
UML-Checker: An Approach for Verifying UML 
Behavioral Diagrams 

 
Flávio Fernandes,  Mark Song     
Computer Science Department, 

Pontifícia Universidade Católica de Minas Gerais 
Belo Horizonte, MG, Brazil 

 Email: flavio.fernandes@sga.pucminas.br, song@pucminas.br 
 
 
 

Abstract— UML is a visual modeling language used for 
specifying, visualizing, constructing, and documenting 
software artifacts. Despite having many features to model 
systems, conducting verifications and validations on UML 
models is not an easy task. In this paper, the problem of 
performing verification of UML models is discussed through 
a translation of UML behavioral diagrams into formal 
models to be verified by a symbolic model checker. An 
approach and tool (UML checker) is presented in order to 
conduct verifications on UML diagrams. The main ideas are: 
(a) provide an approach to perform the translation of 
activity, state and use case diagrams to the formal input 
language of the NuSMV checker; (b) automate the 
translation of UML diagrams to a formal language; and (c) 
provide a set of predefined validations that are used to 
check the diagrams. 
 
Index Terms— methods, model checking, UML behavioral 
diagrams 

I.  INTRODUCTION 

The Unified Model Language (UML) is a visual 
modeling language used in software development. It 
provides resources to specify, visualize, construct and 
document systems through diagrams. The UML provides 
structural and behavioral diagrams that allow the creation 
of individual profiles for a given system. Structural 
diagrams are designed to visualize and document the 
static aspects of systems, while the behavioral diagrams 
aims at visualizing the dynamic aspects. 

Due to the features offered, the UML has 
unquestionable advantages as a technique for visual 
modeling. With the explosion of UML, several support 
tools have been developed. However, the existing tools 
do not guarantee that the generated models are correct.  

Human errors can introduce defects at any stage of 
software development, including during the modeling 
cycle. As a result, the cost to detect and remove such 
defects increases considerably through the software 
development [1, 2, 3, 4].  

A diagram without errors has important benefits such 
as the possibility of raising the accuracy of an 
implementation. One way to raise this accuracy is 
through the process of Verification & Validation (V&V) 
[5, 6, 7]. Inspections and testing are activities of V&V 
process that could assist in verification of UML diagrams. 

However, checking all combinations of input and pre-
conditions is not feasible except for trivial cases [8, 9, 10]. 

The verification of a system is laborious and requires 
specialized tools such as theorem provers [11]. 

The use of formal techniques force a detailed analysis 
of the specifications, which may reveal potential 
inconsistencies or omissions that would otherwise remain 
unnoticed until the system operates [12]. Formal methods 
enable the software engineer to specify, develop and 
verify a computer system applying a rigorous 
mathematical notation [13]. 

Among the formal method techniques there is the 
Symbolic Model Checking approach, which is used to 
check whether a finite state model satisfies certain 
properties. The purpose of the technique is to provide a 
framework to evaluate expressions in order to confirm or 
obtain counterexamples (in case of failures) [14, 15, 16].  

This paper presents an approach to support the 
verification of UML diagrams using formal methods. It 
provides a method for automatic translation of activity, 
state and use case UML diagrams to Symbolic Model 
Checking, and also, a way to carry out checks on 
diagrams from pre-defined validations. 

In the next sections we present the UML behavioral 
diagrams and discuss the Model Checking approach.  

II . UML BEHAVIORAL DIAGRAMS 

A diagram is a graphical presentation of a set of 
elements, usually represented as graphs. They are 
designed to allow viewing the system from different 
perspectives - in this sense, a diagram is a projection of a 
given system.  

In all the systems, except for the most trivial, a 
diagram represents a partial view of the system 
components. UML has 13 diagrams: Class Diagram, 
Component Diagram, Object Diagram, Composite 
Structure Diagram, Deployment Diagram, Package 
Diagram, Activity Diagram, Use Case Diagram, State 
Machine Diagram, Sequence Diagram, Interaction 
Overview Diagram, Communication Diagram and 
Timing Diagram. 

UML diagrams are organized into two major groups: 
Structural Diagrams and Behavioral Diagrams. 
Behavioral Diagrams have a specific group of diagrams: 
State Machine, Activity Diagram and Use Case Diagram. 

A State Machine Diagram (Figure 1) is a behavioral 
diagram that specifies the sequences of states through 
which an object goes through during its lifetime in 
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response to events, together with their responses to those 
events. 

 

 
 
Figure 1. State Machine Diagram. 

 
An Activity Diagram (Figure 2) is a special type of 

State Machine Diagram where activity states are 
represented instead of object states. It is used to represent 
the flow from one activity to another. Unlike the state 
machine diagram that are event-driven, activity diagrams 
are control-flow-oriented. 

 

 
 
Figure 2. Activity Diagram. 

 
An activity is an ongoing execution. The activities 

result in some action, formed by the computations that 
result in a system state change or a value returned. The 
actions include a call to other operations, sending a signal, 
creating or destroying an object or some pure 
computation, such as the computation of an expression. 

 
 

 
 
Figure 3. Use Case Diagram. 

 
 
The Use Case Diagram (Figure 3) is intended to help 

the communication between analysts and clients. A use 
case diagram describes a scenario that shows the system`s 

features from the users point of view. It corresponds to an 
external view of the system and graphically represents 
actors, use cases and relationships between these 
elements. It is especially important to organize and model 
the system behavior. 

III. MODEL CHECKING 

Model checking and more specifically Symbolic 
Model Checking (SMC) is a technique to explore finite 
applications described as a graph. Each graph containing 
states and transitions which are validated throw temporal 
logic. It is possible to verify if a transition occurs based 
on Boolean formulas and temporal logic (linear or 
branching logic).  

Clarke has introduced SMC to verify hardware designs 
and identify errors based on properties described in 
temporal logic [13]. SMC has been applied also to 
software designs in order to check if a sequence of states 
matches the restrictions described by a set of temporal 
clauses.  

This approach, unlike the traditional ones such as test, 
simulation and theorem proving is completely automatic. 
It also explores all state-space system searching for errors.   

The system is described as a 4-tuple graph M (States, 
Initials, Actions, Δ). Each state ∈ States refers to the 
present condition of a system. Initials ⊆ States is a subset 
defining the initial states. Δ ⊆ States x Actions  x State is 
a total relation (the set of transitions). One computation 
of M is p = s0, s1 ... sn of states (s0 ∈ Initials). 

The properties to be checked can be described in some 
temporal logic, which is a formalism to describe 
computation (transitions between states). This logic can 
be used to describe events occurring in the system. 

The temporal logic describes linear or branching time 
events occurring in continuous or discrete time. In the 
branching-time logic, the time has many possible future 
paths in a given instance. 

The time can be defined discrete if between two 
instances of time no other instance is found; otherwise it 
is assumed as continuous. In our work the Computation 
Tree Logic (CTL) is used.  CTL describes an infinite tree 
where each path in the tree describes one possible 
computation of the system.  

CTL operators must be applied in all paths to describe 
one or all possible computation (path quantifiers). The A 
operator describes all possible paths, whereas the E 
operator, some path. Also, a temporal operator must be 
applied to define behaviors that are expected along a path 
described by formula f.  

The main temporal operators describe future event (F –  
f  must be valid in some state path); events that holds 
forever (G - f  must be valid in all states); next state (X – 
formula f must be valid in the next state based on the  
current state of the path). 

Following are some CTL formulas. For example, 
EF(required → EF acknowledge) describes that if 
eventually required occurs, then acknowledge will also 
occurs in, at least, one path. Another example: AG(empty 
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∧ waiting) check if in all states empty must be true and so, 
the system status must be waiting. 

IV. A FORMAL METHODOLOGY TO PERFORM UML 
DIAGRAMS VERIFICATION 

This section presents a formal methodology 
developed to perform validations of activity, state and use 
case diagrams using Symbolic Model Checking. Figure 4 
presents the methodology, which is divided into three 
phases: specification, verification and results. 
 

.  
 
Figure 4. Methodology. 
 

A. Specification 
The specification phase is performed by a Software 

Engineer that, using UML tools available (e.g., Rational, 
Astah), creates the diagrams to be checked. After, one 
generates a description of the diagrams in XMI format 
using UML tools output (the XMI is an OMG standard 
for exchanging metadata information via XML). 
Moreover, in this phase, the properties (rules to be 
verified in a diagram) are selected.  

B. Verification 
The next phase, Verification, comprises: the XMI 

translation to SMV file, the conversion of properties to 
the temporal logic file and the automatic verification. 
This phase begins when the framework receives, from the 
Specification phase, the XMI file and the Properties to be 
checked.  

With such information, the translation of the XMI files 
(which represents the diagrams) to the formal model is 
performed, thereby generating the SMV file.  

Then, the properties are converted to temporal logic, 
generating the Temporal Logic file. Finally, both files 
(the SMV and Temporal Logic files) are linked in order 
to carry out the checking. 

C. Results 
In the last phase (which is automatically performed 

by the tool), the results are presented. If the diagram does 
not satisfy the properties specified then counterexamples 
are generated - in this case the counterexample describes 
a computation that does not satisfy the properties checked. 

V. THE TRANSLATION PROCESS 

A. Translation of State Machine Diagram 
In the translation of the State Machine Diagram, the 

states are grouped into enumerations. Each event/action 
is translated to a boolean variable and each transition is 
represented by the CASE statement. 

TABLE 1.  
TRANSLATION OF STATE MACHINE DIAGRAM TO SMV. 

UML SMV Initial value 
State Element of 

enumeration type 
 

Event/Action
Transition 

Boolean variable 
CASE statements 

False 
 

   
It is noteworthy that the enumeration will always be 

initialized with the initial state to mark the starting point 
of the diagram.  

Every event is initialized with false value and can be 
activated with the transitions between states. To illustrate 
the proposed translation we use a simple state machine 
diagram (Figure 1).  

Applying the proposed changes one can obtain the 
following code: 

 
MODULE main 
VAR 
  keyPress:boolean; 
  finished:boolean; 
  shutdown:boolean; 
  states:{ idle, running, final}; 
ASSIGN 
  init(states):= idle; 
  next(states):= case 
    keyPress : running; 
    finished : idle; 
    shutdown : final; 
    1: states; 
  Esac 

B. Translation of Activity Diagram 
In the translation of the Activity Diagram, each 

activity, initial state and final state are mapped as logical 
variables describing whether an activity was executed or 
not.  

All variables begin as false (not running activity), 
except for the initial state that assumes the value true. 
After the declaration of variables and their initial values, 
for each element the implementing rules are defined.  

To translate the transition behavior of the activities 
some specific cases were identified.  
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MODULE main 
VAR 
  customer:boolean; 
  retailInstitution:boolean; 
  sponsoring:boolean; 
  usecase: {perform, process, reconcile, manage}; 
ASSIGN 
  next(usecase):= case 
    customer: {perform, process, reconcile, manage}; 
    retailInstitution: {perform, process}; 
    sponsoring: {reconcile, manage}; 
  esac; 

VI. VERIFICATIONS 

In this section, we briefly present how properties can 
be specified in order to apply and verify the UML activity 
diagram through formal methods. A detailed description 
can be found in [17].  

In the state and activity diagrams it is possible to 
check whether states or activities have been executed or 
not in a given time.  

To verify that the flow can always reach its end: if 
there is no cycles without execution limits, that indicates 
one can always reach the end of a flow. We have listed 
some possible verification to be executed from the 
translation made. 

One can verify if “an action holds another will hold”. 
Figure 7 represents the state transitions required for the 
verification of this type of validation.  

Considering that the variable First represents the first 
action and Second the second one, the status 1 of an 
action represents the execution while 0 represents that it 
was not executed.  

Thus, in the initial state, indicated by an upper arc, 
both activities were not executed. Following, the action 
First should be performed while the action Second 
remains unexecuted.  

Later, at some point, the state in which both actions 
are carried out must be achieved and not abandoned until 
the end of the flow.  

 

 
Figure 7. An acion  implies in another future action.   

 
The following temporal logic formula, where First 

and Second represent components of the flow describes 
the SMV verification.  

Basically, “In every action/states of the model where 
the action First is performed, one will always execute 
Second”: 

SPEC AG(First -> AF (Second)); 

Another test can describe (Figure 8) that “An action 
implies on not running another one”. The following 
temporal logic formula describes the SMV verification: 

SPEC AG(First -> AG(!Second)); 

 

 
Figure 8. An action implies on not running another one. 

 

VII. THE UML CHECKER 

In order to validate the proposed methodology, we 
created the UML Checker that automates the entire 
process, offers a set of rules for evaluating diagrams 
(presented in the last section), performs validations 
according to the rule set and displays the results obtained, 
which are positive or negative. In the case of a negative 
counterexample appears to justify the answer. 

Figure 9 presents an overview of the tool architecture 
that was developed using Java SE libraries. The open-
source JDOM library was also used, which is a library 
that allows reading and writing files in XML format. In 
addition, we introduced into the tool the symbolic model 
checker NuSMV which is responsible for performing 
validations.  

 

 

Figure 9. Architecture. 

The tool has two interfaces. The first one, called 
“Translator” is responsible for translating the diagrams. 
The second, called “Checker” is responsible for verifying 
the models.  

After the execution, the interface is responsible for 
analyzing the responses and displaying them to the user 
in a simplified manner.  

The tool takes as input the model diagram in XMI 
format. The translator is responsible for going through the 
input file translating it to the verification model. 

After the translation and together with the properties to 
be validated (as informed by the user) the diagram is 
checked by NuSMV.  
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VIII. EVALUATIONS 

In order to evaluate the tool’s ability to detect 
problems and effectively assist in validating the diagrams 
we attempted to get real modeling, their previous reviews 
and test them to draw a comparison.  

All properties identified were tested, and in the case of 
negative responses a counterexample is presented. We 
privileged tests that used the original diagram (i.e., 
without changes), when this was possible. Otherwise, it 
was decided to insert errors. Due to space limitations will 
present only part of the activity diagram evaluations. 

 

 
 

 Figure 10. Scheduler Diagram. 
 
In the case study to be presented, the diagrams (a total 

of 15 diagrams) describe a tool for extraction, 
transformation and loading of data between two 
repositories.  

The primary purpose of the tool is the implementation 
of an automated charging process to an intermediate data 
model, providing consistent data for the process of data 
collection. 

The first activity diagram is the Scheduler, shown in 
Figure 10. This diagram was used to model the activities 
performed during the execution of scheduled tasks to 
import the project data.  

The second one is the Data Exclusion (Figure 11), 
which represents the flow of all activities that are 
performed by the system to delete a database. 

One can use the activity diagram Scheduler. In this 
diagram we tested the rule that whenever the action 
“Read schedules” is performed (Figure 12), the action 
“Read next scheduling on the list” will hold. The answer 
is true for both activities.  

 

 
 

Figure 11. Data Exclusion Diagram. 
 

  
Figure 12. Read Schedules. 

 
Checking the statement, if action “Read schedules” 

holds, the action “All scheduling from the list were 
examined” does not hold (Figure 13), we received a 
correct answer (no) once the second action may not occur. 
Note that, the second action depends on the branch to be 
performed. 

 

 
 

Figure 13. Loop Read Schedules. 
 

Using the activity diagram Data Exclusion in Figure 11, 
one can observe that there is no possible computation in 
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which action “Save error message” holds and also 
“Reads  record” action holds – an expected result. 

  

 
Figure 14. Open the data repository. 

 
Note that, not always “Read next scheduling on the list” 

holding will imply in “Read the list of organization” 
action – here an uninterrupted loop will result in, at least, 
one computation not reaching the second action. 

Note the relationship between the activities “Read 
schedules” and “All scheduling from the list were 
examined” in Figure 13.  

One can check if the first action holds the second one 
will not. The result is negative because if the second 
action is not performed when the first is, it does not mean 
that the second one will never be. 

One can check if there is a some sort of dependency 
between action. Take as example, activities “Read 
schedules” and “All scheduling from the list were 
examined”. We checked if  “All scheduling from the list 
were examined” can be only executed if “Read schedules”  
holds. As expected, a positive answer was generated. 

 We check for activities that do not hold. One can think 
as an error, but that is not always the case. Given the 
activities from Figure 14 “Save error message” and 
“Start reading records” a true answer was generated. 
Note that all activities depend on the condition evaluation. 

We also tested whether the tool correctly interprets the 
parallelism rules, not applying the same logic of 
conditional objects.  

To do so we used the activities “Read next 
organization” and “Run the process” that are positioned 
in the activity diagram Scheduler (Figure 15) 
immediately after the parallelism object and a correct 
negative response was obtained. 

 

 
Figure 15. Run the import process. 

 

 
Figure 16. Read next record. 

 
In the case of Figure 16, we tested if introducing an 

error (disconnecting an element) then a true response 
would be obtained.  

We tested the action “Deletes a record in the 
repository” from the Data Exclusion diagram, before and 
after the deleting of the entry transition. 

Thus, the test performed produced a negative answer. 
Therefore, there is at least one way in which the activity 
“Deletes a record in the repository” will be performed.  

Then, we deleted the entry transition for the action in 
question and the tool gave a positive response, as 
expected, because the activity has no connection with 
another activity of the diagram, so it is impossible that 
such action is performed. 

IX. CONCLUSION 

In order to conduct verifications in UML diagrams, 
many techniques have been proposed to transform UML 
diagrams into formal specifications. For example, one can 
mention the works done by [18, 19, 20, 21].  

The work done by [18] presented a new method to 
automatically transform a UML system model to the 
formal method RTPA, contributing to formalization of 
UML diagrams.  

The paper [19] presents a Petri Nets model that can 
express the formal semantic of State Diagrams, especially 
for features like transitions conflict. A study done by [21] 
uses Symbolic Model Verifier (SMV) to verify State 
charts Diagrams showing that formal verification can be 
used to verify UML models. 

Through the related works found it was possible to 
identify some of their limitations. The works focus on the 
translation of UML state and activity diagrams because of 
the proximity to the check pattern.  

Furthermore, these works do not describe the patterns 
used to translate the UML diagrams to Symbolic Model 
Checking. 

Given the need to ensure better quality of UML 
models this work developed a framework to perform 
automatic checking of UML models that have not been 
addressed by these works.  

Our work contributes by providing a standard for the 
translation of UML behavioral diagrams to Symbolic 
Model Checking.  
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