
Combinatorial Test Case Suite Generation Based

on Differential Evolution Algorithm

Xu LIANG
Software Technology Institute, Dalian Jiao Tong University, Dalian, China

Email: liangxu00@263.net

Shujie GUO
Mechanical Engineering Institute, Dalian Jiao Tong University, Dalian, China

Email: shujieguo@126.net

Ming HUANG
Software Technology Institute, Dalian Jiao Tong University, Dalian, China

Xuan JIAO
Management Institute, Dalian University of Technology, Dalian, China

Abstract—The combinatorial testing, an effective way to

improve the efficiency of software testing, is an important

means to ensure the quality of software. In the

combinatorial testing, the key is the combinatorial test case

suite generation. According to the characteristics of the

combinatorial test case suite generation problem, this paper

proposes a differential evolution algorithm based on the

one-test-at-a-time strategy for the solution to this problem.

Through the experiments, this paper compares optimized

performances of different mutations, explores the influence

of algorithm parameters on the optimized performance and

verifies the effectiveness and advancement of the solution.

Index Terms—Combinatorial Testing; Test Case Generation;

Differential Evolution Algorithm.

I. INTRODUCTION

The combinatorial testing is a kind of test case

generation technology based on the convention, which

can reduce the scale of test cases on the basis of ensuring

the defect detection capabilities. With the trend of the

software developing towards highly configuration, the

combinatorial testing has become a widely-applied means

to conduct a test in an effective way. The combinatorial

test case suite generation is an NP-complete problem,

which is the key of combinatorial testing. More and more

researchers have paid more attention to the combinatorial

test case suite generation and proposed a lot of solutions
[1]. Wang Ziyuan proposed a new method of generating

the variable strength combinatorial test suite by focusing

on the actual interactions between factors [2]. Huanglong

proposed the method of generating the n-way

combinatorial covering test case with the improved

AETG algorithm and IPO algorithm [3]. Shi Liang

proposed a solution space tree model, which generates the

test data through the path search [4]. Charles proposed the

method of generating the combinatorial test suite based

on the interactive tree model [5]. Chen Xiang proposed the

pair-wise combinatorial test algorithm framework based

on particle swarm optimization [6]. Cha Rijun proposed a

method of generating the pair-wise combinatorial test

data with the cross-entropy method and particle swarm

optimization algorithm [7]. Liang Yalan analyzed how the

algorithm parameters affect the results when using the

genetic algorithm to generate coverage table [8].

McCaffrey proposed a method of using the genetic

algorithm to generate the pair-wise combinatorial test

case [9]. As the intelligent optimization algorithm is an

effective way of solving the NP-complete problem, more

and more researchers have begun to use the intelligent

optimization method such as the genetic algorithm,

particle swarm optimization algorithm, to solve the

generation problem of combinatorial test data. As the

differential evolution algorithm, as an emerging

intelligent optimization technique, can effectively solve

the complex optimization problems [10], this paper

proposes the method of solving the generation problem of

combinatorial test case with the differential evolution

algorithm.

II. COMBINATORIAL TEST

The software system, which can be viewed as a

processor, processed the input data based on certain rules,

and outputs the processing results. These input data is

referred to as “input parameters”. The statistical result

shows that 90% of the errors are triggered by the

interaction of multiple parameters [11]. This paper

proposes the concept of combinatorial testing in order to

improve the error detection rate through thoroughly

testing how the interactions between various input

parameters impact the system.

Definition 1. Entry: The entry refers to the factors

which influence the software system processing flow or

the output result, including the software configuration

parameters, external events, input data, etc.

Definition 2. Optional value: The optional value is a

possible value of an entry. For the input data type entry,

Project supported by the National High Technology Research and
Development Program of China (No. 2012AA041402-4);

Manuscript received July 15, 2013; revised October 21, 2013;
accepted October 25, 2013.

Copyright credit, project number, corresponding author, etc.

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1479

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.6.1479-1484

the black-box testing techniques, such as the Boundary

value analysis or equivalence partitioning, are often used

to process the input value in order to obtain the optional

values of a finite number of discretions.

Definition 3. Combined strength: In the case of a given

test case suite “TR”, if the TR package covers all the

combinations of any t entries, the combined strength of

TR is t.

Provided that a test software system “T” has n separate

entries I={I1, I2, ..., In}, each of which contains a finite

number of possible values, i.e. Vi={vi1, vi 2, ..., vi n},

the combinatorial testing needs to generate the

combinatorial test case suite “TR” according to the

requirements of covering intensity in order to test the

system. For the sake of the cost of testing, we shall use

the fewest number of TR if possible.

III. GENERATION SOLUTION

A. Differential Evolution Algorithm

Differential Evolution (DE) is a kind of simple and

effective new evolutionary algorithm, which has been

successfully applied in engineering optimization,

mechanical design, electrical industry, environmental

industry, water conservancy and other fields [12-15].

Standard differential evolution algorithm concerns four

steps: initial population, mutation operation, crossover

operation and selection operation.

Initial population: consists of N individuals randomly

generated.

Mutation operation: In each generation search, DE

algorithm generates a target individual “ti(g)” (g marks

the evolutional generation) for each individual in the

current population “xi(g)” through mutation operation.

DE algorithm has different versions of the mutation

mechanism, which can be expressed as the form of DE / a

/ b. “a” represents the type of mutation operation base,

including “rand” and “best” types. “rand” means that a

randomly selected individual is taken as the mutation

operation base; “best” means that the currently optimal

individual is taken as the mutation base. “b” represents

the number of differential items at mutation. The most

common mutation mechanism is DE/rand/1: ti(g) = xr1(g)

+ F×[xr2(g)- xr3(g)], where F is the scaling factor at 0-1.

Crossover operation: After the mutation operation, use

part of variables of the target individual ti to replace the

corresponding current individual xi according to a certain

probability, and then get the tested individual vi. The

crossover methods include the binomial crossover and

index crossover.

Selection operation: Select a better one from the tested

individual vi and the current individual xi to enter into the

next generation search. Namely

Otherwise),(

)]([)]([),(
)1(

gx

gxfgtfgt
gx

i

iii
i

Scholars have proposed many solutions of improving

the classical differential evolution algorithm, which

mainly focuses on two aspects: the adaptive adjustment

of parameters [16-20] and the hybrid algorithm [14] [21]. It is

worth mentioning that the experimental results show that

these improved algorithms are not better than the

classical algorithm in solving the problem of

combinatorial test case generation. We experimented with

the parameter adjustment related to the evolutional

generation and the parameter adjustment related to the

optimized stall generation, formed a hybrid algorithm

with the harmony search algorithm, and used the

improvement strategy, specifically, adopted the radical

change strategy for 20% of the individuals with the lower

fitness every certain generation. In the experiment, after

each algorithm ran independently 20 times, we first

obtained the mean value of use cases and their variance

through the comparison of individual algorithm and then

judged the merits or demerits of each algorithm.

B. Data Storage Structure

Definition 4. Configuration: All the combinations of t

entries of the software constitute a set, which is called the

configuration with the intensity “t”. Provided that a

system has a total of four entries: I1, I2, I3 and I4, its

configurations with the intensity “3” are: {(I1， I2，

I3),(I1，I2，I4),(I1，I3，I4),(I2，I3，I4) }.

Definition 5. Configuration table: For each element in

the configuration, the combinations covering all the

optional values constitute a set, which is called the

configuration table. Provided that the entries I1、I2 have

two optional values 0 and 1, for the configuration

elements (I1，I2), the set covering all the optional values

is: {(0,0), (0,1), (1 , 0), (1,1)}.

The storage of optional values: Use the chain table to

store the optional value of each entry. Using this storage

method, we can establish the corresponding relationship

between the optional value and its location in the chain

table. In the optimization process, on the basis of setting

the sequential order of entries, we can use the position

value of the optional value in the chain table to replace

the specific value of the optional value, solving the

problem of real-coding in DE solution.

Suppose the system S has three entries, and their order

is artificially regulated like this: I1，I2，I3. Of them, I1

has two optional values V1={true, false}; I2 has three

optional values V2={0, 10, 20}; I3 has two optional

values V3={“PRC”, “USA”}. In that case, the test cases

{false, 20, “PRC”} are encoded as {1, 2, 0}, as is shown

in Figure 1.

0 10 20

I1

I2

I3

true false

PRC USA

Figure 1. The Storage Structure of Optional Values

The storage of the configuration: Store all the entries

of the system in the chain table Li according to the

predetermined sequence; and then place the entries in the

configuration to be stored in the locations in Li in the

form of the chain table, which constitutes the storage way

of the configuration. The configuration storage structure

of the system S is shown in Figure 2.

1480 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

I1 I3I2

{(I1 ,I2),(I1,I3)(I2 ,I3)}

Data Storage of configurations 0 1 0 2 1 2

Inputs

Configurations of 2-strength

Figure 2. The Storage Structure of the Configuration

The storage of the configuration table: Use the

dictionary structure to store the configuration table so as

to consult the configuration table through the

configuration. The Key values in the dictionary are the

elements in the configuration, such as (0, 1), (1, 2), etc.;

Value is the chain table composed of the combinations

this element in the configuration table is corresponding to.

In the system S, in the case of Key=(0, 1), Value={(0, 0),

(0, 1), (0, 2), (1, 0), (1, 1), (1, 2)}

C. Combination Coverage Evaluation Solution

We judge whether the test case is good or not through

the number of effective configuration elements covered

by it. Assume that, the number of test cases included in

the current test case set TR (i) is m, the part in the

configuration table covered by m test cases is C and the

uncovered part is UC, and the test case TCj can cover n in

the UC. In this case, the fitness of TCj is n.

D. Test Case Suite Generation Process

The combinatorial test case suite is generated through

the adoption of the one-dimensional expansion strategy

characterized by the expansion item by item, that is, the

so-called one-test-at-a-time strategy. Use the differential

evolution algorithm to generate a single test case, and add

the test case suite until all the elements in the

configuration table are covered. The generation process is

divided into three steps: initialize; randomly generate n

test cases; use the DE to generate other test cases item by

item. At the stage of initialization, the main tasks are: to

complete the configuration of the parameters and reading

of the data files, to initialize the configuration chain table

according to the data file and generate the configuration

table dictionary. When the cases in the test case suite TR

are smaller in number, there is almost no difference in the

fitness of individuals whether they are generated in the

way of optimized search or at random as a large number

of uncovered elements exist in the configuration table

“TCon”. To improve efficiency, prior to the generation

for optimization, generate n test cases at random and

store them in the TR, and remove the elements covered

by n test cases from the TCon. The experiment of the 410

combined strength “3” shows that it is more appropriate

when n is 0.5% of the number of configurations. When

using the DE to generate other test cases item by item,

first randomly generate N individuals to form an initial

population, and then optimize the search according to the

basic steps of standard differential evolution algorithm,

and finally add the optimal solution to TR and remove the

elements covered by the test case represented by the

optimal individual from the TCon; this cycle repeats until

the TCon is empty.

IV. EXPERIMENT AND ANALYSIS

A. The Expression Approach of Experimental Data

When generating the combinatorial test case data, three

parameters shall deserve our special attention: the entry,

the optional value of the entry and combined strength of

the entry. Provided that the system to be tested has m

entries with n selectable values, the generation problem

of the combinatorial test data with the combined strength

“t” can be expresses as tn
m
 . For example, provided

that some test system include 3 entries with 5 optional

values, 2 entries with 3 optional values and 4 entries with

10 optional values, the generation problem of the

combinatorial test case suite with the combined strength 3

can be expressed as 31035
423
 .

B. Performance Comparison of Mutation Mechanisms

DE/rand/1 and DE/best/1

Typically, the standard DE has two kinds of mutation:

DE/best/1 and DE/rand/1. Through the experiment, we

compared the effects of two mutation mechanisms in

solving the generation problem of combinatorial test data.

In the experiment, we solved the same problem in two

different ways of mutation. For each way, we kept it

independently running 10 times. After that, we

determined the merits or demerits of each mutation

through comparing the calculated average number of test

cases. The comparison result is shown in Table 1. From

Table 1, it can be easily seen that, for the generation of

combinatorial test case suite, the random mutation base

mutation approach is better than the optimal mutation

base mutation approach.

TABLE I. THE COMPARISON RESULT OF DIFFERENT MUTATION

APPROACHES

Problem Mutation
approach

 Average
value

410-2
best 29.5

rand 29.4

410-3
best 145

rand 143.3

410-4
best 664.75

rand 660.5

210-5
best 66

rand 64.6

210-6
best 118

rand 115.6

C. The Influence of the Algorithm Parameters on

Performance

Differential evolution algorithm parameters include the

scale factor, crossover probability, population size,

optimized generation, etc. As the algorithm has stronger

parameter sensitivity, in order to find a better parameter

configuration solution, we designed the comparative

experiments to explore how these parameters affect the

performance of the algorithm. In the experiment, we first

selected a parameter A while keeping other parameters

constant, and then assigned “A” a value “a1”, and finally

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1481

© 2014 ACADEMY PUBLISHER

obtained the average number of test cases “ 1aA
” through

calculating 10 times; we assigned “A” a value “a2” again,

and then obtained the average number of test cases

“ 2aA
” through calculating 10 times; this process

continues until the end of the experiment on the

parameter A. The experimental result is shown in Figure

3 - 6.

Figure 3. The Influence of Crossover Probability on the Algorithm
Performance

It can be seen from Figure 3 that the number of test

cases generated by the algorithm presents the trend of

rising before inhibition and the optimal points appear

nearby 0.2-0.3.

Figure 4. The Influence of the Scale factor on Algorithm Performance

It can be seen from Figure 4 that the scale factor’s

influence on the algorithm presents uncertainty and the

relative optimal solutions often appear at 0.1.

Figure 5. The Influence of Population Size on Algorithm Performance

It can be seen from Figure 5 that the number of test

cases generated by the algorithm decreases with the

increase of the population, but when the population is

1482 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

greater than 100 in size, the number change rate of test

cases found by the algorithm tends to flatten.

Figure 6. The Influence of Evolutional Generation on Algorithm
Performance

It can be seen from Figure 6 that the number of test

cases generated by the algorithm decreases with the

increase of the evolutional generation, but when the

evolutional generation is greater than 60 in size, the

number change rate of test cases found by the algorithm

tends to flatten.

It should be noted that, in the above experiment, we

just considered how each parameter influences on the

algorithm, so we were ignorant of the interactions

between the parameters. In addition, we just studies three

kinds of problems: 310-3, 410-3 and 510-3, so the

experimental samples are still not rich enough.

D Comparison with other Intelligent Optimization

Algorithm

In order to test the performance of the solution, we

experimented with the genetic algorithm, particle swarm

optimization and other intelligent optimization algorithms

respectively. The results of the comparison experiment

are shown in Table 2.

TABLE II. COMPARISON TABLE OF TEST CASES IN NUMBER

Problem Combinatorial number
Number of test cases

GA PSO DE

410-2 720 32 30 28

410-3 7680 161 156 140

410-4 53760 733 704 658

410-5 258048 3124 3112 2814

410-6 860160 12731 12373 12027

As can be seen from Table 2, for the generation

problem of the combinatorial test data, the differential

evolution algorithm is superior to the genetic algorithm

and particle swarm optimization.

E. Comparison with greedy algorithms

In order to further test the performance of the solution,

we experimented with the commonly used combinatorial

test case generation solutions provided by National

Institute of Standards and Technology (NIST) [22]. The

results of the comparison experiment are shown in Table

3.

TABLE III. COMPARISON TABLE OF TEST CASES IN NUMBER

Problem
Combinatorial

number

Number of test cases

IPOG IPOG-F PICT DE

410-2 720 30 29 31 28

410-3 7680 150 157 160 140

410-4 53760 695 731 742 658

410-5 258048 3079 3162 3161 2814

410-6 860160 12778 12727 12473 12027

As can be seen from Table 3, regardless of the

combinatorial number, the differential evolution

algorithms can generate fewer test cases. When the

combinatorial number is smaller, there is little difference

in the number of test cases generated by the differential

evolution algorithm and other three kinds of algorithms

respectively. But with the increase of the combinatorial

number, the difference in the number is growing bigger

and bigger.

ACKNOWLEDGMENT

Thanks National High-Tech Research and

Development Program of China (863 Program) for its

funding of sub-project “Testing of the operating system

kernel module and software library” (No.

2012AA041402-4). We are grateful to other members of

the project team for their valuable help and suggestions.

REFERENCES

[1] YAN Jun ， ZHANG Jian, “Combinatorial Testing:

Principles and Methods ”, Journal of Software, Vol.20,

No.6, pp.1393 − 1405, June 2009

[2] WANG Ziyuan ， QIAN Ju ， CHEN Lin, “Generating

Variable Strength Combinatiorial Test Suite With One-

test-at-a-time Strategy”, Chinese Journal of Computers

Vol.35 No.12, pp.2541-2532,2012

[3] HUANG Long, YANG Yuhang, LI Hu, “Rearch on

Algorithm of Parameter Pairwise and n-way Combinatorial

Coverage, ”, Chinese Journal of Computers Vol.35 No. 2,

pp.257-269, 2012

[4] SHI Liang, NIE Changhai,XU Baowen, “Pairwise Test

Data Generation Based on Solution Space Tress”, Chinese

Journal of Computers Vol.29 No. 6, pp.849-853, 2006

[5] Charles Song, Adam Porter, Jeffrey S. Foster, “iTree:

Efficiently Discovering High-Coverage Configurations

Using Interaction Trees”, ICSE 2012. NJ, USA: IEEE

Press, pp. 903-913, 2012

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1483

© 2014 ACADEMY PUBLISHER

[6] CHEN Xiang, GU Qing WANG ZiYuan, “Framework of

Particle Swarm Optimization Based Pairwise Testing”,

Journal of Software, Vol.22 No.12 , pp.2879-2893,2011

[7] ZHA RiJun, ZHANG DePing, NIE ChangHai, “Test Data

Generation Algorithms of Combinatorial Testing and

Comparison Based on Cross-Entropy and Particle Swarm

Optimization Method ”, Chinese Journal of Computers

2010 Vol.33 No. 10, pp.1896-1908

[8] LIANG YaLan, NIE ChangHai, “The Optimization of

Configurable Genetic Algorithm for Covering Arrays

Generation ”, Chinese Journal of Computers, Vol.35 No. 7,

pp.1522-1552,2012

[9] McCaffrey, J.D, “Generation of Pairwise Test Sets Using a

Genetic Algorithm”, COMPSAC '09. Washington, DC,

USA: IEEE Computer Society, pp. 626 - 631, 2009.

[10] He YC, Wang XZ, Liu KQ, “Convergent Analysis and

Algorithmic Improvement of Differential Evolution

Journal of Software, Vol.21, No.5, pp.875− 885, 2010.

[11] Kuhn DR, Reilly MJ, “An investigation of the applicability

of design of experiments to software testing”, In: Caulfield

M, ed. Proc. of the Annual NASA/IEEE Software

Engineering Workshop (SEW). Los Alamitos: IEEE Press,

pp. 91 − 95, 2002.

[12] QIN Hui, ZHOU Jianzhong, WANG Guangqian, “Multi –

objective optimization of reservoir flood dispatch based on

multi-objective differential evolution algorithm,” Journal

of Hydraulic EngineeringVol.40 No.5 , pp.513-519 , 2009.

[13] LIU Bo, WANG Ling ,JIN Yihui, “Advances in

differential evolution ”, CONTROL AND DECISION

Vol.22 No.7 , pp.721-729, 2007.

[14] WANG Ling, QIAN Bin, Hybrid differential evolution

algorithm and scheduling, Beijing Tsinghua University

Press, pp. 33-48, 2012.

[15] MENG Hong-Yun, ZHANG Xiao-Hua, LIU San-Yang, “A

Differential Evolution Based on Double Populations for

Constrained Multi-Objective Optimization Problem”,

Chinese Journal of Computers, Vol.31 No.2 , pp.228-235,

2008.

[16] XIAO Shujun, ZHU Xuefeng, “A modified fast and highly

efficient differential evolution algorithm ”,JOURNAL OF

HEFEI UNIVERSITY OF TECHNOLOGY Vol.32 No.11 ,

pp.1700-1703, 2009

[17] ZHANGXue-xia, CHENWei rong, DAI Chao-hua,

“Dynamic Multi-group Self adaptive Differential

Evolution Algorithm with Local Search for Function

Optimization ”, ACTA ELECTRONICA SINICA,Vol.38

No.8 , pp.1825-1830, 2008

[18] GE Jianwu, QI Rongbin, QIAN Feng, “A Modified

Adaptive Differential Evolution Algorithm ”, Journal of

East China University of Science and Technology (Natural

Science Edition) ,Vol.35 No.4 , pp.600-605,2009

[19] Quan-Ke Pan， P.N. Suganthan，Ling Wang etc. , “A

differential evolution algorithm with self-adapting strategy

and control parameters”, Computers & Operations

Research, No.38, pp.394–408, 2011

[20] R. Mallipeddi, P.N. Suganthan, Q.K. Pan etc. ,

“Differential evolution algorithm with ensemble of

parameters and mutation strategies”, Applied Soft

Computing No.11, pp.1679–1696, 2011

[21] T. Warren Liao, “Two hybrid differential evolution

algorithms for engineering design optimization”, Applied

Soft Computing,No.10, pp.1188–1199, 2010

[22] http://csrc.nist.gov/groups/SNS/acts/#briefings

1484 JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014

© 2014 ACADEMY PUBLISHER

