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Abstract—Software reliability is the probability that the 
given software functions correctly under a given 
environment, during the specified period of time. During the 
software-testing phase, software reliability is highly related 
to the amount of development resources spent on detecting 
and correcting latent software errors, i.e. the amount of 
testing effort expenditures. This paper develops software 
reliability growth models (SRGM) based on non 
homogeneous Poisson process (NHPP) which incorporates 
the Burr Type XII testing-effort functions (TEF). Numerous 
testing-effort functions for modeling software reliability 
growth based on NHPP have been proposed in the past 
decade. This paper shows that the Burr Type XII testing-
effort function can be expressed as the actual testing-effort 
consumption during software development process. Its 
fault-prediction capability is evaluated through the 
numerical experiments. SRGM parameters are estimated by  
least square estimation (LSE) and maximum likelihood 
estimation (MLE) methods and computational experiments 
performed on actual software failure data set from various 
software projects. The results show that the proposed 
testing-efforts functions predicts fault better than the other 
existing models. Thus, the proposed models evaluate 
software reliability more realistically. In addition, the 
optimal release policy based on reliability and cost criteria 
for software system are proposed.  
 
Index Terms—SRGM, NHPP, Burr Type XII TEF, LSE, 
MLE, Testing effort consumptions 

I.  INTRODUCTION 

In modern society, computer-controlled and computer-
embedded systems are heavily dependent on the correct 
performance of software. So, it is quite natural to produce 
reliable software systems efficiently since the breakdown 
of the computer systems, which is caused by software 
errors, results in a tremendous loss and damage for social 

life. In the past years, several software reliability growth 
models (SRGM) based on NHPP which incorporates the 
testing–efforts have been proposed by many authors [2], 
[3], [6], [11], [13]-[17], [20]-[22], [37], [39], [40]. The 
testing-effort can be measured by the man power spent 
during the testing phase, the number of CPU hours, the 
number of executed test cases, and so on. Software 
reliability growth models proposed in the literature 
incorporating the effect of testing-effort expenditures 
described by the traditional Weibull type and Logistic 
type. However, it is difficult to represent the consumption 
curve only by these testing-effort consumption curves in 
various software development environments. 

This paper describes the time dependent behavior of 
testing-effort expenditure by Burr Type XII model [9] as 
its curve is flexible having a wide variety of possible 
expenditure patterns in real software projects. This family 
includes exponential, Weibull and log-logistic as special 
cases.  It also covers the curve shape characteristics of 
normal, log-normal, gamma, logistic and Pearson type X 
distributions as well as a significant portion of the curve 
shape characteristic for Pearson Type I (Beta), II, V, VII, 
IX and XII families [4], [29], [30], [33], [34].  Another 
advantage is that Burr XII has simple algebraic forms for 
reliability and hazard rate functions [4]. Thus Burr Type 
XII Provides a wide variety of density shapes along with 
functional simplicity.  Currently there are few studies for 
the use of the Burr Type XII failure model in reliability 
and survival analysis [4], so this paper is to promote its 
use in software reliability analysis.  The Burr Type XII 
failure model can be widely and effectively used in 
software reliability analysis, because it has a wide variety 
of shapes in its model and failure rate curves  [4], making 
it useful for fitting many types of actual software failure 
data from various software projects. 

Reference [1] has used of Burr Type XII distribution 
on software reliability growth modeling. This paper 
develops a realistic software reliability growth models 
based on NHHP which incorporates the Burr Type XII 
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testing–effort function [5]. It is assuming that the error 
detection rate in software testing is proportional to the 
current error content and the proportionality is the 
instantaneous software testing-effort expenditures at an 
arbitrary testing time. Its parameters are estimated by 
Least Square Estimation and Maximum Likelihood 
Estimation methods.   Computational experiments are 
performed for three real software data and the results are 
compared with other existing model. It is shown that the 
proposed SRGM with Burr Type XII testing-effort 
function is wide and effective models for software 
reliability analysis. It can estimate the number of initial 
faults better as compare to other existing models. In 
addition, the optimal release policy of this model based 
on cost-reliability criterion is discussed. 

II.   BURR TYPE XII TESTING EFFORT FUNCTION 

From the previous studies in [12], [13], and [20], we 
know that actual test effort data expressed various 
consumption pattern, sometimes the test effort 
consumption are difficult to describe only by Exponential, 
Rayleigh, Weibull or Logistic curve. Therefore, we try to 
incorporate a Burr Type XII test-effort function instead of 
above consumption function as the test effort function 
during the software development process in [7] and [8]. 
So, we proposed Burr Type XII curve as the test-effort 
function into SRGM. 

The current testing effort consumption curve at testing 
time t is given as 
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where , , andmα β δ  are constant parameters, α is the 
total amount of test-effort expenditure required by 
software testing, β is the scale parameter, and m, δ are 
shape parameters. 

The integral form of (1) is called the cumulative test- 
effort consumption of Burr Type XII in the time [0, t] and 
is given by: 
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The testing-effort function w(t) reaches its maximum 
value at the time t 
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III. SOFTWARE RELIABILITY GROWTH MODEL  

A.   Model Description 
A number of SRGMs have been proposed on the 

subject of software reliability. Among these models, Goel 
and Okumoto used an NHPP as the stochastic process to 

describe the fault process [11] and [23] modify the G-O 
model and incorporate the concept of testing-effort in an 
NHPP model to get a better description of the software 
fault detection phenomenon. We also propose a new 
SRGM with the Burr Type XII testing-effort function to 
predict the behavior of failure occurrences and the fault 
content of a software product 

B. Assumptions 
• The fault removal process is modeled by an NHPP. 
• The software application is subject to failures at 

random times caused by the remaining faults in the 
system. 

• The mean number of faults detected in the time 
interval ( ),t t t+ Δ  by the current testing-effort is 
proportional to the mean number of remaining 
faults in the system at time t, and the 
proportionality is a constant over time. 

• Testing effort expenditures are described by the 
Burr Type XII testing-effort function. 

• Each time a failure occurs, the corresponding fault 
is immediately removed and no new faults are 
introduced. 

• The hazard rate for software occurring initially 
after the testing is proportional to the elapsed time 
r and the remaining faults. 

An implemented software system is tested in the 
software development process. During the testing phase 
software errors remaining in the system cause software 
failures and the errors are detected and corrected by test 
personnel. A software failure is defined as an 
unacceptable departure of program operation. Following 
the usual assumptions in the area of software reliability 
growth modeling [10], we assume that the number of 
detected errors to the current test-effort expenditures is 
proportional to the current error content. Let ( )m t
represent the expected mean number of errors detected by 
testing calendar time t which is assumed to be a bounded 
non-decreasing function of t with (0) 0m = . Then, using 
the Burr Type XII test-effort function in (1), we have the 
following differential equation [37]: 

( ) ( ) ( )/
dm t

w t r a m t
dt

= −⎡ ⎤⎣ ⎦ , 0,a >  0 1r< <                   (3) 

where ( )m t  is the expected mean number of faults 
detected in time (0, t), ( )kw t  is the current testing-effort 
consumption at time ,t a  is the expected number of 
initial faults, and r is the fault detection rate per unit 
testing-effort at testing time t  and 0r > . 

Solving the differential equation (3) under the 
boundary condition (0) 0m =  (i.e., the mean value 
function ( )m t   is equal to zero at time 0), we have: 

( ) ( )( )1 rW tm t a e−= −   (4) 

Substituting (2) for W(t) in (4) we get: 
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( ) ( )1 (1 ( ) )1
mr tm t a e

δα β −− − +⎡ ⎤= −⎢ ⎥⎣ ⎦
                 (5) 

From (4), we have the following important relationship 
between ( )m t and W(t): 

( ) ( )
1 ln .aW t
r a m t

⎛ ⎞
= ⎜ ⎟⎜ ⎟−⎝ ⎠

                                  (6) 

For stochastic modeling of a software error detection 
phenomenon, let { ( ),    0}N t t >  be a counting process 
representing the cumulative number of errors detected by 
testing time t. Defining the expected value of ( )N t  by 

( )m t  in (5), we can describe a software reliability growth 
model incorporating the Burr Type XII test-effort 
function [13] and [36] by an NHPP as : 

( ){ } ( ) ( )
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N k n

n

−⋅⎡ ⎤⎣ ⎦= =   0,1,2,  ... n =   

=  ( ; ( ))Poim m n m t                      (7) 

where ( )m t  is called mean value function of the NHPP 
[10], [38], [39] and   ( ; ( ))Poim m n m t is a Poisson pmf 
with parameter ( )m t . The intensity function of the NHPP 
is given by: 

( ) ( ) ( ) ( ). . rW tdm t
t r w t e

dt
λ α − ⋅= =   (8) 

which means the instantaneous error detection rate. From 
(7) we can show that the limit distribution of N(t) is a 
Poisson distribution with the following mean : 

( ) ( )1 rm a e α−∞ = −     (9) 

Equation (9) implies that even if a software system is 
tested during an infinitely long duration, all errors 
remaining in the system cannot be detected [39], [40]. 
Thus, the mean number of undetected errors d(t) if a test 
is applied for an infinite amount of time is : 

( ) ( )
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r
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−
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C.  Software Reliability Measures 

Let N(t) represent the number of errors remaining in 
the system of testing time t.  Based on the NHPP model 
with ( )m t , given by in equation (4), two quantitative 
measures for software reliability assessment can be 
derived [10], [36]. The expectation of ( )N t  and its 
variance are given by: 

( ) ( ) ( ) ( )r t E N t E N N t⎡ ⎤= = ∞ −⎡ ⎤⎣ ⎦⎣ ⎦  

      ( ) ( ) ( ) ( )rW t rWm m t a e e− − ∞⎡ ⎤= ∞ − = −⎣ ⎦  

      ( ){ } ,Var N t=                  (10) 

The software reliability representing the probability 
that a software failure does not occur in the time interval 
(t, t + x) is given by: 

 ( ) ( ) ( )| m t x m tR R x t e− + −⎡ ⎤⎣ ⎦= =  
( ) ( )rW t rW t xa e e

e
− − +⎡ ⎤− −⎣ ⎦=                 (11) 

It can be easily seen that ( )|R x t  is a monotonic 
increasing function of t. Taking log both side in (11) 

ln [ ( ) ( )]R m t x m t= − + −  

Solving the above equation with ( )m t , one can 
estimate derived reliability R. The instantaneous mean 
time between failures (MTBF) at arbitrary testing can be 
defined as a reciprocal of error detection rate in equation 
(8). Then the instantaneous MTBF is given by: 

( ) ( )
1MTBF t
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= =
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IV. ESTIMATION METHODS OF PARAMETERS 

A.  Estimation of Testing-Effort Parameters 
Two most popular estimation techniques are Maximum 

Likelihood Estimation (MLE) and Least Squares 
Estimation (LSE) [23], [26]. The parameters 

, , andmα β δ in the Burr Type XII testing-effort 
functions defined by the equation (1) can be estimated by 
least squares. The estimators for , , andmα β δ are 
investigated for testing-effort kw  spent during (0, )kt  (k 
= 1, 2 ,…, n). Then, based on the usual procedures, the 
least-squares estimators ˆˆ ˆ, , mα β and δ̂  can be obtained 
by minimizing 

Minimize  2( , , , ) ( ( ))
1

n
S m W W tk kk

α β δ = −∑
=

 

Taking log in Equation (1), we get 
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Then, the least–squares estimates ˆˆ ˆ, ,mα β  and δ̂  of 
parameters , , andmα β δ  can be obtained by 
minimizing the following sum of squares 
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Differentiate the above equation with respect to the 
, , andmα β δ  and set the partial derivatives to zero, we 

get the following non-linear equations, 
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These non-linear equations can be solved numerically 

to get the estimate of , , andmα β δ . 

C. Estimation of Reliability Growth Parameters 
The reliability growth parameters a and r in the NHPP 

model with m(t) in (4) can be estimated by the method of 
maximum-likelihood [10]. Let the estimated parameters 

ˆˆ ˆ, ,mα β and δ̂  in the Burr type XII test-effort function in 
(1) have been obtained by the method of least-squares. 
The â  and r̂  are determined for the n observed data 
pairs ( ),k kt y  ( )1, 2,...., .k n=  Then, the joint p.m.f, the 
log-likelihood function, for the unknown parameters a 
and r in the NHPP model with m(t) in (4), is : 
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t0 ≡ 0  and  y0 ≡ 0. 

The usual calculus methods for an interior maximum 
result in 
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which can be solved numerically. 
If the sample size n of the observed data is sufficient 

large, the maximum-likelihood estimates â  and r̂  
asymptotically follow a bivariate s-normal distribution 
[28], 

     ( )ˆ
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The Σ in the asymptotic properties of (23) is useful in 
quantifying the variability of the estimated parameters â
and r̂ , and is the inverse of F 
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where,   ( ) ( )expk kg W t rW t= ⋅ −⎡ ⎤⎣ ⎦  

and ( )1 expk kf rW t= − −⎡ ⎤⎣ ⎦    where  [k= 1,….,n] 

Substituting the value of a and r in (4.2.6) and calculate 
F-1. The estimated asymptotic variance-covariance matrix 
is: 

( ) ( )
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1 垐 ,ˆ
垐,

Var a Cov a r
F

Cov a r Var r
− ⎛ ⎞

Σ = = ⎜ ⎟
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V. SOFTWARE FAILURE DATA ANALYSIS 

The two performance comparison criteria are given 
here to check the performance of the proposed software 
reliability growth model and to make affair comparison 
with the other existing SRGM 

• The Mean square  of fitting error (MSE): 
2

1

ˆ( ( ) )k
i i

i

m t yMSE
k=

−
=∑  

where k is the number of observation. A smaller MSE 
indicates a smaller fitting error and better performance 
[21], [24]. 

• AE (Accuracy of Estimation) is defined as: 

                  A.E = a

a

M a
M

−
 

aM  is the actual cumulative number of detected faults 
after the test, and a  is estimated  number of initial faults 
[10], [22], [26]. 

A. Performance Analysis 
First Data Set: The first set of real data in this paper is 

the System T1 data of the Rome Air Development Center 
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(RADC) projects and cited from [25] and [26]. The 
number of object instructions for the system T1 which is 
used for a real-time command and control application. In 
this case, the size of the software is approximately 21,700 
object instructions. The software was tested for 21 weeks 
with 9 programmers. During the test phase, about 25.3 
CPU Hours were used and 136 faults were detected. 
Similarly the MLE and LSE are used to estimate the 
parameters for the equation (1) and equation (4) 

In order to estimate the parameters , , andmα β δ of 
the log-logistic test-effort function, the actual testing-
effort data into equations (1) has been fitted and solve it 
by using the method of least squares. The estimated 
values of parameters of the Burr Type XII testing-effort 
function are: 

α̂  =35.242, β̂ = 0.063, ˆ 0.326m =  and δ̂ =11.259    
Fig. 1 and Fig. 2 shows the fitting of the estimated 

testing-effort by using Equation (1) and (2).The fitted 
curves are shown as a dotted line and solid line for actual 
software data in the graphs. Using the estimated 
parameters  , , andmα β δ  the other parameters ,a r  in 
(4) can be solved by MLE method. The cumulative 
numbers of estimated failures by equation (4) are:   a = 
133.7025,   r = 0.1553 

For these estimates, the optimality was checked 
numerically. Table I summarizes the experimental results 
of estimated parameters with their standard errors and 95 % 
confidence bound.  

Following the same procedure, we plotted a fitted 
curve of the estimated mean value function with the 
actual software data in Fig. 3. Also a comparison table of 
the estimates of this model along with other SRGMs with 
initial faults a  and MSE is given in Table II. From Figs. 
1, 2, and 3 and the comparison criteria in Table II, it is 
conceivable that the proposed SRGM has a better 
goodness of fit. Kolmogorov Smirnov goodness-of-fit test 
shows that this proposed SRGM described by an NHPP 
with ˆ ( )m t  fits pretty well at the 5 % level of significance. 

Fig. 4 shows that the estimated intensity functions ˆ( )tλ  
from equation (8).  

Substituting the estimated parameters , , andmα β δ  
in equation of maxt , the testing effort function reaches the 
maximum at time t = 16.9143 debug days which 
corresponds to w(t) = 3.5986 CPU hours and W(t) = 
11.1148 CPU hours. Besides, the number of errors 
removed up to this time maxt  is 109.9073 and when t  
goes to infinity, the numbers of errors removed is   
133.14116. 

TABLE1 
SUMMARY OF ESTIMATE OF NHPP MODEL PARAMETERS 

 
Parameter Estimate Standard 

Error 
95% Confidence 

Lower Upper 
a 
r 

133.279 
0.1553 

6.166 
0.021 

120.794 
0.109 

146.609 
0.201 

 
 

 
TABLE II 

COMPARISON RESULTS FOR THE FIRST DATA SET 
 

Model a r MSE
Burr Type XII Model 133.70 0.155 77.909
G-O Model [27]  142.32 0.125 2438.3
Exponential Model  [11] 137.2 0.156 3019.66
Rayleigh Function [22] 866.94 0.0096 89.241
Delayed  s-shaped Model [13] 237.19 0.0963 245.246

 

Figure 1. Observed/estimated current test-effort function vs. time
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Figure 2. Observed/estimated cumulative test-effort function vs. time
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Figure 3. Observed/estimated cumulative number of failures vs. time
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Figure 4. Estimated intensity function for actual data 

 
Second Data Set: The second set of real data is the 

pattern of discovery of faults by [32]. The debugging 
time and the number of detected faults per day are 
reported. The cumulative number of discovered faults up 
to twenty two days is 86 and the total consumed 
debugging times is 93 CPU hours. All debugging data are 
used in this experiment. The testing-effort data are 
applied to estimate the parameters , , andmα β δ  of the 
Burr Type XII distributed function described in equations 
(1) by using the method of least squares. Hence, we can 
find the estimates only through numerical procedures. We 
can estimate  each  parameters  by the Maximum 
Likelihood Estimation  and Least Square Estimation  in 
the Burr Type  XII  Distribution Function ( proposed  
SRGM).The estimated values of parameters are: 

 
α̂  = 121.4621, β̂ = 0.005657, δ̂ = 1.908,  
m̂ = 78.914, a =  94.435,   r = 0.0255                   

Fig. 5 and Fig. 6 depict the fitting of the current 
estimated testing-effort by using Burr Type XII testing-
effort function. 

For these estimates, the optimality was checked 
numerically. Table III summarizes the experimental 
results of estimated parameters with their standard errors 
and 95 % confidence bound. Similarly, we plotted a fitted 
curve of the estimated mean value function with the 
actual software data in Fig. 7. Table IV shows the 
estimated values of parameters by using different SRGMs 
and comparison criteria. Similarly, smaller AE and MSE 
indicate least fitting errors and better performance. From 
Figures 5, 6, and 7 and the comparison criteria in Table 
IV, we conclude that this  proposed model  is good 
enough a give more accurate  description  of resource  
consumption during the source development phase and 
gives  better fit in this experiment. Kolmogorov Smirnov 
goodness-of-fit test shows that our proposed SRGM 
described by an NHPP with ˆ ( )m t  fits pretty well at the 5% 
level of significance. Figure 8 shows that the estimated 
intensity functions ˆ( )tλ  from equation (8). 

In addition, substituting the estimated parameters 
, , andmα β δ  in equation of maxt , the testing effort 

function reaches the maximum at time t = 12.1664 debug 
days which corresponds to w(t) = 5.5867 CPU hours and 

W(t) = 45.6458 CPU hours. Besides, the number of errors 
removed up to this time maxt  is 65.0016     and when t  
goes to infinity, the numbers of errors removed is 
90.1894. 

  
TABLE III   

SUMMARY OF ESTIMATE OF NHPP MODEL PARAMETERS 
 

Parameter Estimate Standard 
Error 

95% Confidence 
Lower Upper 

a 
r 

94.4345 
0.02554 

2.556930 
0.0016003 

89.10086 
0.022030 

99.7682
0.02888

 
TABLE IV   

COMPARISON RESULTS FOR THE SECOND  DATA SET 
 

Model a r MSE 
Burr Type XII Model 94.4345 0.02554 6.726
G-O Model [27] 137.072 0.0515445 25.33
Weibull Function [12] 87.0318 0.0345417 7.772
Delayed s-shaped Model [13] 88.6533 0.228148 6.3127
Logistic Function [22] 88.8931 0.0390591 25.228

 

Figure 5. Observed/estimated current test-effort function vs. time
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Figure 6. Observed/estimated cumulative test-effort function vs. time
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Figure 7. Observed/estimated cumulative number of faults  vs. time
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Figure 8. Estimated Intensity Function for Actual Data 

 
Third Data Set: The third set of real data is from the 

study by [27]. The system is PL/1 data base application 
software, consisting of approximately 1,317, 000 lines of 
code. During the nineteen weeks experiments, 47.65 CPU 
times were consumed and about 328 software errors were 
removed. The original data report gives that the total 
cumulative number of detected faults after a long period 
of testing is 358 faults [27]. In order to estimate the 
parameters , , andmα β δ  of the Burr Type XII 
distributed function; we fit the actual testing-effort data 
into equations (1) and (2) and solve it by using the 
method of least squares. Hence, we can find the estimates 
only through numerical procedures. These estimated 
parameters are: 

α̂  = 675.20762, β̂ = 0.000251, 

δ̂ = 1.11883,  m̂ = 29.1946                              

Fig. 9 and Fig. 10 show the fitting of the estimated 
testing-effort. Here, the fitted curves are shown as a 
dotted line and solid line is actual software data. Using 
the estimated parameters , , andmα β δ , the other 
parameters ,a r  in (4) can be solved by MLE method for 
these failure data: 

a = 565.6973,    r = 0.01964 

For these estimates, the optimality was checked 
numerically. Table V summarizes the experimental 
results of estimated parameters with their standard errors 
and 95 % confidence bound.  

Similarly, fitted curve of the estimated mean value 
function with the actual software data in Fig. 11 has been 
plotted. Also a comparison table of the estimates of this 
model along with other models with initial faults a  and 
MSE is given in Table VI. From Figures 9, 10, and 11 
and the comparison criteria shows that this SRGM is 
better fit than the other models for PL/1 application 
program. Kolmogorov Smirnov goodness-of-fit test 
shows that our proposed SRGM described by an NHPP 
with ˆ ( )m t  fits pretty well at the 5 % level of significance. 
Figure 12 shows that the estimated intensity functions 
ˆ( )tλ  from equation (8). 

TABLE V  
SUMMARY OF ESTIMATE OF NHPP MODEL PARAMETERS 

 
Parameter Estimate Standard 

Error 
95% Confidence 
Lower Upper 

a 
r 

565.6973 
0.01964 

565.69734 
0.002826 

444.9546 
0.013677 

686.44005
0.0255998

  
TABLE VI 

COMPARISON RESULTS FOR THE THIRD DATA SET 
 

Model a r AE% MSE 
Burr Type XII Model 565.697 0.01964 58.02 116.40

Inflection s-shaped  
Model [27] 

389.1 0.0935493 8.69 133.53

Exponential Model [27] 455.37 0.0267368 27.09 206.93
Weibull Function [22] 565.35 0.0196597 57.91 122.09
Rayleigh Function [22] 459.08 0.0273367 28.23 268.42
Exponential Function 
[12] 

828.252 0.0117836 131.35 140.66

Delayed  s-shaped 
 Model [13] 

374.05 0.197651 4.48 168.67

Delayed  s-shaped  
Model with Rayleigh  
Function [12] 

333.136 0.100415 6.93 798.49

S-Shaped Model with 
Logistic Function [22] 

338.136 0.10004 5.54 242.79

 

Figure 10. Observed/estimated Cumulative Test-effort Function vs. Time

Time (weeks)

21191715131197531

C
um

ul
at

iv
e 

Te
st

-e
ffo

rt 
(C

PU
 H

ou
rs

)

30

20

10

0

Actual

Fitted

 
 

0

1

2

3

4

5

6

7

1 3 5 7 9 11 13 15 17 19 21
Time (days)

In
te

ns
ity

 F
un

ct
io

n

JOURNAL OF SOFTWARE, VOL. 9, NO. 6, JUNE 2014 1395

© 2014 ACADEMY PUBLISHER



Figure 11. Observed/estimated Cumulative Number of Failures vs. Time
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Figure12. Estimated Intensity Function for Actual Data 

 
In addition, substituting the estimated parameters 
, , andmα β δ  in equation of maxt , the testing effort 

function reaches the maximum at time t = 10.8094 weeks 
which corresponds to w(t) = 6.5948 CPU hours and W(t) 
= 67.2605 CPU hours. Besides, the expected number of 
errors removed up to this time maxt  is 414.7098 and when 
t  goes to infinity, the expected numbers of errors 
removed is 565.6993. 

VI. OPTIMAL RELEASE POLICY FOR SOFTWARE 

Besides, developing software reliability growth models, 
it is also of great interest to know when to stop testing 
and the software for use. If the release of the software is 
unduly delayed, the manufacturer (Software developer) 
may suffer in terms of revenue loss, while a premature 
release may cost heavily in terms of fixes (removals) to 
be done after release and may even harm the 
manufacturer’s reputation. Software release time 
problems have been classified in different way. One is, 
when to release software so that the cost incurred during 
the life cycle (consisting of the development and 
operational phases) of the software is minimized or the 
reliability is maximized [28].  

A. Reliability Criteria 
In general, the software-release time problem is 

associated with the reliability of a software system.. If the 

reliability of a software system is known to have reached 
an acceptable level, then we can obtain the right time to 
release this software. References [28] and [35] discussed 
the release problem by considering the software cost- 
benefit. The conditional reliability function after the last 
failure occurs at time t is: 

[ ( ) ( )]( | ) m t x m tR R x t e− + −= =
( ) ( )[ ]rW t rW t xa e ee

− − +− −=       (25) 

Differentiate ( | )R x t with respect to t, then 0dR
dt

≥ . 

Hence R is a monotonic increasing function of t. Taking 
the logarithm on both side of the above equation, we 
obtain. 

[ ]log ( ) ( )R m t x m t= − + −       (26) 

Solving (26) and (4) determines the testing time 
needed to reach a desired R. R(t) is increasing in t (0 < t 
< LCT ). Using (26), one can get the required testing time 
needed to reach the reliability objective R or decide 
whether R is reached or not in a specified time interval. 

• Reliability Analysis For Real Data Sets 
First Data Set: From the previous estimated 

parameters:  we know that α̂  =35.2418, β̂ =0.0634,
ˆ 0.3261m = , δ̂ =11.2592, a =  133.7025, r = 0 .1553 

Suppose this software system is desired that this 
testing would be continued till the operational reliability 
is equal to 0.85 (at tΔ = 0.1), from equation (26) and 
equation (4), we get t = 20.3456 weeks. If the desired 
reliability is 0.90, then t = 21.1729 weeks. If the desired 
reliability is 0.95, then t = 22.7449 weeks. If the desired 
reliability is 0.99, then t = 27.2316 weeks. 

Second Data Set: In second data set, from equation 
(26)and equation (4), for α̂  = 121.4621, β̂ = 0.005657, 

δ̂ = 1.908, ˆ 0.3261m = = 78.9143, a =  94.4345, r = 
0.02554  The testing time t = 17.8319 days is obtained, if 
we assume that the testing of this software system is 
desired to be continued till the operational reliability is 
equal to 0.85 (at tΔ = 0.1). If the desired reliability is 
0.90, then t = 20.8985 days. If the desired reliability is 
0.95 (0.99), then t = 24.3609 (33.7320) weeks 

Third Data Set: From the previous estimated 
parameters: α̂  = 675.20762, β̂ = 0.000251, δ̂ = 1.11883,  
ˆ 0.3261m = = 29.1946, a = 565.6973,  r =  0.0196, 

suppose this software system is desired that the testing 
would be continued till the operational reliability is equal 
to 0.8 (at tΔ = 0.1), from equation (26) and equation (4), 
we get testing time t = 10.3198 weeks. If the desired 
reliability is 0.85, then t = 10.9415 days. If the desired 
reliability is 0.92 (0.98), then t = 12.2399 (14.9614) 
weeks 

B.  Cost-Reliability Criteria 
This section discusses the cost model and release 

policy based on the cost-reliability criterion we can 
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evaluate the total software cost by using cost criterion, 
the cost of testing-effort expenditures during software 
testing and development phase, and the cost of correcting 
errors before and after release as follows [18], [19], [38], 
[39]: 

[ ]1 2 3
0

( ) ( ) ( ) ( ) ( )
T

LCC T Cm T C m T m T C w x dx= + − + ∫                    (27) 

Where C1 is the cost of correcting an error during 
testing,C2 is the cost of correcting an error in operational 
use (C2>C1), C3 is the cost testing per unit testing-effort 
expenditures and TCL is the software life-cycle length. 

Differentiating the above equation w. r. t. T and setting 
it to zero, we obtain 

1 2 3
( ) ( ) ( ) ( ) 0dC T dm T dm TC C C w T

dT dT dT
= − + =  

Or,   ( )
2 1 3

( ) ( ) ( ). . . rW TdC T w T C C ar e C
dT

−⎡ ⎤= − − +⎣ ⎦                 (28)                                      

Now 
( )3

2 1

( )
( ). . . rW Tw T C

w T a r e
C C

−=
−

 

0r,   
( )3

2 1

. . rW TC
a r e

C C
−=

−
s 

              
( ) ( ( ))
( )
T r a m T

w T
λ= = −  

3

2 1

( ) ( ( ))
( )

CT r a m T
w T C C
λ∴ = = −

−
                    (29) 

Case 1: If T = 0, then   m(0) = 0, and 
( )
( )
T ar

w T
λ =  

Case 2: If T → ∞ , then W( ∞ ) = ∞ , ( ) (1 )rm a e α−∞ = −  
( ) . .
( )

rT a r e
w T

αλ −=  

Therefore, ( )
( )
T

w T
λ  is monotonically decreasing in T. 

If 3

2 1

(0) . .
(0)

C
a r

w C C
λ = ≤

−
 

Then, 
3

2 1

( ) for 0
( ) LC

CT T T
w T C C
λ ≤ < <

−
 

Hence for this case, the optimal software release time 
0T ∗ = , 

since ( )dC T
dT

>0 for 0 <T < TLC. 

If 3

2 1

(0) ( ). . . . ,
(0) ( )

rC Tar are
w C C w T

αλ λ −= > > =
−

 

Then, there exist a finite and unique solution. 
To satisfying equation (29) that is, 

3

2 1
( )

[1 (1 ( ) ) ]

( ) ( ( ))
( )

. .

. .
m

rW T

r T

Ct r a m T
w t C C

a r e

a r e
δα β

λ

−

−

− − +

= = −
−

=

=

 

 
Rearranging this equation gives, 

[1 (1 ( ) ) ] 2 1

3

2 1

3

. ( )

. ( )
[1 (1 ( ) ) ] ln

mr T

m

ar C Ce
C

ar C Cor r T
C

δα β

δα β

−− +

−

−
=

⎡ ⎤−
− + = ⎢ ⎥

⎣ ⎦

 

1

2 1

3

.( ) 1
. ( ). ln

m

ror T
a r C Cr

C

δ αβ
α

⎡ ⎤
⎢ ⎥
⎢ ⎥= −⎢ ⎥⎡ ⎤−−⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦⎣ ⎦

 

1
1

2 1

3

1 . 1
. ( ). ln

m

ror T
a r C Cr

C

δ

α
β

α

⎡ ⎤⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥= −⎢ ⎥⎢ ⎥⎡ ⎤−⎢ ⎥−⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦⎢ ⎥⎣ ⎦

               (30) 

Minimizes C (T) 

Because  0
( ) 0 for 0dC T T T

dT
< < <  and 

0
( ) 0 for ,LC

dC T T T T
dT

> < <  

The minimum of C(T) is at T = T0 for T0 < T, because 
2

2

( ) 0,  then ( )d C T C T
dT

>  is a convex function.  

Here our goal is to minimize the total software cost 
under the consideration of desired software reliability, 
and the optimal software release time is obtained. That is, 
the optimal software release problem can be formulated 
as follows. 

Minimize  C(T)                                                 (31) 
Subject to R (x|t) ≥ R0,                         

       T ≥ 0 for C2 > C1 > 0, C3 > 0, x ≥ 0, 
              0 < R0 <1. 

Then, we can obtain the solutions for the cost reliability 
optimum software release time: 

T* = max [T0, T1] 

Where T0  is finite and the unique solution T of (31), T1 is 
finite and unique T Satisfying R (x|t) = R0, 0 < R0 < 1. 
 
Theorem: We assume that; 
C1 > 0, C2 > 0, C3 > 0, C2 > C1, x > 0, 0 < R0 <1, then 

• If   3 3

2 1 2 1

(0) ( )and . ..
(0) ( )

rC CT r e
w C C w T C C

αλ λ α −> = <
− −

 

then T* = max [T0 , T1]  for R (x|t) < R0 <1 or 
T* = T0 for 0 < R  < R (x|t = 0). 
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• If  3

2 1

(0)
(0)

C
w C C
λ ≤

−
 then, 

T* = T1 for R (x|0)  < R0 < 1 or 
      T* = 0 for 0 < R0 < R (x|0) 

• If  *3
1

2 1

(0) then
(0)

C T T
w C C
λ ≥ ≥

−
 

for R (x|0) < R0 <1 or T* ≥  0 for  0 < R0 ≤  R (x|0). 

To illustrate the above item, we use again the first 
real data set for numerical example on optimal software 
release problem. 

Numerical Example: From the previously estimated 
parameters it is known that 
α̂  =35.2418, β̂ = 0.0634, ˆ 0.3261m = , δ̂ =11.2592, a =  
133.7025,   r = 0 .1553 
Also assume C1 = 10,  C2 = 50,  C3 = 100,  TLC  = 100, 
 R0 = 0.90 x = 0.1. Then we get the optimal 
release time T0 estimated as 17.62038 based on 
minimizing C(T) of equation (27), and  T1 is estimated as 
21.1729  based on satisfying the reliability criterion of  
R(t+x| t) = R0. Moreover, since 

 3 3

2 1 2 1

(0) ( )and . ..
(0) ( )

rC CT r e
w C C w T C C

αλ λ α −> = <
− −

  

and  R (x|0) < R0 , 

The T* is estimated as max {17.6204, 21.1729} = 
21.1729 weeks. The optimal total software cost C(T*) 
=4853.35  and the achieved software reliability 
R(21.1729+x (= 0.1)/ 21.1729) is 0.90. 

VII. CONCLUSION 

Software reliability measurement during testing phase 
is essential for examining the degree of quality or 
reliability of developed software systems. 

In this paper, we have discussed a software reliability 
growth model (SRGM) based on NHPP, which 
incorporates Burr Type XII testing-effort expenditure. 
We have also discussed the optimal release-time 
determination based on cost and reliability criteria within 
our framework. We conclude that the Burr Type XII 
testing-effort function can be used to represent a software 
reliability growth model. Computation results show that 
the testing-effort function proposed here, gives a good 
fault predictive capability and better performance for 
three actual software failures data set. We also conclude 
that the proposed model has a better goodness of fit as 
compared to the other existing models. Burr Type XII 
testing-effort curve gives better estimates than 
Exponential, Rayleigh, and Weibull type consumption 
curves.  
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