
Detecting Breaks in Design Patterns from Code
Changes

Maen Hammad
Department of Software Engineering, The Hashemite University, Zarqa, Jordan.

Email: mhammad@hu.edu.jo

Mustafa Hammad
Department of Information Technology, Mu'tah University, AL Karak, Jordan.

Email: hammad@mutah.edu.jo

Ahmed F. Otoom, Mohammad Bsoul
{Department of Software Engineering, Department of Computer Science and Applications}, The Hashemite University,

Zarqa, Jordan. Emails:{ aotoom@hu.edu.jo, mbsoul@hu.edu.jo}

Abstract—This paper presents an approach to automatically
detect and identify breaks in design patterns from a code
change during software evolution for C++ programs. The
proposed approach aims to determine whether a code
change breaks a predefined design pattern or not. The
approach analyzes a code change and checks if the change
breaks a predefined design pattern that is defined by
software designers. Classes and their methods and
relationships that are involved in a design pattern are
represented in XML format named patternXML with the
corresponding design pattern information. After each code
change, patternXML file is parsed to determine possible
breaks of patterns caused by the committed code change.
All identified breaks are saved and archived for future
analysis. A simple set of rules are defined to detect and
identify breaks in predefined design patterns. The
patternXML representation is flexible and can represent
different types of design patterns. The approach is realized
as a tool and it is evaluated on a set of test cases.
Experimental results show that the tool can achieve high
accuracy rate in discovering breaks in design patterns from
code changes.

Index Terms— software design; design patterns; software
evolution

I. INTRODUCTION

As defined by [1], design patterns are descriptions of
communicating objects and classes that are customized to
solve a general design problem in a particular context.
Design patterns are used by designers of software
products to solve a specific programming problem. For
example, the Composite design pattern is used to group
objects in order to treat them in the same way as a single
object or instance. Design patterns are widely used and
implemented in software systems. Design patterns
should be kept intact during software evolution and
maintenance activities unless designers decide otherwise.

Design patterns compose of classes, methods and
relationships. Each design element of a pattern (i.e. class,
method or relationship) plays a specific role in that
pattern. Since these elements are code components, they
are subject to unauthorized changes by developers during
the development process. As a result, patterns are subject
to be broken, which affects the quality of the design and
the behavior of the system.

The problem is how to enforce design patterns during
software evolution. Developers can do a manual check
after each code to be sure that they did not break a pattern.
Manual checking is a tedious work and consumes times.
Furthermore, manual checking is subject to human error.
This is because some design patterns are complicated and
compose of many design elements which are hard to
follow. To identify breaks in design patterns, the whole
source code have to be checked periodically. Moreover,
the correction of breaks could be very costly. This is
because the break has been discovered lately not once it
occurs.

Many approaches in the area check the consistency
between code and specific design pattern. By using these
approaches, consistency is checked by recovering the
current pattern from the code and comparing it with the
target pattern. In this case, patterns have to be recovered
after each code change (i.e. for the new code).
Furthermore, a consistency checking is required to be
done to compare the recovered pattern with the target
pattern. So, a tool is needed to automatically keep track
on code changes activities to notify developers once their
code change breaks a predefined design patterns.

The research question that is addressed in this paper is:
How to identify breaks in design patterns from a code
change? Designers of software systems define patterns
that are suitable for the problem domain. Developers are
responsible for implementing these patterns. Furthermore,
developers should be aware of keeping these patterns

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1485

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.6.1485-1493

intact during maintenance activities. The problem has the
following major aspects:

1. How to represent design patterns?
2. How to help designers in defining design

patterns?
3. How to analyze code changes to detect breaks in

pre-defined design patterns?
4. What are the rules that are used to decide if a

code change breaks a pattern or not?
Late discovery of breaks increases the correction cost.

On the other hand, failing to discover breaks have direct
impact on the behavior of the system since design
patterns are designed to solve a specific problem in the
problem domain. We try to address these issues by
proposing a method and a tool to:
• Automatically detect and identify breaks to reduce

manual detecting effort of developers.
• Instantly detect breaks once they occur to reduce

the cost of late detection and correction.
In this paper, we present an approach to automatically

detect and identify breaks in design patterns once they
occur from code changes. The approach does not recover
design patterns from source code and compare them with
pre-defined patterns. Instead, breaks in design patterns
are directly detected from code changes and developers
are notified with the cause and the type of the break.

The key in detecting breaks once they occur is the
analyzing of design changes caused by code changes. The
proposed approach allows designers to define design
patterns that they want to preserve during code changes
activities. Then, during software evolution, code changes
are analyzed to identify design changes. Identified design
changes are used to detect breaks in predefined design
patterns.

The approach is realized as a tool, named
patternPreserver, to automatically detect and identify
breaks in predefined design patterns from small and
incremental code changes. The developed tool keeps
track on code changes activities committed by developers
to determine breaks. For example, if a developer deletes
a class named Employee that has a Subject role in the
Observer design pattern, patternPreserver notifies the
developer who committed the changes as follows:

- WARNING: Break in OBSERVER Pattern.
- DELETE Employee class (SUBJECT).

The warning indicated that the code change caused a

break in Observer design pattern. This is because the
Employee class has a SUBJECT role in the OBSERVER
design pattern. Developers who get this warning should
go back and check their code changes carefully. They
may have to undo their code changes or get an approval
from system’s designer to confirm the break. All
identified breaks are archived in a database for future
analysis. At any time, designers or project managers can
analyze historical data about broken design patterns to
extract useful information that may help to enhance the
design.

The approach is suitable to incremental code changes.
The basic unit of change that is considered in this paper is

a “commit”. After each commit, code changes are
analyzed to check possible breaks of predefined design
patterns.

This paper is organized as follows. Section 2 details
our XML representation for design patterns. Section 3
presents and details the approach. The experimental
results of the tool are discussed in Section 4. Threats to
validity and limitations of the approach are discussed in
Section 5. Related work is presented in Section 6.
Section 7 concludes the paper and describes future
directions.

II. REPRESENTAION OF DESIGN PATTERNS

A design pattern is a design that is implemented in the
source code. For example, the Observer design pattern
defines a one-to-many dependency between objects so
that when one object changes state, all its dependents are
notified and updated automatically [1].

Figure 1 shows a simplified UML class diagram for the
Observer design pattern. As shown in the figure, the
Observer pattern composes of a set of design elements;
classes, methods and relationships. Each element has a
role in the pattern. For example, the key objects in this
pattern are subject and observer; a subject may have any
number of dependent observers [1]. All observers are
notified once the subject’s state changes. Observer class
may have one or more subclasses each one plays the
Concrete Observer role. Also, the Observer class has a
method that has a notification role.

+notify()

Observer Subject

Concrete Observer 1

1

Concrete Observer 2

Figure 1: A simplified UML class diagram for the Observer design

pattern

Design patterns are usually defined by designers once
they build the architecture of the software system. In the
created architecture, classes and their design elements are
given specific role in specific design patterns. So, design
elements and their roles need to be represented and saved
in some format. In the proposed approach, design patterns
represented and saved in a flexible format. We used
XML representation format to save roles of design
elements involved in design patterns. This representation
is named patternXML.

Figure 2 shows a C++ code example of the Observer
design pattern. The example shows four classes; Subject,
Observer, MinObserver, and MaxObserver. Both
MinObserver and MaxObserver are concrete observers.
The Subject class defines a collection of observers. The

1486 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

class has three methods that are used to register,
unregister and notify observers. The Subject class has an
aggregation relationship with the Observer class. The
Observer class has two sub classes (concrete observers)
MinObserver and MaxObserver.

class Subject {
 vector <Observer*> views;
 public:
 virtual void attach(Observer*);
 virtual void detach(Observer*);
 void notify();
 };

class Observer {
 Subject *model;
 public:
 virtual void update() = 0;
 };

class MinObserver: public Observer {
 public:
 void update();
 };

class MaxObserver: public Observer {
 public:
 void update();
 };

Figure 2: A C++ code example for the Observer design pattern.

Figure 3 shows the four classes, shown in Figure 2,
represented in our XML format patternXML.
patternXML combines basic class information and
pattern’s information in a single XML file.

Each class is represented with its basic information
about the design pattern that it is involved in. The
information is shown as XML tags in the patternXML file.
For each class, the following information is shown in
patternXML file:

(1) the name of the class (<class> <name>)
(2) the pattern which the class involves in (<class>

<pattern>)
(3) the role of the class in the pattern (<class> <role>)
(4) the name of the method(s) (<class> <method>

<name>)
(5) the role of the method in the pattern (<class>

<method> <role>)
(6) the name of the relationship (<class> <relationship>

<name>)
(7) the name of the target (outgoing) class involved in

the relationship (<class><relationship><to>)
(8) the role of the relationship in the pattern

(<class><relationship><role>)

For example, the class MinObserver in Figure 3 (in

bold) has the role “concrete observer” in the “observer”
design pattern. It has also a method named “update”
which plays the role “override base method” in the same
design pattern of the class. The class also has a
“generalization” relationship to class “observer” with the
role “make observer”.

The “role” and “pattern” tags in patternXML file are
determined by designers. All other tags are filled
automatically by the tool. The contents “role” and
“pattern” tags are kept empty if their design elements are
not involved in any design pattern.

<class>
 <name>Subject</name>
 <role>subject </role>
 <pattern> Observer </pattern>
 <method><name>attach</name>
 <role>register observer</role>
 </method>
 <method><name>detach</name>
 <role>unregister observer</role>
 </method>
 <method><name>notify</name>
 <role>notify observers </role>
 </method>
 <relationship><name>Aggregation</name>
 <to>Observer</to>
 <role>observable</role>
 </relationship>
</class>

<class>
 <name>Observer</name>
 <role>observer</role>
 <pattern>Observer</pattern>
 <method><name>update</name>
 <role>update subject</role>
 </method>

</class>

<class>
 <name>MinObserver</name>
 <role>Concrete observer </role>
 <pattern>Observer</pattern>
 <method> <name>update</name>
 <role>override base method</role>
 </method>
 <relationship>
 <name>Generalization </name>
 <to>Observer</to>
 <role>make observer</role>
 </relationship>

</class>

<class><name> MaxObserver </name>
 <role> Concrete observer </role>
 <Pattern> Observer </Pattern>
 <method><name>update</name>
 <role>override base method </role>
 </method>
 <relationship>
 <name>Generalization </name>
 <to>Observer</to>
 <role> make observer </role>
</relationship>

</class>

Figure 3: The patternXML representation for the code in Figure 2.

III. THE APPROACH

The approach is summarized in the following steps:

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1487

© 2014 ACADEMY PUBLISHER

(1) Preserved design patterns are defined by designers
and represented in patternXML.

(2) Design changes resulted by commits are identified
from code change.

(3) The patternXML file is parsed to check if design
changes identified in Step 2 break any defined
design pattern.

In the first step, design patterns are defined by

designers with the help of patternPreserver tool. Once
patterns are defined, patternXML file is generated and
saved. These defined patterns should be preserved during
code changes activities. Then, after each commit, code
changes are analyzed to identify design changes. Finally,
patternXML file is parsed based on the identified design
changes to check for breaks. The following subsections
details these steps.

Our approach is based on the premise that design
changes that impact the UML class diagram of the source
code is the key to detect breaks in design patterns. So,
identifying a design change from a code change leads to
identify breaks in predefined design patterns. For
example, deleting a method or a relationship, that has a
role in a predefined design pattern, results in a warning
message to the developer who committed the deletion. In
our approach, all code changes that do not affect classes,
methods, and relationship are ignored. For example
changing a class from an interface to concrete could
break a pattern. We do not consider and check this type
of code change. The focus is on the design elements of a
class.

A. Defining Design Patterns
Designers select appropriate design patterns based on

the problem domain. Then, for each pattern, they define
classes, methods and relationships to implement the
selected pattern. Each defined design element may have
a role in that pattern. Determining roles of design
elements are done with the help of the patternPreserver
tool. patternXML file is automatically generated after the
roles of all design elements of a pattern are defined by
designers.

All information of the patternXML file, except role
and pattern tags, is generated automatically from the
source code of classes. This includes; classes, methods,
and relationships. The extracted design elements are
shown to the user of the tool. Then, users enter the Role
and pattern information for these extracted elements via
the interface of the tool.

The process of extracting design elements (classes,
methods, relationships) from the code is done as follows:

1. Source code is represented in the XML
representation srcML [2] [3].

2. srcML is parsed by a set of XPath queries:
a. Classes are extracted.
b. For each extracted class A:

i. All its methods are extracted
ii. Name of super class of A is extracted.

iii. Names of all non-primitive types that are
defined in methods’ scopes of class A
(dependencies) are extracted.

iv. Names of all non-primitive types that are
defined in the scope of class A
(associations) are extracted.

In the first step, source code is transformed into the

XML representation srcML. srcML is an XML
representation for source code where each code element
is tagged with its syntactic information.

Figure 4 shows the srcML representation of class
MinObserver shown in Figure 1. As it is shown in the
figure, each XML tag represents the syntactic information
of each code element. More details about srcML are
presented in [2] [3].

In the second step, srcML is parsed by a set of XPath
queries that we defined to extract the design elements of
the source code. The extracted design elements are
classes, methods, and relationships between classes.

XPthat is a query language that is used to extract
information from XML files. For example, The XPath
query that is used to get classes from srcML is:

//class/name/text()

<class>class<name>MinObserver</name>
<super>:<specifier>public</specifier>
 <name>Observer</name></super><block>{
 <private type="default"></private>
 <public> public:
 <function_decl>
 <type><name>void</name></type>
 <name>update</name>
 <parameter_list>()</parameter_list>
 ;</function_decl>
 </public>}</block>;
</class>

Figure 4. srcML representation of MinObserver class shown in figure 2.

For each extracted class we check if it has a
generalization relationship by using queries that have the
following pattern:

//class[name=’MinObserver’]/super/name/text()

The above query checks and extracts the super class of

class “MinObserver”. The query extracts the name of the
super class “Observer” from srcML in Figure 2. Similar
queries are used to extract the methods of a class. All
methods’ declarations are tagged with “function_decl” in
srcML which makes them easy to be extracted.

In order to extract dependencies relationships of a class,
we check all local declarations of non-primitive types,
which are classes. Local declarations mean any
declaration in a method’s scope. If the declaration is
located in the class’s scope as data field, the relationship
is considered an association relationship.

All extracted design elements are shown to the user of
the tool (i.e. designer) to enable him to determine their
roles in design patterns. Classes and their design
elements (methods and relationships) are automatically
extracted from srcML and shown to designers. After

1488 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

designers fill design patterns’ information for classes
under consideration, the patternXML file is generated.
The generated patternXML file is used in detecting
breaks after each code change.

B. Analyzing Code Changes
The approach is based on direct detection of breaks

from code changes. The key is to analyze code changes
to identify any addition or deletion to any design element
of the system (classes, methods or relationships). Code
changed, committed by developers, are analyzed by the
srcTracer (Source Tracer) [4, 5] tool to automatically
identify design changes that affect design. The details
about the approach and the tool are presented in [4, 5].
After design changes are identified, patternXML file is
parsed to ensure that no predefined design pattern, saved
in patternXML, has been broken by committed code
changes.

C. Parsing patternXML
patternXML file is parsed by using a set of XPath

queries that we defined. The file is parsed if the code
change is a design change. Minor code changes that do
not impact design do not break a pattern. For example,
adding a condition, changing a type for a parameter, or
updating a loop have no impact on patterns. But, if a code
change adds or deletes a design element, then role and
pattern tags are checked for that design element in
patternXML file. For example, if a code change resulted
in deleting method Class1::M1, patternXML file is parsed
to check if M1 has a pre-defined role in a design pattern
(role tag). The XPath query is as follow:

//class/method[name=”M1”]/role/text()

The above query extracts the role of method
Class1::M1 from patternXML representation of class
Class1. To extract the name of the design pattern of class
A, the following query is used:

//class/method[name=”M1”]/pattern/text()

The extracted contents of these tags are used to

determine whether deleting method M1 breaks a design
pattern. In this case, the following warning message is
shown to the committer who deleted method Class1.M1:

- WARNING: Break in PATTERN Pattern.
- DELETE Class1.M1 method (ROLE).

The PATTERN and ROLE keywords are replaced by

the information extracted by the two XPath queries
mentioned above.

 The process of identifying breaks in design patterns
from code changes is detailed as follows:
(1) After each commit, design changes are identified by

srcTracer.
(2) If the design change is a deletion of a class:

(a) Parse patternXML to check if the class has a
role or one of its methods has a role.

(3) If the design change is a deletion of a method
Class1.M1:

(a) Parse patternXML of class Class1 to check if its
method M1 has a role.

(4) If the design change is a deletion of a relationship
(generalization, dependency, or association) from
class A to class B:
(a) Parse patternXML of class A to check if the

relationship has no role.
(5) If the design change is an addition of a relationship

(generalization, dependency or association) from
class A to class B:
(a) Parse patternXML of classes A and B to check

if any class has a pattern.

In step one, design changes are identified as discussed

in section 4.2. Based on the type of identified design
changes one or more of the 2-5 Steps are applied. In case
the design change is the deletion of a class, Step two
verifies if the deleted class has no role. This is done by
parsing the role tag of the deleted class in the
patternXML file. The same is applied in Step three for
the deleted methods.

Step four is applied if a design change resulted in
deleting a relationship from class A to class B. The
patternXML representation of class A is parsed to check
if the deleted relationship (name and to tags) does not
have a role (role tag) in the design pattern (pattern tag).
patternXML file of class B is also parsed to extract the
role of class B (if it has a role). For example, in Figure 1,
if a design change resulted in deleting the generalization
relationship between class MinObserver and Observer,
the following warning is shown to the user:

- WARNING: Break in OBSERVER Pattern.
- DELETE Generalization from MinObserver

(CONCRETE OBSERVER) to Observer
(OBSERVER).

If the identified design change is an addition of a

relationship from class A to class B (Step five), then both
pattern and role tags are parsed for classes A and B.
Some new relationships may weaken or break the pattern.
For example, in observer design pattern, it is a poor
design decision to make the subject class inherits from
the concrete observer class. It is the designer’ decision to
determine whether an added relationship break a design
pattern. Thus, if any of the two classes which are
involved in the new relationship has a pattern, a
notification is shown to the developer as a warning for a
possible break in design pattern. For instance, if the code
change shown in Figure 2 adds a generalization
relationship from the concrete observer class
MinObserver to the subject class Subject, the following
warning is shown to the developer:

- WARNING: Possible Break in OBSERVER
Pattern.

- NEW Generalization from MinObserver
(CONCRETE OBSERVER) to class (SUBJECT).

 The word “Possible” is shown because the design
change adds a new relationship (generalization).

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1489

© 2014 ACADEMY PUBLISHER

a. Archiving and Analyzing Breaks
The patternPreserver tool automatically stores all

identified breaks in an XML format that can be used as an
archive for violations. Each identified break in a design
pattern is saved with its related information. For example,
the following identified break is saved in the XML format
shown figure 5.

- WARNING: Break in OBSERVER Pattern.
- DELETE Employee class (SUBJECT).

<break>
 <pattern> observer </pattern>
 <developer> malc </developer>
 <date> 01/04/2012 </date>
 <change>
 <action> delete </action>
 <element> class </element>
 <name> Employee </name>
 </change>
</break>

Figure 5. A XML representation for a break in Observer design
pattern caused by deleting a class.

Each <break> </break> tag represents a break in a
design pattern committed by a developer. The broken
pattern, developer’s ID, and the date of the change are
saved in <pattern>, <developer> and <date> tags
respectively. The design change that caused the break is
also saved in the <change> tag. The type of change (i.e.
add or delete), is tagged by the <action> tag. The
added/deleted design element and its name are also saved.

The patternPreserver tool parses the archive of
violations to provide the following information to the
developers or project managers:

1. The most vulnerable design pattern.
2. The developer(s) that has the largest number of

breaks
3. The most frequent change that break patterns.

The first information reports the pattern with the large

number of breaks. Identifying that pattern may lead
designers to choose a different design pattern for the
design. This is because the current pattern is not flexible
enough to support large number of maintenance tasks or
it does not fit properly to the problem under consideration.
The second information helps designers to identify
developers with poor design knowledge. The third
information may help designers to monitor or restrict
specific design changes. For example, if most changes
that break patterns are resulted from deleting classes,
team leaders may prevent developers from deleting a
class before getting an approval from designers.

IV. EXPERIMENTAL RESULTS

The evaluation focuses on the correctness and the
efficiency of the tool in detecting breaks for predefined
design patterns from code changes. We need to test if the
approach and the tool can correctly detect violations. A
set of test cases were designed for testing. These test
cases are set of maintenance tasks that are implemented

by selected human subjects. Results obtained from the
test cases were manually checked. The manual checking
covers all code change committed by human subjects.
Each test case composes of a set of classes that do a
specific task. Each test case is an instance of a specific
design pattern with a set of maintenance tasks. The
number of designed test cases is five. Each test case
covers one of the following five design patterns; Adapter,
Composite, Factory, Strategy and Observer. So, each
design pattern is covered by one test case.

All source code of the five test cases is taken, with
some changes, from the code examples provided by an
online tutorial for design patterns [6]. Actually, there is a
lack in well documented open source project written in
C++ that shows exactly how design patterns are
implemented in that project. Dong et al. [7] presented a
review on current techniques for discovering architecture
and design patterns from object-oriented systems. They
noticed that the experimental systems, especially the
open-source systems, do not provide any architecture and
design documents that clearly identify patterns and their
locations. Therefore, we used code examples that
implement design patterns for the evaluation of the tool.

We carefully designed the programming tasks for each
test case to cover most of the possible violations in design
patterns. Most of the programming tasks focus on design
changes. Deleting of a method, relationship, or a class
are examples for programming tasks with design changes.
Changing the data type of a variable is an example for a
programming task with minor code change.

For each test case, subjects are asked to implement the
programming (maintenance) tasks, and then commit their
code changes. After each commit, the tool analyzes the
change and saves its results. After completing all the
maintenance tasks of the five test cases, tool’s results
were checked manually to determine the correctness of
the results.

After completing each maintenance task, the tool’s
results will be either a warning message about a break or
null. A manual checking is performed to determine
wither the result is correct or not. This includes the
following cases:

• The code change breaks a pattern and the tool
correctly reported the break as a warning.

• The code change breaks a pattern and the tool
failed to report the break as a warning (false
negative).

• The code change does not break a pattern and
the tool correctly does not report a warning.

• The code change does not break a pattern and
the tool reported a warning (false positive).

For example, changing a data type of a variable does

not violate the pattern. So, the tool’s result is correct if
the tool does not report a warning. On the other hand, the
result is incorrect if the tool reported a warning message.

The total number of programming tasks for the five
test cases is 15, three tasks for each test case. Three

1490 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

human subjects were asked to test the tool. These
subjects are graduate and undergraduate software
engineering students who have knowledge in design
patterns and C++ programming. A summary tutorial
about design patterns were given to subjects. We used
more than one subject to cover different programming
styles by developers. A summary of the results are
shown in Table 1.

Table 1 shows that most of the tool’s results are
correct for the three subjects. Results were correct for 38
out of the 45 tasks. Five false positive results were
reported. Two subjects renamed three methods and two
classes. As a result, the tool reported these renames as
breaks in design patterns, but they are not. In our
approach, we do not handle renaming. If a method M1
has been renamed to M2, the tool considers it as a
deletion for method M1. All reported false positive cases
are because of renaming issue. No false negative results
were reported. This indicates that the tool has a very
good performance in identifying breaks in design patterns
from code changes.

TABLE 1.
EVALUATION OF THE TOOL’S RESULTS

 Correct Incorrect
(false

negative)

Incorrect
(false

positive)
Subject 1 13/15 0/15 2/15
Subject 2 12/15 0/15 3/15
Subject 3 15/15 0/15 0/15
Accuracy 38/45 (89%) 0/15 5/45 (11%)

V. THREATS TO VALIDITY & LIMITATIONS

The case study that was used in the evaluation, it has
three issues that may weaken the results. The fist issue is
the number of tested patterns. The tool has been only
tested on five design patterns. The second issue is the
design of the programming tasks. They may have some
limitations in covering all possible design changes that
affect patterns. The third issue is the size of test cases.
The source code of test cases is small. We did not use
official, such as open source project, or large source code.
This is because it is hard to find open source C++ project
that provides a code with a documentation that clearly
define the design pattern for that code.

The approach focuses on the UML design elements as
the key to identify breaks. Some minor elements, as
interfaces, that may break patterns are not considered.
The tool does not consider renames in the process of
identifying breaks. For example, if a method is renamed,
it will be considered as deleted.

VI. RELATED WORK

Antoniol et al. [8] presented an approach to trace OO
design to implementation. The goal was to check the
compliance of OO design with source code but not design
patterns. Lovatt et al. [9] presented a conventional
compiler but extended to include the extra checks needed

to enforce design patterns. Patterns are enforced at the
class level; the class has to be written to conform to the
pattern. The class should implements a predefined
interface for the specified pattern. Our proposed
approach is for C++ not java and we use a different
method to represent design patterns.

Blewitt et al. [10] presented a pattern specification
Prolog-like language called SPINE, to allow patterns to
be defined in terms of constraints on their implementation
in Java. We used a simpler XML representation for
patterns. Eichberg et al. [11] presented an approach to
express constraints on structural dependencies between
program elements to avoid erosion of the intended
structure of the code. The approach defines a new logic-
based language called LogEn to express ensembles and
constraints on their dependencies.

Zhao et al. [12, 13] proposed an approach for design
pattern evolution and verification using graph
transformation. The transformation is done based on
predefined graph transformation rules for each type of
pattern evolution. Kim and Shen [14] proposed an
approach to evaluating the conformance of class diagrams
described in UML to pattern specifications described
Role-Based Meta-modeling Language. Zhu et al. [15]
presented a tool called LAMBDES-DP to support the use
of design patterns during development. Its theoretical
foundation is a descriptive semantics of UML in first
order logic, and the design patterns are formally specified
in the same language.

Balanyi and Ferenc [16] developed a method to
discovering design patterns in the source code. It uses
specifications of how the patterns work by describing
basic structural information like inheritance, composition,
aggregation and association. They also presented a
XML–based language, called (DPML) Design Pattern
Markup Language to represents design patterns. Bayley
and Zhu [17] proposed a formal meta-modeling approach
that uses first-order predicate logic to specify structural
and behavioral features of design patterns. Another
design pattern recovery approaches are presented in [18],
[19], [20], and [21]. Dong et al. [22] presented an
approach to visualize design patterns. They presented a
UML profile that defines new stereotypes, tagged values,
and constraints for tracing design patterns in UML
diagrams. These new elements are attached to a
modeling element to explicitly represent the role the
modeling element plays in a design pattern. In our
approach we focus on preserving design patterns during
code changes activities.

Jain and Yang [23] analyzed a medium size
commercial OO C++ system to investigate the
relationship between patterns, design attributes, and the
number of changes. They found that classes that
participate in design patterns are not less change prone
and these pattern classes are among the most change
prone in the system.

 Our approach differs from related work in the field in
focusing on identifying breaks in design patterns from
incremental C++ code changes. It also presents a flexible
and easy to extend XML format to represent design

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1491

© 2014 ACADEMY PUBLISHER

patterns.

VII. CONCLUSIONS AND FUTURE WORK

An approach is presented to automatically identify
breaks of design patterns during software evolution. It
enables designers to enforce their design patterns during
maintenance activities committed by developers. A
flexible XML format is also presented to represent design
patterns.

The proposed approach is realized as a tool to
automatically keep track on code changes and to notify
developers with breaks of patterns. The tool keeps tracks
on identified breaks by storing them in a historical
database. The database is analyzed to extract useful for
designers. The tool has been evaluated and its reported
accuracy is 89% with 11% false positive rate. The tool
can be implemented as a plug-in tool in an IDE, as
Eclipse, to support development.

 Our future work aims to develop a tool to recover
design patterns from C++ source code. This future tool
will be combined with the tool developed in this work to
build a complete framework for design patterns recovery
and enforcement. We also are considering developing
another version of the tool for Java source code.

REFERENCES

[1] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design
patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley, 1995.

[2] M.L. Collard, J.I. Maletic and A. Marcus, “Supporting
Document and Data Views of Source Code,” Proc. 2nd
ACM Symposium on Document Engineering (DocEng'02),
2002, pp. 34-41.

[3] M.L. Collard, H.H. Kagdi and J.I. Maletic, “An
XMLBased Lightweight C++ Fact Extractor,” Proc. 11th
IEEE International Workshop on Program Comprehension
(IWPC'03), 2003, pp. 134-143.

[4] M. Hammad, M.L. Collard and J.I. Maletic,
“Automatically Identifying Changes that Impact Code-to-
Design Traceability,” Proc. 17th IEEE International
Conference on Program Comprehension (ICPC'09), 2009,
pp. 20-29.

[5] M. Hammad, M.L. Collard and J.I. Maletic,
“Automatically Identifying Changes that Impact Code-to-
Design Traceability during Evolution,” Software Quality
Journal, vol. 19, no. 1, 2011, pp. 35-64.

[6] SourceMaking, 2012;
http://sourcemaking.com/design_patterns.

[7] J. Dong, Y. Zhao and T. Peng, “Architecture and Design
Pattern Discovery Techniques – A Review,” Proc.
International Conference on Software Engineering
Research and Practice (SERP), 2007.

[8] G. Antoniol, B. Caprile, A. Potrich and P. Tonella,
“Design-code traceability for object-oriented systems,”
Annals of Software Engineering, vol. 9, no. 1-4, 2000, pp.
35-58.

[9] H.C. Lovatt, A.M. Sloane and D.R. Verity, “A pattern
enforcing compiler (PEC) for Java: using the compiler,”
Proc. Second Asia-Pacific Conference on Conceptual
Modelling (APCCM2005) 2005, pp. 69-78.

[10] A. Blewitt, A. Bundy and I. Stark., “Automatic verification
of design patterns in Java,” Proc. 20th IEEE/ACM

international Conference on Automated Software
Engineering (ASE '05), 2005.

[11] M. Eichberg, S. Kloppenburg, K. Klose and M. Mezini,
“Defining and continuous checking of structural program
dependencies,” Proc. 30th international conference on
Software engineering (ICSE '08), 2008.

[12] C. Zhao, J. Kong and K. Zhang, “Design Pattern Evolution
and Verification Using Graph Transformation,” Proc. 40th
Annual Hawaii International Conference on System
Sciences (HICSS'07), 2007.

[13] C. Zhao, J. Kongb, J. Donga and K. Zhang, “Pattern-based
design evolution using graph transformation,” Journal of
Visual Languages and Computing, vol. 18, no. 4, 2007, pp.
378-398.

[14] D. Kim and W. Shen, “An Approach to Evaluating
Structural Pattern Conformance of UML Models,” Proc.
ACM symposium on Applied computing (SAC'07), 2007.

[15] H. Zhu, I. Bayley, L. Shan and R. Amphlett, “Tool Support
for Design Pattern Recognition at Model Level,” Proc.
33rd Annual IEEE International Computer Software and
Applications Conference (COMPSAC'09), 2009, pp. 228-
233.

[16] Z. Balanyi and R. Ferenc, “Mining design patterns from
C++ source code,” Proc. International Conference on
Software Maintenance (ICSM'03), 2003, pp. 305 - 314.

[17] I. Bayley and H. Zhu, “Formal specification of the variants
and behavioural features of design patterns,” Journal of
Systems and Software, vol. 83, no. 2, 2010, pp. 209-221.

[18] N. Tsantalis, A. Chatzigeorgiou and G. Stephanides,
“Design Pattern Detection Using Similarity Scoring,”
IEEE Transactions on Software Engineering vol. 32, no.
11, 2006, pp. 896 - 909.

[19] M. Vokac, “Defect Frequency and Design Patterns: An
Empirical Study of Industrial Code,” IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, vol.
30, no. 12, 2004, pp. 904-917.

[20] A.D. Lucia, V. Deufemia, C. Gravino and M. Risi, “Design
pattern recovery through visual language parsing and
source code analysis,” Journal of Systems and Software,
vol. 32, no. 7, 2009.

[21] G. Antoniol, G. Casazza, M.D. Penta and R. Fiutem,
“Object-oriented design patterns recovery,” Journal of
Systems and Software, vol. 59, no. 2, 2001, pp. 181-196.

[22] J. Dong, S. Yang and K. Zhang, “Visualizing Design
Patterns in Their Applications and Compositions,” IEEE
Transactions on Software Engineering, vol. 33, no. 7, 2007,
pp. 433 - 453.

[23] D. Jain and H.J. Yang, “Object Oriented Design Patterns,
Design Structure, and Program Changes: An Industrial
Case Study,” Proc. IEEE International Conference on
Software Maintenance (ICSM'01), 2001.

Maen Hammad is an Assistant Professor in Software
Engineering Department at The Hashemite University, Jordan.
He completed his Ph.D. in computer science at Kent State
University, USA in 2010. He received his Master in computer
science from Al-Yarmouk University—Jordan and his B.S. in
computer science from The Hashemite University—Jordan. His
research interest is Software Engineering with focus on software
evolution and maintenance, program comprehension and mining
software repositories.

Mustafa Hammad is an Assistant Professor at Information
Technology department in Mu’tah University, Al Karak -
Jordan. He received his PhD. in computer science from New
Mexico State University, USA in 2010. He received his Masters

1492 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

degree in computer science from Al-Balqa Applied University,
Jordan in 2005 and his B.Sc. in computer science from The
Hashemite University, Jordan in 2002. His research interest is
Software Engineering with focus on static and dynamic analysis
and software evolution.

Ahmed Fawzi Otoom is currently working as an assistant dean
at the Faculty of Prince Al-Hussein bin Abdullah II for
Information Technology. He is also an assistant professor at the
Software Engineering department at Hashemite University,
Jordan. He has a PhD degree in computer science from the
University of Technology, Sydney (UTS), Australia, 2010. In
2003, he received his master’s degree in software engineering
from the University of Western Sydney, Australia. In 2002, he
received his bachelor degree in computer science from Jordan
University of Science and Technology, Jordan. He worked as a
lecturer at Jerash Private University, Jordan between 2003 and
2005. His main research interests include computer vision and
pattern recognition techniques for image and video analysis
with a focus on realistic scenarios within video surveillance.

Mohammad Bsoul is an Associate Professor in the Computer
Science department of The Hashemite University. He received
his B.Sc. in Computer Science from Jordan University of
Science and Technology, Jordan, his Master from University of
Western Sydney, Australia, and his Ph.D. from Loughborough
University, UK. His research interests include wireless sensor
networks, grid computing, distributed systems, and performance
evaluation.

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1493

© 2014 ACADEMY PUBLISHER

