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Abstract—Learning from positive and unlabeled examples 
(PU learning) is a special case of semi-supervised binary 
classification. The key feature of PU learning is that there is 
no labeled negative training data, which makes the 
traditional classification techniques inapplicable. Similar to 
the idea of Biased-SVM which is one of the most famous 
classifier, a biased least squares support vector machine 
classifier (Biased-LSSVM) is proposed for PU learning in 
this paper. More specifically, we take unlabeled examples as 
negative examples with noise and build a least squares 
support vector machine classifier using two penalty 
parameters pC and nC to weight misclassification errors of 
positive and negative examples respectively. As we pay more 
attention to classify as many as positive examples correctly 
in PU learning, the relationship of parameters pC and nC is

p nC C≥ . Compared with Biased-SVM, the proposed 
classifier has three advantages. First, Biased-LSSVM can 
reflect the class labels of all examples more sufficiently and 
accurately than Biased-SVM. Second, Biased-LSSVM is 
more stable than Biased-SVM because the performance of 
Biased-LSSVM changes less than that of Biased-SVM over a 
wide ratio of positive examples in unlabeled examples. 
Finally, the time complexity of Biased-LSSVM is lower than 
that of Biased-SVM, where Biased-LSSVM only need to 
solve liner equations and Biased-SVM is a quadratic 
programming. The Experiments on two real applications, 
text classification and bioinformatics classification verify the 
above opinions and show that Biased-LSSVM is more 
effective than Biased-SVM and other popular methods, such 
as EB-SVM, ROC-SVM and S-EM.  
 
Index Terms—positive and unlabeled learning, least squares 
support vector machine, text classification, bioinformatics 
classification 

I.  INTRODUCTION 

  Traditional machine learning techniques require a large 
number of labeled examples to learn an accurate classifier. 
This approach to building classifiers is called supervised 
learning. However, in many practical classification 

applications such as document retrieval and classification, 
negative examples are either hard to obtain or even not 
available at all, but plentiful unlabeled examples can 
acquire easily.  In such cases, an algorithm for 
classification that only exploits positive and unlabeled 
examples is needed. We call this problem as partially 
supervised learning or PU learning (learn from positive 
and unlabeled examples) which is a special case of 
semi-supervised learning actually [1-3]. 

Denis originally proposes a framework for learning 
model from positive examples based on the probably 
approximately correct model (PAC) [4]. Learning from 
positive example was also studied theoretically in [5] 
within a Bayesian framework where the distribution of 
functions and examples were assumed known. It was 
shown in [6] that if the sample size was large enough, 
minimizing the number of unlabeled examples classified 
as positive while constraining the positive examples to be 
correctly classified would give a good classifier. 

Recently, various approaches had been suggested in 
the literatures to solve PU learning. These algorithms 
include 1-DNF [7], ROC-SVM [8], PNLH [9], LCLC 
[10], SPUL [11], en-LCLC [12]. These methods were 
two-step strategy, which selected possible negative or 
positive examples from unlabeled examples, and then 
built classifiers using positive examples and negative 
examples. In addition, probability estimation approach, 
such as [13, 14], was proposed. In [14], it took each 
unlabeled example as both positive and negative example 
with weights pre-computed by an additional classifier for 
protein record identification. Luigi Cerulo et al made use 
of the approach in [14] to reconstruct gene regulatory 
networks without negative examples [15]. In fact, the 
most popular technique for PU learning was Biased-SVM 
[16]. It was built by giving appropriate weights to the 
positive examples and unlabeled examples respectively; 
here the unlabeled examples were regarded as negative 
examples with noise. Experimental results indicated that 
the performance was better than most of two-step 
strategies in text classification. In addition, WL [17] used 
Logistic Regression after weighting the negative class. 
And EB-SVM [18] was the improvement on Biased-SVM 
by giving an extra penalty parameter for some reliable 
positive examples. There were some other methods. 

 

Corresponding author: Ling Jing  
E-mail address: jingling@cau.edu.cn (L. Jing) 
Tel: +86-10-62736511 

1494 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.6.1494-1502



 

Letouzey et 
using a mo
query model
ratio of posit
the problem
classification
measure. A b
PU learning 
proposed in [

Because o
the idea of 
squares s
(Biased-LSS
weight the er
examples res
examples as 
give a large
examples an
negative ex
contain some
applications, 
classification
than Biased-
methods, suc

The rest o
previous wo
proposed Bi
Then in Se
applications 
in Section V.

A.  Least Sq
The least

promising c
Suykens et 
[22], least sq
hyper-plane 
classes. Con
hyper-plane
separate two
{ , }, 1,i ix y i =

n and iy den
-1. ( )ϕ ⋅ is a 
input space 
squares SVM
the margin b
data, where t
maximum-m

( ,
m
w b

. . (is t y <
  Introducin
optimization 

( ),, ,L w b ξ α =

al [19] prese
dified C4.5 
l. In [20], it 
tive examples
m. LP-IC 
n scheme and
bagging SVM 

[22]. And an
[23]. 
of the theoreti

Biased-SVM
support ve
VM) by givi
rrors of the p
spectively, her
negative exam

e parameter v
nd a small par
xamples beca
e positive exa
 text class

n show that B
-SVM, EB-SV
ch as ROC-SV
of this paper 
orks are int
iased-LSSVM
ection IV, ex
are reported. 
 

II.  REL

quares Suppor
t squares su
lassification 
al [24]. Simi

quares SVM a
that maximi

nsider a bin
( ) ,g x w ϕ=<

o classes base
, , l , where x
notes the clas
nonlinear fun
into a higher

M solution is
between the s
the margin is d

margin classifie
2

, )

1min
2b

w
ξ

, ( )iw x bϕ > +
ng the Lag

problem (1), 
2

1

1
2 2

l

i

Cw ξ
=

= + ∑

ented an algor
algorithm ba
needed infor

 in unlabeled 
[21] devise

d introduced 
approach was

n active learni

ical guarantee
M, we constru

ector mac
ng two differ
ositive examp
re we also reg

mples with no
value for the 
rameter value
ause negative
mples. Experi

sification an
iased-LSSVM

VM and other
VM and S-EM

is organized 
troduced in 

M is presente
xperiments on
Finally, we c

LATED WORKS

rt Vector Mac
upport vecto
technique pr
ilar to suppor
also seeks an o
izes the mar
nary classifie

( ) 0,x bϕ > + =
ed on given 

ix is a vector 
ss label taking
nction which i
r dimensional
s obtained thr
separating hy
defined as 2
er is obtained 
2 2

12

l

i
i

C ξ
=

+ ∑
) 1 ib iξ= − =

grange mult
we obtain 

(2

1

( (
l

i
i i iyξ α ϕ

=

−∑

rithm for lear
ased on statis
rmation abou
examples to s

ed an iter
a class dispe
s first propose
ing algorithm

e in [6], simil
uct a biased 
chine clas
rent paramete
ples and unlab
gard the unlab
ise. Intuitively
errors of pos

e for the erro
e examples 
iments on two

nd bioinform
M is more effe
r popular two

M. 
as follows. S
Section II. 

ed in Section
n two real-w
onclude this p

S 

hine 
or machine 
oposed firstly
rt vector mac
optimal separ
rgin between 
r, which us
, ,nw b∈ ∈
training exam
in the input s

g a value of +
is used to map
l space. The 
rough maxim
yper-plane and
w . Therefore
by solving 

1, 2,..., l     (
tipliers iα fr

))( 1ix w b⋅ + − +

   
(

 

rning 
stical 

ut the 
solve 
rative 
ersion 
ed for 

m was 

lar to 
least 
sifier 

ers to 
beled 
beled 
y, we 
sitive 

ors of 
also 

o real 
matics 
ective 
o-step 

Some 
The 

n III. 
world 
paper 

is a 
y by 
chine 
rating 

two 
ses a 

to 
mples
space
+1 or 

ap the 
least 

mizing 
d the 
e, the 

       

(1) 
from 

)iξ+

(2) 

Taki
,w b

optim

Subs
resu
func

Fo
into 
nega

T
with

1, w

betw

Min

prox
(“  

  It
squa
beca
prog
equi
to 
cons

B.  
In

is r

    

ing the parti
, ,i ib ξ α  and e
mal condition

L
w

∂ =
∂
L
b

∂ =
∂

i

L
ξ

∂ =
∂

 i

L
α

∂ =
∂

stituting (3) 
ulting equation
ction is given b

( )f x =

or an arbitrary
the positive

ative class. 
he geometric 

h 2x ∈  for 

where minimiz

ween the straig
,w x< >

nimizing 
1

l

i
ξ

=
∑

ximal to all 
”) examples r

Figure 1. An

's worth me
ares SVM is 
ause least squ
gramming w
ivalently a lin
solve a qua
straints.  

Biased-SVM
n a general PU
epresented as

ial derivative
equating them
ns as follows 

1

0
l

i

w α
=

→ =∑

1

0
i

i i

l

yα
=

→ =∑

0 i iCα ξ→ =

(0 )(i iy xϕ= →

and (5) into
n and (4) forα
by 

1

sgn( ( i

l

i
iyα

=

= ∑
y instance x , 
e class; othe

interpretation
linearly separ

zing 21
2

w re

ght lines 
1b> + = and <

2
iξ makes th

inputs of po
respectively. 

interpretation of
SV

ntioning that
simpler and 

uares SVM n
with only e
ear system of 
adratic progr

 
U learning pro
s 1 1{( , ),T x y=

es of (2) wit
m to zero, w

( )i i iy xα ϕ     

0=          

iξ            

) 1) w b ξ⋅ + − +

o (6), we ca
α and b . Then

( ), ( )ix xϕ ϕ<

if ( ) 1f x = , i
erwise, it be

n of the above
rable case is s

ealizes the ma

,w x b< > + =

he two straig

ositive (“+”) 

f two-dimensiona
VM. 
t the superio
faster than S

needs to solv
equality con

f equations, bu
ramming wit

roblem, the tra
, ,( , ),p px y x

th respect to
we obtain the

        (3)

        (4)

        (5)

0iξ =     (6)

an solve the
n, the decision

) )) b> +
 

it is classified
longs to the

e problem (1)
shown in Fig.

aximal margin

1−      (7)

ght lines (7)

and negative

 
al least squares 

ority of least
SVM. This is
e a quadratic
nstraints, or
ut SVM needs
th inequality

aining dataset
1, , }p p ux x+ + ,

o 
e 

) 

) 

) 

) 

e 
n 

d 
e 

) 
. 

n 

) 

e 

t 
s 
c 
r 
s 
y 

t 
, 

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1495

© 2014 ACADEMY PUBLISHER



 

 

where , 1, ,n
ix i p u∈ = + are input examples,

1, 1, ,iy i p= = represent the labels of input positive 
examples. p and u are the numbers of positive and 
unlabeled examples respectively, p u . We try to find a 
decision function ( )f x to predict the class label of

nx∀ ∈ . 
One of the popular methods for PU learning was 

proposed based on SVM technique in [16] which was 
called Biased-SVM. More concretely, Biased-SVM took 
unlabeled examples as negative examples with noise, 
namely 1, ( 1, , )iy i p p u= − = + + , and then constructed 
an SVM classifier by giving a larger penalty parameter to 
weight the positive examples errors and a smaller penalty 
parameter to weight the unlabeled examples errors 
because the unlabeled dataset, which was assumed to be 
negative examples dataset in Biased-SVM, also contained 
positive examples. Then the optimization problem of 
Biased-SVM could be formulated as 

2

( , , ) 1 1

1min
2

p p u

p i n iw b i i p
w C C

ξ
ξ ξ

+

= = +

+ +∑ ∑
 

. . ( , ( ) ) 1 1, 2, ...,i i is t y w x b i p uϕ ξ< > + ≥ − = + (8)        
0 1,2,...,i i p uξ ≥ = +  

where 1,2,...,i i p uξ = + are penalizing variables. pC and

nC represent the penalty parameters of misclassification 
for positive and unlabeled examples respectively. Similar 
to classical SVM, function ( )ϕ ⋅ maps the input space into 
a higher dimensional space when the dataset is 
nonlinearly separable. Then, the decision function is 
given by 

1

( ) sgn( ( ), ( )( ) )
p u

ii i
i

f x x x by ϕ ϕα
+

=

= < > +∑
 

III.  A BIASED LEAST SQUARES SUPPORT VECTOR 
MACHINE FOR PU LEARNING 

In this paper, we still mainly consider PU learning.  
From the definition of PU learning in section II, we 
observe that PU learning is different from classical binary 
classification, in which both positive and negative 
training examples are required. The key feature of PU 
learning is that there are no labeled negative training 
examples, which makes the traditional classification 
techniques inapplicable. Therefore, the key task for PU 
learning is how to exploit underlying information of 
unlabeled examples sufficiently and accurately for 
classification.  

Similar to the idea of Biased-SVM [16], we construct a 
biased least squares SVM classifier by giving two 
different penalty parameters to weight the 
misclassification errors of positive and unlabeled 
examples respectively, where unlabeled examples can be 
regarded as negative examples with noise. i.e.,

1, 1, ,iy i p p u= − = + + . Thus, we seek the decision 
function so that the classification hyper-plane separates 
both positive examples and unlabeled examples with the 

maximum margin. 
2 2 2

( , , ) 1 1

1min
2 2 2

p p u
p n

i iw b i i p

C Cw
ξ

ξ ξ
+

= = +

+ +∑ ∑
   (9) 

. . ( , ) 1 1, 2, ...,i i is t y w x b i p uξ< > + = − = +  

where equality constraint in optimization problem (9) and 
2 2

1 1

p p u

p i n i
i i p

C Cξ ξ
+

= = +

+∑ ∑ imply that all positive examples 

approximate to straight line , 1w x b< > + = and 
unlabeled examples approximate to , 1w x b< > + = −  
respectively. However, the degree of approximation for 
positive and unlabeled examples is different, which is 
controlled by the parameters pC and

nC . As we all know, 
the larger the penalty parameter is, the more possibility 
the example is classified accurately. Obviously, pC is 
larger than nC because we pay more attention to classify 
positive examples for PU learning. 

In order to solve the above optimization problem (9) 
more concisely, we rewrite it as matrix format 

( )

1 1min
2 2

. . e e

T Tw w q Cq

s t D X w b q

+

⋅ + + =          
(10) 

where 
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1,..., p ux x + constitute a matrix X and ( )1,..., u

T

pq ξ ξ += .  

It is easily observed that the minimizing problem (10) 
is a quadratic programming with only equality constraints. 
Therefore, we can solve a set of linear equations. 
Introducing the Lagrange multiplier

1( , , )T
p uα α α +=

from optimization problem (10), we obtain 

( ) ( )1 1, , , e e
2 2

T T T T TL w b q w w q Cq x w bD qα α α α+ − ⋅ − += +           

(11) 
Taking the partial derivatives of (11) with respect to

, , ,w b q α and equating them to zero, we obtain the 
optimal conditions as follows 

0 TTL w X X
w

D Dwα α∂ = − = ⇒ =
∂

      (12) 

 
e 0TL

b
Dα∂ = =

∂
                   (13) 
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1L cq q c
q

α α−∂ = − ⇒ =
∂

           (14) 

( )e 0L D X w b q e
α

∂ = ⋅ + − + =
∂

    (15) 

Substituting (12) and (14) into (15), we can solve the 
resulting equation and (13) forα and b . Namely, 

( )1TD D D eC bXX eα− + =+        (16) 

Thus, the decision function is given by 

1

( ) sgn( ( ) gn ),) s ( j
j

p u

j jy xx x xf g bα
+

=

= < >= +∑  

Like least squares SVM, we also introduce a nonlinear 
function ( )ϕ ⋅  mapping the input feature space to the 
higher dimensional space for the nonlinearly separable 
case. Therefore, we need to solve the following 
optimization problem 

2 2 2

( , , ) 1 1

1min
2 2 2

p p u
p n

i iw b i i p

C Cw
ξ

ξ ξ
+

= = +

+ +∑ ∑
  (17) 

. . ( , ( ) ) 1 1, 2, ...,i i is t y w x b i p uϕ ξ< > + = − = +  
Similar to derivation of for linearly separable case, we 
can solve the following liner equations  

( )1DK CD Deb eα− + =+
 

Setting kernel tricks: ( , ) ( ), ( )i iK x x x xϕ ϕ=< >  can 
avoid the explicit treatment of variables in the feature 
space. The decision function is 

1

( ) sgn( ( )) sgn ( , )( )
p u

j jj
j

y K x xf x g x bα
=

+

= = +∑
 

In order to depict concisely, we call the proposed 
classifier as Biased-LSSVM in short. 

Compared with Biased-SVM, Biased-LSSVM is more 
suitable for PU learning. First, Biased-LSSVM can reflect 
the class labels of all examples more sufficiently and 
accurately than Biased-SVM. This is because that only 
support vectors determine the final classifier for 
Biased-SVM, whereas the whole examples are used to 
construct the final classifier for Biased-LSSVM. 
Obviously, negative support vectors may contain some 
positive examples and produce some effects on the 
construction of Biased-SVM classifier. Contrarily, if all 
examples take part in the building of classifier, compared 
with most correct negative examples, those false negative 
examples are not important for the final classifier 
construction. Second, Biased-LSSVM is a more stable 
classifier than Biased-SVM. Namely, the performance of 
Biased-LSSVM changes less than that of Biased-SVM 
over a wide ratio of positive examples in unlabeled 
examples. This is because that the number of negative 
examples is far more than positive examples in unlabeled 
examples and the distribution of negative class changes 
little over a wide ratio of positive examples in unlabeled 
examples. Third, the time complexity of Biased-LSSVM 
is lower than that of Biased-SVM, where Biased-LSSVM 
only needs to solve liner equations and Biased-SVM is a 
quadratic programming. 

  IV.  EXPERIMENTS 

To evaluate the performance of Biased-LSSVM, we 
perform experiments on two real-world applications: text 
classification and bioinformatics classification in this 
paper. More concretely, we compare Biased-LSSVM with 
Biased-SVM, EB-SVM, ROC-SVM and S-EM on text 
classification, which are the most popular methods. And 
we just compare Biased-LSSVM with Biased-SVM and 
EB-SVM on palmitoylation and phosphorylation sites 
prediction because most two-steps methods are unsuitable 
for bioinformatics classification. In both classification 
datasets, we use LIBSVM 1  to build a classifier for 
Biased-SVM. LPU package 2  is used for the 
implementation of S-EM, ROC-SVM for the text 
classification datasets. 
  We use the popular F score on the positive class as the 
evaluation measure. F score takes into account of both 
recall and precision 

 

2 precision recallF
precision recall
× ×=

+                 (18)
 

where 
TPprecision

TP FP
=

+
and

 
TPrecall

TP FN
=

+  
TP, TN, FP and FN are the number of true positive, true 
negative, false positive and false negative, respectively. A 
high precision ensures that the identified positives are 
predominantly true positives, and a high recall ensures 
that most of the positives are identified. F score captures 
the average effect of both precision and recall, and is 
therefore suitable for our purpose. 

F score cannot be computed on the validation set 
during the training process because there is no negative 
example. An approximate computing method [17] is used 
to evaluate the performance by 

2

( ( ) 1)
prF

P f X

∧
=

=                  (19) 

where X is the random variable representing the input 
vector, ( ( ) 1)P f X = is the probability of an input example
X classified as positive example, pr is the recall for 

positive set P in the validation set. 

A.  Text Classification  
• Data Preprocessing 

Reuters3 corpus are used to construct text datasets. 
For Reuters corpus, the top ten popular categories 
are used. Each category is employed as the positive 
class, and the rest categories are employed as the 
negative class. This gives us 10 datasets. In data 
pre-processing, we apply stop word removal, but no 
feature selection or stemming is done. Each 
document is represented as a vector of TF-IDF value. 
For each dataset, 30% of the documents are 
randomly selected as test documents. The remaining 

                                                             
1 LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm 
2 http://www.cs.uic.edu/~liub/LPU/LPU-download.html 
3 http://www.daviddlewis.com/resources/testcollections/reuter21

578/ 
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(70%) are used to create training dataset as follows: 
δ percent of the documents from the positive class 
are first selected as the positive dataset P . The rest 
of the positive documents and all negative 
documents are mixed as unlabeled datasetU . δ is 
selected as 0.3 and 0.7. 
  In the experiment, the linear kernel function is 
used since it always performs excellently for text 
classification tasks [26]. 30 percent of training 
examples set constitutes the validation set. Penalty 
factors 

p
C and

n
C are optimized on validation sets, 

which are selected from the set: 10 9 6{4 ,4 , , 4 }− − . 
• Experimental Results 

We now present the experimental results. Table I 
shows the classification results of various techniques 
in terms of F score on 0.3δ = on 10 datasets. Due to 
the idea of Biased-LSSVM is similar to 
Biased-SVM, we first compare Biased-LSSVM with 
Biased-SVM. It is obvious that F scores of 
Biased-LLSVM are higher than that of Biased-SVM 
on the fourth dataset and the last four datasets. The 
final row of the Table I give the average results of 
each column. Average F score of Biased-LSSVM 
equals to 0.8310 and is far greater than Biased-SVM. 
In addition to compare with Biased-SVM, 
Biased-LSSVM also compares with S-EM [6], 
ROC-SVM [8] and EB-SVM [18]. We observe that 
Biased-LSSVM produces better results than S-EB 
and ROC-SVM, but slightly worse than EB-SVM. 

  Similar to Table I, Table II shows F scores 
comparison between Biased-LSSVM and other 

methods on 0.7δ = on Reuters. From Table II, we 
observe that Biased-SVM and Biased-LSSVM have 
little difference in average F score. But 
Biased-LSSVM is still higher than ROC-SVM and 
S-EM, lower than EB-SVM in average F score. 

On the other hand, compared with the results in 
Table I, the average F score of all methods in Table 
II grows. In other words, the performance of all 
these methods increases when the percentage of 
known positives changes from 0.3 to 0.7. 

 

B.  Bioinformatics Classification 
In this experiment, we use two datasets, the 

prediction of palmitoylation and phosphorylation sites 
in proteins. In next subsection, we will introduce these 
two datasets. 

• Backgrounds of Bioinformatics 
Protein palmitoylation plays important roles in 

cell signaling associated with cellular dynamics 
and plasticity. It regulates epidermal homeostatic 
and hair follicle differentiation [27], and plays a 
key role in neuronal development and synaptic 
plasticity[28]. 
  Phosphorylation is involved in diverse signal 
transduction pathways. Most approaches are based 
on traditional supervised learning. i.e., they used 
the non-annotated sites of the phosphoBase as 
negative sites. But in fact, it contains many more 
false negative sites than phosphoBase. Thus, it is 
more reasonable that we regard non-annotated 
sites of the phosphoBase as negative sites. In this 

TABLE II. 
F SCORES COMPARISON BETWEEN BIASED-LSSVM AND OTHER METHODS 

ON 0.7δ =  ON REUTERS 

Positive 
class set

F score 

Biased- 
LSSVM

Biased-
SVM EB-SVM ROC- 

SVM S-EM 

1 earn 0.9584 0.981 0.9842 0.9594 0.9473 

2 acq 0.9251 0.9525 0.9572 0.8696 0.9223 

3 crude 0.9474 0.904 0.9348 0.9198 0.8989 

4 trade 0.8636 0.9143 0.9195 0.9098 0.7659 

5 
money-fx 0.7285 0.8633 0.8633 0.8786 0.6469 

6 interest 0.8739 0.8547 0.8547 0.8662 0.7238 

7 ship 0.8462 0.7945 0.8462 0.8474 0.7474 

8 sugar 0.9231 0.9565 0.9565 0.8886 0.8985 

9 coffee 0.9697 0.9375 0.9851 0.8861 0.8896 

10 gold 0.8772 0.9091 0.9091 0.7887 0.7627 

Average 0.8913 0.9067 0.9211  0.8814 0.8203 

 

TABLE I. 
F SCORES COMPARISON BETWEEN BIASED-LSSVM AND OTHER METHODS ON 

0.3δ = ON REUTERS 
 

Positive 
class set 

F score 

Biased- 
LSSVM 

Biased- 
SVM EB-SVM ROC- 

SVM S-EM 

1 earn 0.9498 0.9591 0.9803 0.8768 0.9457 

2 acq 0.8954 0.8970 0.9393 0.9157 0.9342 

3 crude 0.7516 0.8140 0.8571 0.8846 0.8571 

4 trade 0.8280 0.7795 0.8824 0.8519 0.7980 

5 
money-fx 0.7297 0.7925 0.7597 0.7817 0.7485 

6 interest 0.8034 0.8142 0.8361 0.8625 0.8309 

7 ship 0.6452 0.5924 0.5763 0.5570 0.5502 

8 sugar 0.9254 0.7636 0.9552 0.8303 0.7050 

9 coffee 0.9063 0.8022 0.9375 0.8706 0.8155 

10 gold 0.8750 0.7495 0.7826 0.7101 0.7818 

Average 0.8310 0.7964 0.8507 0.8141 0.7967 
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paper, we mainly concern kinase family: 
cyclin-dependent kinase. 
• Data preparing 

For the S-palmitoylation sites, the dataset used 
in this research comes from [29]. We get 344 
experimentally verified palmitoylation sites as our 
final positive dataset and 1815 cysteine sites as 
unlabeled dataset. We call this PU dataset as Palm 
in short. 

For the phosphorylation sites, the dataset comes 
from [30]. We only use binary encode scheme 
which its window length are set to 11 and 12 for 
CDK, named CDK and CDK2. Information of 
these datasets is summarized in Table III.  

TABLE III. 
 DATASETS USED IN THE EXPERIMENTS FOR PU LEARNING 
Datasets # instance # Class # Feature 

CDK 2446 2 276 
CDK2 1830 2 276 
Palm 2159 2 120 

• Experiment Preprocessing 
In this experiment, radial basis function (RBF) 

kernel is used for the prediction of palmitoylation 
and phosphorylation sites in proteins. It can be 
written as 

2 2( , ) exp( )i j i jK x x x x σ= − −
 

where ix and jx are examples, σ is kernel 

parameter selected from 10 9 6{4 ,4 , , 4 }− − . Penalty 

parameters of 
p
C and nC are selected from:

10 9 6{4 ,4 , , 4 }− −  and p nC C≥ . All parameters are 
optimized by a ten-fold cross validation procedure 
on the training dataset which give the best F-score 
for each method.  

In order to create a wide range of scenarios, we 
select δ  from 10% to 90% (0.1-0.9) examples 
from experimentally verified palmitoylation sites 
randomly as positive dataset P . The rest of the 
positive examples and all 1815 cysteine sites are 
mixed as unlabeled dataset U . For each δ , we 
access the performance of the classifier. In addition, 
for the prediction on phosphorylation sites, we just 
selectδ as 0.3 and 0.7 to present the classification 
results. 
• Experimental Results 
Fig. 2 and Fig. 3 show the mean of precision and 

recall at different percentageδ for the prediction of 
palmitoylation sites in proteins. We observe from 
Fig. 2 that the precision of Biased-SVM decreases 
with the increase ofδ . Contrarily, Biased-LSSVM 
and EB-SVM increase with the increase of δ . 
From Fig. 3, it is obvious the recall of 
Biased-LSSVM is much higher than Biased-SVM 
and EB-SVM whateverδ is. Both Fig. 2 and Fig. 3 
show that Biased-LSSVM classifies less false 
negative examples than Biased-SVM and EB-SVM, 
although it classifies less true positive examples 

than Biased-SVM and EB-SVM from unlabeled 
examples at the same time. 

 
Figure 2.  Average precision comparison Biased-LSSVM with 

Biased-SVM and EB-SVM on the prediction of palmitoylation sites. 

 
Figure 3.  Average recall comparison Biased-LSSVM with 

Biased-SVM and EB-SVM on the prediction of palmitoylation sites. 

Fig. 4 shows the combination of precision and recall 
performance by the average F score. It can be noticed that 
Biased-LSSVM, Biased-SVM and EB-SVM exhibit a 
progressively increment in performance when δ grows 
from 10% to 90%. Biased-LSSVM possesses of the 
highest F score than Biased-SVM and EB-SVM on every 
different δ on the prediction of palmitoylation sites in 
proteins, especially when δ is smaller. In a word, the 
performance of Biased-LSSVM is the most effective on 
the prediction of palmitoylation sites. 

 
Figure 4.  Average F score comparison Biased-LSSVM with 

Biased-SVM and EB-SVM on the prediction of palmitoylation 
sites. 
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In order to more visualized, Average precision, recall 
and F score of Biased-LLSVM and Biased-SVM are 
shown on different percentageδ on the prediction of 
palmitoylation sites in proteins in Table IV and Table 
V. Biased-LLSVM produces the best results 
consistently cross all variedδ . 

 
TABLE V. 

 AVERAGE F SCORE COMPARISON BIASED-LSSVM WITH BIASED-SVM 
AND EB-SVM ON THE PREDICTION OF PALMITOYLATION SITES 

δ   
Average F Score 

Biased-LSSVM Biased-SVM EB-SVM 

0.1  0.3843  0.0000  0.3409  

0.2  0.5154  0.0111  0.4401  

0.3  0.5720  0.0057  0.5445  

0.4  0.5891  0.0281  0.5599  

0.5  0.6107  0.1603  0.5616  

0.6  0.6138  0.2434  0.5693  

0.7  0.6384  0.3968  0.5901  

0.8  0.6361  0.4734  0.5910  

0.9  0.6532  0.5386  0.6188  

 
For the prediction of phosphorylation sites, numerical 

results are presented in Table VI. The results shown in 
boldface are significantly better than others. Obviously, 
Biased-LSSVM works much better than Biased-SVM and 
EB-SVM on CDK and CDK2 because it focuses on 
effectively extracting the positive examples from 
unlabeled examples set, so that the resulting classifier is 
near the optimal positive and negative boundary. 

 
 
 
 
 
 
 
 

 
TABLE VI. 

 AVERAGE F SCORES COMPARISON BIASED-LSSVM WITH BIASED-SVM 

AND EB-SVM ON 0.3δ = AND 0.7δ = ON CDK AND CDK2 
 

Methods  
CDK2 CDK 

        

Biased-LSSVM 0.4257 0.431 0.496 0.5053

Biased-SVM 0.408 0.376 0.446 0.415

EB-SVM 0.3515 0.391 0.45 0.4613

 
  In addition, time complexity with respect to 
Biased-LSSVM and Biased-SVM is shown in Fig 5. on 
the prediction of phosphorylation sites. It is reasonable to 
compare the time complexity of Biased-LSSVM and 
Biased-SVM on CDK and CDK2 because the number of 
features of CDK is equal to CDK2. It is obvious from 
Figure 5 that the time complexity of Biased-LSSVM is 
lower than Biased-SVM whatever the dataset is. 
Moreover, the run time of Biased-SVM increases higher 
than that of Biased-LSSVM with the number of examples 
increasing (from CDK2 to CDK). This is because the 
time complexity of Biased-LSSVM is linear, whereas that 
of Biased-SVM is quadratic with respect to the number of 
training examples.  

 

 
Figure 5. Time complexity with respect to Biased-LSSVM and 

Biased-SVM on the prediction of phosphorylation sites. 

V. CONLUSIONS 

In this paper, we have put forward a biased least 
squares SVM classifier for PU learning, named 
Biased-LSSVM. The proposed classifier is constructed by 
giving two different penalty parameters to classification 
errors of positive examples and unlabeled examples 
which are regarded as negative examples with noise. 
Experimental results on two different applications have 
shown that Biased-LSSVM is more effective than 
Biased-SVM and other popular methods for PU learning. 
Namely, Biased-LSSVM has more strong discriminative 
power for positive and unlabeled learning. 
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TABLE IV. 
 AVERAGE PRECISION AND RECALL COMPARISON BIASED-LSSVM WITH 
BIASED-SVM AND EB-SVM ON THE PREDICTION OF PALMITOYLATION 

SITES 

δ  
Average Precision Average Recall 

Biased- 
LSSVM 

Biased- 
SVM 

EB- 
SVM 

Biased- 
LSSVM 

Biased- 
SVM 

EB- 
SVM 

0.1  0.3589 1.0000 0.3454 0.5208 0.0000 0.3487

0.2  0.5321 1.0000 0.4667 0.5256 0.0059 0.4213

0.3  0.5819 1.0000 0.5896 0.6010 0.0029 0.5229

0.4  0.5932 1.0000 0.5991 0.5986 0.0292 0.5318

0.5  0.6717 0.9300 0.6032 0.5670 0.0900 0.5533

0.6  0.5931 0.8235 0.6120 0.6484 0.1455 0.5547

0.7  0.6169 0.7810 0.6427 0.6740 0.2734 0.5629

0.8  0.6367 0.7753 0.6503 0.6626 0.3431 0.5638

0.9  0.6598 0.7782 0.6936 0.6572 0.4392 0.5723

0.7δ =
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