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Abstract—The combinatorial testing, an effective way to 

improve the efficiency of software testing, is an important 

means to ensure the quality of software. In the 

combinatorial testing, the key is the combinatorial test case 

suite generation. According to the characteristics of the 

combinatorial test case suite generation problem, this paper 

proposes a differential evolution algorithm based on the 

one-test-at-a-time strategy for the solution to this problem. 

Through the experiments, this paper compares optimized 

performances of different mutations, explores the influence 

of algorithm parameters on the optimized performance and 

verifies the effectiveness and advancement of the solution. 

 

Index Terms—Combinatorial Testing; Test Case Generation; 

Differential Evolution Algorithm. 

 

 

I.  INTRODUCTION 

The combinatorial testing is a kind of test case 

generation technology based on the convention, which 

can reduce the scale of test cases on the basis of ensuring 

the defect detection capabilities. With the trend of the 

software developing towards highly configuration, the 

combinatorial testing has become a widely-applied means 

to conduct a test in an effective way. The combinatorial 

test case suite generation is an NP-complete problem, 

which is the key of combinatorial testing. More and more 

researchers have paid more attention to the combinatorial 

test case suite generation and proposed a lot of solutions 
[1]. Wang Ziyuan proposed a new method of generating 

the variable strength combinatorial test suite by focusing 

on the actual interactions between factors [2].  Huanglong 

proposed the method of generating the n-way 

combinatorial covering test case with the improved 

AETG algorithm and IPO algorithm [3]. Shi Liang 

proposed a solution space tree model, which generates the 

test data through the path search [4]. Charles proposed the 

method of generating the combinatorial test suite based 

on the interactive tree model [5]. Chen Xiang proposed the 

pair-wise combinatorial test algorithm framework based 

on particle swarm optimization [6]. Cha Rijun proposed a 

method of generating the pair-wise combinatorial test 

data with the cross-entropy method and particle swarm 

optimization algorithm [7]. Liang Yalan analyzed how the 

algorithm parameters affect the results when using the 

genetic algorithm to generate coverage table [8]. 

McCaffrey proposed a method of using the genetic 

algorithm to generate the pair-wise combinatorial test 

case [9]. As the intelligent optimization algorithm is an 

effective way of solving the NP-complete problem, more 

and more researchers have begun to use the intelligent 

optimization method such as the genetic algorithm, 

particle swarm optimization algorithm, to solve the 

generation problem of combinatorial test data. As the 

differential evolution algorithm, as an emerging 

intelligent optimization technique, can effectively solve 

the complex optimization problems [10], this paper 

proposes the method of solving the generation problem of 

combinatorial test case with the differential evolution 

algorithm. 

II.  COMBINATORIAL TEST 

The software system, which can be viewed as a 

processor, processed the input data based on certain rules, 

and outputs the processing results. These input data is 

referred to as “input parameters”. The statistical result 

shows that 90% of the errors are triggered by the 

interaction of multiple parameters [11]. This paper 

proposes the concept of combinatorial testing in order to 

improve the error detection rate through thoroughly 

testing how the interactions between various input 

parameters impact the system. 

Definition 1. Entry: The entry refers to the factors 

which influence the software system processing flow or 

the output result, including the software configuration 

parameters, external events, input data, etc. 

Definition 2. Optional value: The optional value is a 

possible value of an entry. For the input data type entry, 
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the black-box testing techniques, such as the Boundary 

value analysis or equivalence partitioning, are often used 

to process the input value in order to obtain the optional 

values of a finite number of discretions. 

Definition 3. Combined strength: In the case of a given 

test case suite “TR”, if the TR package covers all the 

combinations of any t entries, the combined strength of 

TR is t. 

Provided that a test software system “T” has n separate 

entries I={I1, I2, ..., In}, each of which contains a finite 

number of possible values, i.e. Vi={vi1, vi 2, ..., vi n}, 

the combinatorial testing needs to generate the 

combinatorial test case suite “TR” according to the 

requirements of covering intensity in order to test the 

system. For the sake of the cost of testing, we shall use 

the fewest number of TR if possible. 

III.  GENERATION SOLUTION 

A.  Differential Evolution Algorithm 

Differential Evolution (DE) is a kind of simple and 

effective new evolutionary algorithm, which has been 

successfully applied in engineering optimization, 

mechanical design, electrical industry, environmental 

industry, water conservancy and other fields [12-15]. 

Standard differential evolution algorithm concerns four 

steps: initial population, mutation operation, crossover 

operation and selection operation. 

Initial population: consists of N individuals randomly 

generated.  

Mutation operation: In each generation search, DE 

algorithm generates a target individual “ti(g)” (g marks 

the evolutional generation) for each individual in the 

current population “xi(g)” through mutation operation. 

DE algorithm has different versions of the mutation 

mechanism, which can be expressed as the form of DE / a 

/ b. “a” represents the type of mutation operation base, 

including “rand” and “best” types. “rand” means that a 

randomly selected individual is taken as the mutation 

operation base; “best” means that the currently optimal 

individual is taken as the mutation base. “b” represents 

the number of differential items at mutation. The most 

common mutation mechanism is DE/rand/1: ti(g) = xr1(g) 

+ F×[xr2(g)- xr3(g)], where F is the scaling factor at 0-1.  

Crossover operation: After the mutation operation, use 

part of variables of the target individual ti to replace the 

corresponding current individual xi according to a certain 

probability, and then get the tested individual vi. The 

crossover methods include the binomial crossover and 

index crossover. 

Selection operation: Select a better one from the tested 

individual vi and the current individual xi to enter into the 

next generation search. Namely 
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Scholars have proposed many solutions of improving 

the classical differential evolution algorithm, which 

mainly focuses on two aspects: the adaptive adjustment 

of parameters [16-20] and the hybrid algorithm [14] [21]. It is 

worth mentioning that the experimental results show that 

these improved algorithms are not better than the 

classical algorithm in solving the problem of 

combinatorial test case generation. We experimented with 

the parameter adjustment related to the evolutional 

generation and the parameter adjustment related to the 

optimized stall generation, formed a hybrid algorithm 

with the harmony search algorithm, and used the 

improvement strategy, specifically, adopted the radical 

change strategy for 20% of the individuals with the lower 

fitness every certain generation. In the experiment, after 

each algorithm ran independently 20 times, we first 

obtained the mean value of use cases and their variance 

through the comparison of individual algorithm and then 

judged the merits or demerits of each algorithm. 

B.  Data Storage Structure 

Definition 4. Configuration: All the combinations of t 

entries of the software constitute a set, which is called the 

configuration with the intensity “t”. Provided that a 

system has a total of four entries: I1, I2, I3 and I4, its 

configurations with the intensity “3” are: {( I1， I2，

I3),( I1，I2，I4),( I1，I3，I4),( I2，I3，I4) }. 

Definition 5. Configuration table: For each element in 

the configuration, the combinations covering all the 

optional values constitute a set, which is called the 

configuration table. Provided that the entries I1、I2 have 

two optional values 0 and 1, for the configuration 

elements (I1，I2), the set covering all the optional values 

is: {(0,0), (0,1), (1 , 0), (1,1)}. 

The storage of optional values: Use the chain table to 

store the optional value of each entry. Using this storage 

method, we can establish the corresponding relationship 

between the optional value and its location in the chain 

table. In the optimization process, on the basis of setting 

the sequential order of entries, we can use the position 

value of the optional value in the chain table to replace 

the specific value of the optional value, solving the 

problem of real-coding in DE solution. 

Suppose the system S has three entries, and their order 

is artificially regulated like this: I1，I2，I3. Of them, I1 

has two optional values V1={true, false}; I2 has three 

optional values V2={0, 10, 20}; I3 has two optional 

values V3={“PRC”, “USA”}. In that case, the test cases 

{false, 20, “PRC”} are encoded as {1, 2, 0}, as is shown 

in Figure 1.    

0 10 20

I1

I2

I3

true false

PRC USA  

Figure 1.   The Storage Structure of Optional Values 

The storage of the configuration: Store all the entries 

of the system in the chain table Li according to the 

predetermined sequence; and then place the entries in the 

configuration to be stored in the locations in Li in the 

form of the chain table, which constitutes the storage way 

of the configuration. The configuration storage structure 

of the system S is shown in Figure 2. 
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I1 I3I2

{(I1 ,I2),(I1,I3)(I2 ,I3)}

Data Storage of configurations 0 1 0 2 1 2

Inputs

Configurations of 2-strength  

 

Figure 2.   The Storage Structure of the Configuration 

The storage of the configuration table: Use the 

dictionary structure to store the configuration table so as 

to consult the configuration table through the 

configuration. The Key values in the dictionary are the 

elements in the configuration, such as (0, 1), (1, 2), etc.; 

Value is the chain table composed of the combinations     

this element in the configuration table is corresponding to.   

In the system S, in the case of Key=(0, 1), Value={(0, 0), 

(0, 1), (0, 2), (1, 0), (1, 1), (1, 2 )} 

C.  Combination Coverage Evaluation Solution 

We judge whether the test case is good or not through 

the number of effective configuration elements covered 

by it. Assume that, the number of test cases included in 

the current test case set TR (i) is m, the part in the 

configuration table covered by m test cases is C and the 

uncovered part is UC, and the test case TCj can cover n in 

the UC. In this case, the fitness of TCj is n. 

D.  Test Case Suite Generation Process 

The combinatorial test case suite is generated through 

the adoption of the one-dimensional expansion strategy 

characterized by the expansion item by item, that is, the 

so-called one-test-at-a-time strategy. Use the differential 

evolution algorithm to generate a single test case, and add 

the test case suite until all the elements in the 

configuration table are covered. The generation process is 

divided into three steps: initialize; randomly generate n 

test cases; use the DE to generate other test cases item by 

item. At the stage of initialization, the main tasks are: to 

complete the configuration of the parameters and reading 

of the data files, to initialize the configuration chain table 

according to the data file and generate the configuration 

table dictionary. When the cases in the test case suite TR 

are smaller in number, there is almost no difference in the 

fitness of individuals whether they are generated in the 

way of optimized search or at random as a large number 

of uncovered elements exist in the configuration table 

“TCon”. To improve efficiency, prior to the generation 

for optimization, generate n test cases at random and 

store them in the TR, and remove the elements covered 

by n test cases from the TCon. The experiment of the 410 

combined strength “3” shows that it is more appropriate 

when n is 0.5% of the number of configurations. When 

using the DE to generate other test cases item by item, 

first randomly generate N individuals to form an initial 

population, and then optimize the search according to the 

basic steps of standard differential evolution algorithm, 

and finally add the optimal solution to TR and remove the 

elements covered by the test case represented by the 

optimal individual from the TCon; this cycle repeats until 

the TCon is empty. 

IV.  EXPERIMENT AND ANALYSIS 

A.  The  Expression Approach of Experimental Data 

When generating the combinatorial test case data, three 

parameters shall deserve our special attention: the entry, 

the optional value of the entry and combined strength of 

the entry. Provided that the system to be tested has m 

entries with n selectable values, the generation problem 

of the combinatorial test data with the combined strength 

“t” can be expresses as tn
m
 . For example, provided 

that some test system include 3 entries with 5 optional 

values, 2 entries with 3 optional values and 4 entries with 

10 optional values, the generation problem of the 

combinatorial test case suite with the combined strength 3 

can be expressed as 31035
423
 . 

B.  Performance Comparison of Mutation Mechanisms  

DE/rand/1 and DE/best/1 

Typically, the standard DE has two kinds of mutation: 

DE/best/1 and DE/rand/1. Through the experiment, we 

compared the effects of two mutation mechanisms in 

solving the generation problem of combinatorial test data. 

In the experiment, we solved the same problem in two 

different ways of mutation. For each way, we kept it 

independently running 10 times. After that, we 

determined the merits or demerits of each mutation 

through comparing the calculated average number of test 

cases. The comparison result is shown in Table 1. From 

Table 1, it can be easily seen that, for the generation of 

combinatorial test case suite, the random mutation base 

mutation approach is better than the optimal mutation 

base mutation approach. 

TABLE I.   THE COMPARISON RESULT OF DIFFERENT MUTATION 

APPROACHES 

Problem  Mutation 
approach 

 Average 
value 

410-2 
best 29.5 

rand 29.4 

410-3 
best 145 

rand 143.3 

410-4 
best 664.75 

rand 660.5 

210-5 
best 66 

rand 64.6 

210-6 
best 118 

rand 115.6 

 

  

C.  The Influence of the Algorithm Parameters on 

Performance 

Differential evolution algorithm parameters include the 

scale factor, crossover probability, population size, 

optimized generation, etc. As the algorithm has stronger 

parameter sensitivity, in order to find a better parameter 

configuration solution, we designed the comparative 

experiments to explore how these parameters affect the 

performance of the algorithm. In the experiment, we first 

selected a parameter A while keeping other parameters 

constant, and then assigned “A” a value “a1”, and finally 
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obtained the average number of test cases “ 1aA
” through 

calculating 10 times; we assigned “A” a value “a2” again, 

and then obtained the average number of test cases 

“ 2aA
” through calculating 10 times; this process 

continues until the end of the experiment on the 

parameter A. The experimental result is shown in Figure 

3 - 6.  

 

 

 
 

Figure 3.   The Influence of Crossover Probability on the Algorithm 
Performance 

It can be seen from Figure 3 that the number of test 

cases generated by the algorithm presents the trend of 

rising before inhibition and the optimal points appear 

nearby 0.2-0.3. 

 

Figure 4.   The Influence of the Scale factor on Algorithm Performance 

It can be seen from Figure 4 that the scale factor’s 

influence on the algorithm presents uncertainty and the 

relative optimal solutions often appear at 0.1.  

 

Figure 5.   The Influence of Population Size on Algorithm Performance 

It can be seen from Figure 5 that the number of test 

cases generated by the algorithm decreases with the 

increase of the population, but when the population is 
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greater than 100 in size, the number change rate of test 

cases found by the algorithm tends to flatten. 

 

Figure 6.  The Influence of Evolutional Generation on Algorithm 
Performance 

It can be seen from Figure 6 that the number of test 

cases generated by the algorithm decreases with the 

increase of the evolutional generation, but when the 

evolutional generation is greater than 60 in size, the 

number change rate of test cases found by the algorithm 

tends to flatten. 

It should be noted that, in the above experiment, we 

just considered how each parameter influences on the 

algorithm, so we were ignorant of the interactions 

between the parameters. In addition, we just studies three 

kinds of problems: 310-3, 410-3 and 510-3, so the 

experimental samples are still not rich enough. 

 

D  Comparison with other Intelligent Optimization 

Algorithm 

In order to test the performance of the solution, we 

experimented with the genetic algorithm, particle swarm 

optimization and other intelligent optimization algorithms 

respectively. The results of the comparison experiment 

are shown in Table 2. 

TABLE II.   COMPARISON TABLE OF TEST CASES IN NUMBER 

Problem Combinatorial number 
Number of test cases  

GA PSO DE 

410-2 720 32 30 28 

410-3 7680 161 156 140 

410-4 53760 733 704 658 

410-5 258048 3124 3112 2814 

410-6 860160 12731 12373 12027 

As can be seen from Table 2, for the generation 

problem of the combinatorial test data, the differential 

evolution algorithm is superior to the genetic algorithm 

and particle swarm optimization. 

E.  Comparison with greedy algorithms 

 

 

In order to further test the performance of the solution, 

we experimented with the commonly used combinatorial 

test case generation solutions provided by National 

Institute of Standards and Technology (NIST) [22]. The 

results of the comparison experiment are shown in Table 

3. 

TABLE III.   COMPARISON TABLE OF TEST CASES IN NUMBER 

Problem  
Combinatorial 

number 

Number of test cases 

IPOG IPOG-F PICT DE 

410-2 720 30 29 31 28 

410-3 7680 150 157 160 140 

410-4 53760 695 731 742 658 

410-5 258048 3079 3162 3161 2814 

410-6 860160 12778 12727 12473 12027 

 

As can be seen from Table 3, regardless of the 

combinatorial number, the differential evolution 

algorithms can generate fewer test cases. When the 

combinatorial number is smaller, there is little difference 

in the number of test cases generated by the differential 

evolution algorithm and other three kinds of algorithms 

respectively. But with the increase of the combinatorial 

number, the difference in the number is growing bigger 

and bigger.   
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