clone code makes the project hard to maintain and
weakens the robustness, and the bugs in these code segments
would undermine the whole project. The state-of-the-art
clone code detectors are either not able to find code with
same semantics, or computationally expensive. And if clone
code detector is to be performed on plenty number of code,
the main memory of one machine may not able to hold all
the information.
In this paper we focus on the parallel of the clone code
detector, we utilize the Program Dependence Graph (PDG)-
based clone code detection method, which can not only
check the code in contiguous syntax, but also the code with
the same semantics. We present an approach to parallel the
isomorphism matching in the PDG. By using MapReduce
paradigm, we dramatically enhance the speed of this
method.

Index Terms— clone code, PDG, isomorphism matching,
MapReduce

I. INTRODUCTION

In the development of a project, maybe “copy-paste” is
the largest number of operation, since it can saves
developer’s workload. A study about the open source
software [1] found that:

Seeing the minimum copy-pasted segment size is 30
tokens, Linux gets 22.3 percent clone code in its source
code, the number of FreeBSD, Apache and PostgreSQL
is 20.4, 17.7, and 22.2, respectively.

Not only “copy-paste” can lead to similar code, mental
macro (definitional computations frequently coded by a
programmer in a regular style, such as payroll tax, queue

insertion, data structure access, etc.) also brings the clone
code.

The existence of similar code makes the software
maintenance more difficult, when the developers want to
modify the code, they may modify one place and forget
somewhere else, which results the inconsistencies of the
code. For a large and complex system, there are many
engineers who take care of each subsystem and then
modification becomes very difficult. If all the clone codes
have been recorded and maintained completely, the
difficulty of the modification would significantly reduce.
However, in most projects, keeping all the clone code
information is a laborious and costly work. In order to
avoid this problem, a large amount of techniques were
put forward. But the problem is precise definition of
clone code. Every existing method, including line-based,
token-based, AST-based and PDG-based, has its own
definition of clone code. So the same source code may
leads to different clone code result by different clone
code method. In 2009, Roy et al [2] summarized the
previous work and proposed the classification of clone
code; they divided the clone code into four types:

Type-1: Identical code fragments except for variations
in whitespace, layout and comments.

Type-2: Syntactically identical fragments except for
variations in identifiers, literals, types, whitespace, layout
and comments.

Type-3: Copied fragments with further modifications
such as changed, added or removed statements, in
addition to variations in identifiers, literals, types,
whitespace, layout and comments.

Type-4: Two or more code fragments that perform the
same computation but are implemented by different
syntactic variants.

Generally, most methods can only detect part of clone
code, according to the definition above. Line-based
method can only detect Type-1 clone code, and AST-
based method cannot detect Type-4 clone code.

Since each method has its own features and
weaknesses, and no method is better than any other
methods in every aspect [3]. So it is necessary to
understand the advantages and disadvantages of each
method and choose the method according to the source
code and other requirements like accurateness, time
complexity and space complexity.

1. This work is supported by the National Natural Science
Foundation of China (Grant No. 61272415, 61272413, 61133014) and
the Natural Science Foundation of Guangdong Province, China (Grant
No.S2011010002708). It is also supported by the Science Program of
Guangdong Province, China (Grant No.2012A080102007,
2010A011200038, 2011B090400324) and the Engineering Research
Center Program of Guangdong Province, China (Grant No. GCZX-
A1103).

2. Corresponding author
E-mail address: ye_lin@126.com (G. Yao).

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1561

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.6.1561-1566

The method based on PDG is able to detect semantics
clone code, and more important, it can find non-
contiguous clone code; while other methods are hard to
find it [3].A non-contiguous clone code is a clone code
departs by other codes or files, the codes from clone code
are located inconsecutively. It is often produced by the
modifications after pasting the clone code. Therefore,
PDG-based method can detect more types of clone code.

But PDG-based method also have its own
disadvantages, it’s running very slowly. This approach
must build the PDG from the source code, since plenty of
node pairs are used as slice points, it’s time consuming;
and then isomorphism matching is NP-complete, it also
requires high computational cost.

This paper presents an approach to parallel the
isomorphism matching in the PDG. In this way, the time
of isomorphism matching can be reduced. We adapt
MapReduce, a prevailing parallel program paradigm, to
parallel this method.

The rest of this paper is organized as follows: Section
2 introduces the background of PDG and MapReduce.
Section 3 presents our algorithm. Section 4 shows the
implementation which is evaluated in Section 5. Section
6 discusses related works; we conclude this paper in
section 7.

II. BACKGROUND

A. Program Dependence Graph
Program dependence graph is a directed graph whose

vertices present the codes in the source code, and the
edges indicate the dependence between two vertices.
Figure 2 is an example of source code and Figure.1
shows the PDG generated by the source code.

There are only two kinds of edges in the PDG: control
dependence edge and data dependence edge. For example,
given

a = b + c; s1
#include <stdio.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>

#define BUFFER_SIZE 1024
#define DELIM "\t"

int main(int argc, char *argv[]){
 char strLastKey[BUFFER_SIZE];
 char strLine[BUFFER_SIZE];
 int count = 0;

 *strLastKey = '\0';
 *strLine = '\0';

 while(fgets(strLine, BUFFER_SIZE - 1, stdin)){
 char *strCurrKey = NULL;
 char *strCurrNum = NULL;

 strCurrKey = strtok(strLine, DELIM);
 strCurrNum = strtok(NULL, DELIM); /* necessary to

check error but.... */

 if(strLastKey[0] == '\0'){
 strcpy(strLastKey, strCurrKey);
 }

 if(strcmp(strCurrKey, strLastKey)){
 printf("%s\t%d\n", strLastKey, count);
 count = atoi(strCurrNum);
 }else{
 count += atoi(strCurrNum);
 }
 strcpy(strLastKey, strCurrKey);

 }
 printf("%s\t%d\n", strLastKey, count); /* flush the count */
 return 0;
}

Figure.2 An example of source code

Figure.1 the PDG generated by the example of source code

1562 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

d = a * b + 1; s2
S2 has a data dependence on s1, since the value of a is

used when the value of d is calculated. If s2 is executed
before s1, then the value of d may be wrong. So s1 must
be executed before s2. This type of dependence is data
dependence.

Given
If(S) s1
d = b + c s2

S2 depends on the predicate S, if S is true, then s2 can
be executed, if S is false, and then s2 will be ignored.
This type of dependence is control dependence.

If the source code is changed, the PDG can only
modify the corresponding part and the rest keeps the
same. This feature can save plenty of time when the
project updates and the PDG must be rebuilt. Therefore,
PDG is widely used in the area of program optimization,
code motion, vectorization, program understanding, and
software engineering. A typical application of PDG is
program slicing [4].

B. MapReduce
MapReduce [5] is a prevalent programming model for

processing large data sets with a parallel, distributed
algorithm on a cluster. It offers an ease of use
programming paradigm for parallel algorithm by two
user-defined functions: map and reduce. Raw data is
transformed to (key, value) pairs and every map process
single (key, value) pair every time.

Map: <k1, v1> → <k2, v2>
The map function is running in parallel in the cluster,

and the MapReduce framework collects all pairs with the
same key from the results of all the map function and
passes it to a reduce function. The reduce function then
generates the final result.

Reduce: <k2, v2> → <k3, v3>
Programmers write these two functions and

MapReduce framework handles all the underlying work,
including scheduling the parallel in the cluster and the
communication between machines. In this way, the
underlying architecture is transparency to the
programmers, programmers can focus on what they want
to do and ignore the detail of the parallel. This model also
allows users to handle the partitioning and sorting keys
process by customize the hashing and comparison
functions, while may get a better performance than the
default configuration.

Plenty of works [6] [7] [8] have been transplanted to
the MapReduce, and the performance improvement
convinces us to utilize this platform.

III. ALGORITHM

The granularity (e.g. function definition, begin-end
block, statement sequence) must be determined before the
algorithm starts. The granularity is the least unit for
checking clone code; any clone code less than this size
cannot be found. But as the granularity gets smaller, the
running time gets longer.

First, the source code is transformed into a PDG,
which is a static representation of the flow of data and

control through a procedure, it’s marked as s-PDG .The
nodes of a PDG consist of program points constructed
from the source code: declarations, simple statements,
expressions, and control points. All vertexes’ kind and
the code they delegate are recorded for future usage.

Then pick a sub graph of the s-PDG, which correspond
to a block of code in one granularity. It’s marked as b-
PDG.

After that, comparing s-PDG and b-PDG, to see
whether there is sub graph in the s-PDG isomorphic to
the b-PDG. If there is any sub graph, except b-PDG itself,
in the s-PDG, isomorphic to the b-PDG, then the code
corresponds to this sub graph is the clone code.

The classic algorithm of PDG-based clone code is like
this, on the contrast, our algorithm cuts the s-PDG into
some small graph based-on the CBCD [9], and parallels
the compare of these small graphs and b-PDG. Before we
state the method of cutting the s-PDG, we give the
definition of the pseudo-circle used in the cutting first.

Pseudo-circle: In a graph G= (V, E), select a vertex A
in V as the pseudo-center and a positive number as the
pseudo-radius, then for any vertices B in V, if the
Shortest Path length between A and B less than the
pseudo-radius, then vertex B and the Shortest Path is in
the pseudo-circle. The Shortest Path ignores the direction
of the edges.

The s-PDG is cut as following:
1. Count the number of vertices with the same kind in

the s-PDG.
2. Get the least vertex’s kind in the s-PDG, and note it

as l-kind. Then get the vertices in the b-PDG whose kind
is l-kind. If there is no l-kind vertex in the b-PDG, reset
the l-kind as the second least vertex’s kind in the s-PDG
until there are vertices with the l-kind in the b-PDG.

3. Calculate the distances between these vertices and
any other vertices in the b-PDG, the maximum is set as
the pseudo-radius.

4. According to the pseudo-radius above and the l-kind
vertices as the pseudo-center, we can get some pseudo-
circles, and these small graphs are the final result of
cutting the s-PDG. We note them as the set of c-PDGs.

As in the isomorphism matching, the kind of vertices
must be checked; corresponding vertex must have the
same kind. So isomorphic sub graph must have an l-kind
vertex, and consider the size of b-PDG, the vertices in the
s-PDG too far away from the pseudo-center cannot be
included in the isomorphic sub graph, so they are no
longer to be considered any more.

Since the PDG of the project is divided into multiple
small ones, we can parallel the process of matching the b-
PDG and the set of c-PDGs. In this way, sub graph
isomorphic matching, which is NP-complete, can be
accomplished more efficiently.

MapReduce [5] paradigm is used to parallel this sub
graph matching. Map tasks match the sub graphs, and
reduce tasks gather all the matching sub graphs and
output the result.

The basic flow of the algorithm is shown in the
Figure.3

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1563

© 2014 ACADEMY PUBLISHER

IV. IMPLEMENTATION

The first step is to calculate the PDG of the whole
project. In our implementation, we use JavaPDG [10] to
generate the PDG of the whole project. JavaPDG is a
static analyzer for Java byte code, which is capable of
producing various graphical representations such as the
system dependence graph, procedure dependence graph,
control flow graph and call graph. Java PDG can only
generate PDG from Java source code, for C/C++ source
code, we can use Frama-c [11] or Code Surfer [12].

JavaPDG records the category of the instructions. It
can be used as the kind of the vertices, since one
instruction corresponds to one vertex in the PDG. Then
the PDG is cut into small graphs according to the
algorithm presented in section 3. And these small graphs
are given as input to the mappers. The mappers do
isomorphic matching in parallel. In this way, the
performance can be improved. The reducers gather all the
isomorphic sub graphs and output the result.

We adapt hadoop [13], an open-source software
framework supporting the MapReduce paradigm, to
parallel the sub graph matching. A large amount of
projects are transplanted to hadoop platform, we believe
it can reduce the sub graph matching time apparently.

We use igraph [14] to matching sub graph
isomorphism. Igraph is a free software package for
creating and manipulating undirected and directed graphs.
It includes implementations for classic graph theory
problems like minimum spanning trees and network flow,
and also implements algorithms for some recent network
analysis methods, like community structure search.

The efficient implementation of igraph allows it to
handle graphs with millions of vertices and edges. The
rule of thumb is that if your graph fits into the physical
memory then igraph can handle it. This feature helps
igraph handle the whole PDG of a project which may
have millions of vertices.

 Since igraph is written in C, we use hadoop streaming,
a component of hadoop which allows users to create and

run jobs with any executable as the mapper and/or the
reducer, to parallel the process of isomorphism checking.

V. EVALUTION

This section describes an experimental study that we
conducted in order to evaluate the proposed algorithm.
This experiment was performed on the virtual machines
built by VMware workstation, and every virtual machine
had 512MB memory. This experiment evaluated the
efficiency of our algorithm by checking two open-source
projects. Table.1 shows the experiment result. We
evaluate the size of the project by the code lines in the
project and the number of vertices and edges in the PDG
of the project. We compare the time-consuming of the
matching in classic PDG algorithm, and with three nodes
parallel processing.

The algorithm greatly improved the performance of the

isomorphic matching; classic PDG isomorphic matching
spent a couple of hours, while our parallel algorithm
spent only a couple of minutes. Since we remove part of
vertices in the PDG and parallel the matching process, we
can get such a great improvement.

VI. RELATED WORK

We have seen plenty of improvements, such as vertices
classification [9], incremental detection technique [15]
and heuristic [16].

Current clone code detectors can be classified into
seven kinds:

Token-based clone code detecting method [17] checks
on the lexical tokens of the code, this method involves
minimal code transformation.

String-based clone code detecting method [18]
compares the hash code of the source code.

Abstract syntax tree based clone code detecting
method[19] [20], according to the syntax tree's
characteristics, this approach calculates the hash value of
the code, transforms their storage forms, and then
compares them node by node.

TABLE I.

CLONE DETECTION TIME

 10 50 100 200 400

SPRING-
CONTEXT-

3.2.1

PARALLEL 70S 78S 85S 88S 100S

CLASSIC 625M 568M 500M 420M 334M

GITBLIT

PARALLEL 76S 82S 84S 100S 120S

CLASSIC 630M 593M 582M 542M 523M

S presents second, M presents minute

Granularity

(Vertices) Time

Source

 Figure.3 The basic flow of the algorithm

1564 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

PDG based clone code detecting method [21], which is
able to find semantics clone code, but the compare of sub
graph is NP-complete.

Memory-state-based clone code detection [22]
compares programs’ abstract memory state, which is
computed by a semantic-based static analyzer.

Random testing clone code detecting [23] is based on
code’ output values on the generated inputs.

Low-level language based clone code detecting [24]
compares the low-level language code produced by
complier.

All existing clone code detectors can be classified into
those seven methods. Each of them has own advantages
and disadvantages. No one is better than other on every
aspect. What we should do is to choose the method
according to the circumstance.

We also see some attempts to transplant the clone code
detectors to MapReduce platform [25] [26]. We are
inspired to see, with the usage of MapReduce paradigm,
the methods computing the project vocabulary statistics
[25] and using description logic [26] both give speed-up
results.

VII. CONCLUSION

This paper represented and evaluated an approach to
accelerate the PDG-based clone code detector.
Specifically, cut the PDG into small graphs to parallel the
isomorphic sub graph checking. MapReduce framework
was used to parallel this checking and this makes the
algorithm easily scale to get a faster speed.

The algorithm was evaluated by checking the code
clones of two widely used open source projects. The
result confirmed that the algorithm is effective in
reducing clone code detection time. Moreover, the
algorithm can accelerate by adding more machines to the
cluster. Future work includes the attempt of parallel for
PDG generating, which is also time consuming for a large
project.

ACKNOWLEDGMENTS

This work is supported by the National Natural
Science Foundation of China (Grant No. 61272415,
61272413, 61133014) and the Natural Science
Foundation of Guangdong Province, China (Grant
No.S2011010002708). It is also supported by the Science
Program of Guangdong Province, China (Grant
No.2012A080102007, 2010A011200038,
2011B090400324) and the Engineering Research Center
Program of Guangdong Province, China (Grant No.
GCZX-A1103).

REFERENCES

[1] Li, Z., Lu, S., Myagmar, S., & Zhou, Y. (2006). CP-Miner:
Finding copy-paste and related bugs in large-scale software
code. Software Engineering, IEEE Transactions on, 32(3),
176-192.

[2] Roy, C. K., Cordy, J. R., & Koschke, R. (2009).
Comparison and evaluation of code clone detection
techniques and tools: A qualitative approach. Science of
Computer Programming, 74(7), 470-495.

[3] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., & Merlo,
E. (2007). Comparison and evaluation of clone detection
tools. Software Engineering, IEEE Transactions on, 33(9),
577-591.

[4] Tip, F. (1995). A survey of program slicing techniques.
Journal of programming languages, 3(3), 121-189.

[5] Dean, J., & Ghemawat, S. (2008). MapReduce: simplified
data processing on large clusters. Communications of the
ACM, 51(1), 107-113.

[6] Wang, X., Wang, Y., & Zhu, H. (2012). Energy-efficient
task scheduling model based on MapReduce for cloud
computing using genetic algorithm. Journal of Computers,
7(12), 2962-2970.

[7] Yang, Y., Long, X., & Jiang, B. (2013). K-Means Method
for Grouping in Hybrid MapReduce Cluster. Journal of
Computers, 8(10), 2648-2655.

[8] Li, R., Luo, J., Yang, D., Hu, H., & Chen, L. (2013). A
Scalable XSLT Processing Framework based on
MapReduce. Journal of Computers, 8(9), 2175-2181.

[9] Li, J., & Ernst, M. D. (2012, June). CBCD: Cloned buggy
code detector. InSoftware Engineering (ICSE), 2012 34th
International Conference on (pp. 310-320). IEEE.

[10] Shu, G., Sun, B., Henderson, T. A., & Podgurski, A.
JavaPDG: A New Platform for Program Dependence
Analysis.

[11] Cuoq, P., Kirchner, F., Kosmatov, N., Prevosto, V.,
Signoles, J., & Yakobowski, B. (2012). Frama-C. In
Software Engineering and Formal Methods(pp. 233-247).
Springer Berlin Heidelberg.

[12] http://www.grammatech.com/research/technologies/codesu
rfer 2013.06.

[13] http://hadoop.apache.org/ 2013.06
[14] Csardi, G., & Nepusz, T. (2006). The igraph software

package for complex network research.
InterJournal,Complex ystems, 1695(5).

[15] Higo, Y., Yasushi, U., Nishino, M., & Kusumoto, S. (2011,
October). Incremental code clone detection: A pdg-based
approach. In Reverse Engineering (WCRE), 2011 18th
Working Conference on (pp. 3-12). IEEE.

[16] Higo, Y., & Kusumoto, S. (2011, March). Code clone
detection on specialized pdgs with heuristics. In Software
Maintenance and Reengineering (CSMR), 2011 15th
European Conference on (pp. 75-84). IEEE.

[17] Li, Z., Lu, S., Myagmar, S., & Zhou, Y. (2004, December).
CP-Miner: A Tool for Finding Copy-paste and Related
Bugs in Operating System Code. In OSDI(Vol. 4, No. 19,
pp. 289-302).

[18] Baker, B. S. (1995, July). On finding duplication and near-
duplication in large software systems. In Reverse
Engineering, 1995., Proceedings of 2nd Working
Conference on (pp. 86-95). IEEE.

[19] Wu, S., Hao, Y., Gao, X., Cui, B., & Bian, C. (2010,
August). Homology detection based on abstract syntax tree
combined simple semantics analysis. In Web Intelligence
and Intelligent Agent Technology (WI-IAT), 2010
IEEE/WIC/ACM International Conference on (Vol. 3, pp.
410-414). IEEE.

[20] Cui, B., Li, J., Guo, T., Wang, J., & Ma, D. (2010,
October). Code comparison system based on abstract
syntax tree. In Broadband Network and Multimedia
Technology (IC-BNMT), 2010 3rd IEEE International
Conference on (pp. 668-673). IEEE.

[21] Gabel, M., Jiang, L., & Su, Z. (2008, May). Scalable
detection of semantic clones. In Software Engineering,
2008. ICSE'08. ACM/IEEE 30th International Conference
on (pp. 321-330). IEEE.

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1565

© 2014 ACADEMY PUBLISHER

[22] Kim, H., Jung, Y., Kim, S., & Yi, K. (2011, May). MeCC:
memory comparison-based clone detector. In Software
Engineering (ICSE), 2011 33rd International Conference
on (pp. 301-310). IEEE.

[23] Jiang, L., & Su, Z. (2009, July). Automatic mining of
functionally equivalent code fragments via random testing.
In Proceedings of the eighteenth international symposium
on Software testing and analysis (pp. 81-92). ACM.

[24] Johnson, J. H. (1993, October). Identifying redundancy in
source code using fingerprints. In Proceedings of the 1993

conference of the Centre for Advanced Studies on
Collaborative research: software engineering-Volume 1
(pp. 171-183). IBM Press.

[25] Sajnani, H., Ossher, J., & Lopes, C. (2012, June). Parallel
code clone detection using MapReduce. In Program
Comprehension (ICPC), 2012 IEEE 20th International
Conference on (pp. 261-262). IEEE.

[26] Schugerl, P. (2011, May). Scalable clone detection using
description logic. InProceedings of the 5th International
Workshop on Software Clones (pp. 47-53). ACM.

1566 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

