
UML-Checker: An Approach for Verifying UML
Behavioral Diagrams

Flávio Fernandes, Mark Song
Computer Science Department,

Pontifícia Universidade Católica de Minas Gerais
Belo Horizonte, MG, Brazil

 Email: flavio.fernandes@sga.pucminas.br, song@pucminas.br

Abstract— UML is a visual modeling language used for
specifying, visualizing, constructing, and documenting
software artifacts. Despite having many features to model
systems, conducting verifications and validations on UML
models is not an easy task. In this paper, the problem of
performing verification of UML models is discussed through
a translation of UML behavioral diagrams into formal
models to be verified by a symbolic model checker. An
approach and tool (UML checker) is presented in order to
conduct verifications on UML diagrams. The main ideas are:
(a) provide an approach to perform the translation of
activity, state and use case diagrams to the formal input
language of the NuSMV checker; (b) automate the
translation of UML diagrams to a formal language; and (c)
provide a set of predefined validations that are used to
check the diagrams.

Index Terms— methods, model checking, UML behavioral
diagrams

I. INTRODUCTION

The Unified Model Language (UML) is a visual
modeling language used in software development. It
provides resources to specify, visualize, construct and
document systems through diagrams. The UML provides
structural and behavioral diagrams that allow the creation
of individual profiles for a given system. Structural
diagrams are designed to visualize and document the
static aspects of systems, while the behavioral diagrams
aims at visualizing the dynamic aspects.

Due to the features offered, the UML has
unquestionable advantages as a technique for visual
modeling. With the explosion of UML, several support
tools have been developed. However, the existing tools
do not guarantee that the generated models are correct.

Human errors can introduce defects at any stage of
software development, including during the modeling
cycle. As a result, the cost to detect and remove such
defects increases considerably through the software
development [1, 2, 3, 4].

A diagram without errors has important benefits such
as the possibility of raising the accuracy of an
implementation. One way to raise this accuracy is
through the process of Verification & Validation (V&V)
[5, 6, 7]. Inspections and testing are activities of V&V
process that could assist in verification of UML diagrams.

However, checking all combinations of input and pre-
conditions is not feasible except for trivial cases [8, 9, 10].

The verification of a system is laborious and requires
specialized tools such as theorem provers [11].

The use of formal techniques force a detailed analysis
of the specifications, which may reveal potential
inconsistencies or omissions that would otherwise remain
unnoticed until the system operates [12]. Formal methods
enable the software engineer to specify, develop and
verify a computer system applying a rigorous
mathematical notation [13].

Among the formal method techniques there is the
Symbolic Model Checking approach, which is used to
check whether a finite state model satisfies certain
properties. The purpose of the technique is to provide a
framework to evaluate expressions in order to confirm or
obtain counterexamples (in case of failures) [14, 15, 16].

This paper presents an approach to support the
verification of UML diagrams using formal methods. It
provides a method for automatic translation of activity,
state and use case UML diagrams to Symbolic Model
Checking, and also, a way to carry out checks on
diagrams from pre-defined validations.

In the next sections we present the UML behavioral
diagrams and discuss the Model Checking approach.

II . UML BEHAVIORAL DIAGRAMS

A diagram is a graphical presentation of a set of
elements, usually represented as graphs. They are
designed to allow viewing the system from different
perspectives - in this sense, a diagram is a projection of a
given system.

In all the systems, except for the most trivial, a
diagram represents a partial view of the system
components. UML has 13 diagrams: Class Diagram,
Component Diagram, Object Diagram, Composite
Structure Diagram, Deployment Diagram, Package
Diagram, Activity Diagram, Use Case Diagram, State
Machine Diagram, Sequence Diagram, Interaction
Overview Diagram, Communication Diagram and
Timing Diagram.

UML diagrams are organized into two major groups:
Structural Diagrams and Behavioral Diagrams.
Behavioral Diagrams have a specific group of diagrams:
State Machine, Activity Diagram and Use Case Diagram.

A State Machine Diagram (Figure 1) is a behavioral
diagram that specifies the sequences of states through
which an object goes through during its lifetime in

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1229

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1229-1236

response to events, together with their responses to those
events.

Figure 1. State Machine Diagram.

An Activity Diagram (Figure 2) is a special type of

State Machine Diagram where activity states are
represented instead of object states. It is used to represent
the flow from one activity to another. Unlike the state
machine diagram that are event-driven, activity diagrams
are control-flow-oriented.

Figure 2. Activity Diagram.

An activity is an ongoing execution. The activities

result in some action, formed by the computations that
result in a system state change or a value returned. The
actions include a call to other operations, sending a signal,
creating or destroying an object or some pure
computation, such as the computation of an expression.

Figure 3. Use Case Diagram.

The Use Case Diagram (Figure 3) is intended to help

the communication between analysts and clients. A use
case diagram describes a scenario that shows the system`s

features from the users point of view. It corresponds to an
external view of the system and graphically represents
actors, use cases and relationships between these
elements. It is especially important to organize and model
the system behavior.

III. MODEL CHECKING

Model checking and more specifically Symbolic
Model Checking (SMC) is a technique to explore finite
applications described as a graph. Each graph containing
states and transitions which are validated throw temporal
logic. It is possible to verify if a transition occurs based
on Boolean formulas and temporal logic (linear or
branching logic).

Clarke has introduced SMC to verify hardware designs
and identify errors based on properties described in
temporal logic [13]. SMC has been applied also to
software designs in order to check if a sequence of states
matches the restrictions described by a set of temporal
clauses.

This approach, unlike the traditional ones such as test,
simulation and theorem proving is completely automatic.
It also explores all state-space system searching for errors.

The system is described as a 4-tuple graph M (States,
Initials, Actions, Δ). Each state ∈ States refers to the
present condition of a system. Initials ⊆ States is a subset
defining the initial states. Δ ⊆ States x Actions x State is
a total relation (the set of transitions). One computation
of M is p = s0, s1 ... sn of states (s0 ∈ Initials).

The properties to be checked can be described in some
temporal logic, which is a formalism to describe
computation (transitions between states). This logic can
be used to describe events occurring in the system.

The temporal logic describes linear or branching time
events occurring in continuous or discrete time. In the
branching-time logic, the time has many possible future
paths in a given instance.

The time can be defined discrete if between two
instances of time no other instance is found; otherwise it
is assumed as continuous. In our work the Computation
Tree Logic (CTL) is used. CTL describes an infinite tree
where each path in the tree describes one possible
computation of the system.

CTL operators must be applied in all paths to describe
one or all possible computation (path quantifiers). The A
operator describes all possible paths, whereas the E
operator, some path. Also, a temporal operator must be
applied to define behaviors that are expected along a path
described by formula f.

The main temporal operators describe future event (F –
f must be valid in some state path); events that holds
forever (G - f must be valid in all states); next state (X –
formula f must be valid in the next state based on the
current state of the path).

Following are some CTL formulas. For example,
EF(required → EF acknowledge) describes that if
eventually required occurs, then acknowledge will also
occurs in, at least, one path. Another example: AG(empty

1230 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

∧ waiting) check if in all states empty must be true and so,
the system status must be waiting.

IV. A FORMAL METHODOLOGY TO PERFORM UML
DIAGRAMS VERIFICATION

This section presents a formal methodology
developed to perform validations of activity, state and use
case diagrams using Symbolic Model Checking. Figure 4
presents the methodology, which is divided into three
phases: specification, verification and results.

.

Figure 4. Methodology.

A. Specification
The specification phase is performed by a Software

Engineer that, using UML tools available (e.g., Rational,
Astah), creates the diagrams to be checked. After, one
generates a description of the diagrams in XMI format
using UML tools output (the XMI is an OMG standard
for exchanging metadata information via XML).
Moreover, in this phase, the properties (rules to be
verified in a diagram) are selected.

B. Verification
The next phase, Verification, comprises: the XMI

translation to SMV file, the conversion of properties to
the temporal logic file and the automatic verification.
This phase begins when the framework receives, from the
Specification phase, the XMI file and the Properties to be
checked.

With such information, the translation of the XMI files
(which represents the diagrams) to the formal model is
performed, thereby generating the SMV file.

Then, the properties are converted to temporal logic,
generating the Temporal Logic file. Finally, both files
(the SMV and Temporal Logic files) are linked in order
to carry out the checking.

C. Results
In the last phase (which is automatically performed

by the tool), the results are presented. If the diagram does
not satisfy the properties specified then counterexamples
are generated - in this case the counterexample describes
a computation that does not satisfy the properties checked.

V. THE TRANSLATION PROCESS

A. Translation of State Machine Diagram
In the translation of the State Machine Diagram, the

states are grouped into enumerations. Each event/action
is translated to a boolean variable and each transition is
represented by the CASE statement.

TABLE 1.
TRANSLATION OF STATE MACHINE DIAGRAM TO SMV.

UML SMV Initial value
State Element of

enumeration type

Event/Action
Transition

Boolean variable
CASE statements

False

It is noteworthy that the enumeration will always be

initialized with the initial state to mark the starting point
of the diagram.

Every event is initialized with false value and can be
activated with the transitions between states. To illustrate
the proposed translation we use a simple state machine
diagram (Figure 1).

Applying the proposed changes one can obtain the
following code:

MODULE main
VAR
 keyPress:boolean;
 finished:boolean;
 shutdown:boolean;
 states:{ idle, running, final};
ASSIGN
 init(states):= idle;
 next(states):= case
 keyPress : running;
 finished : idle;
 shutdown : final;
 1: states;
 Esac

B. Translation of Activity Diagram
In the translation of the Activity Diagram, each

activity, initial state and final state are mapped as logical
variables describing whether an activity was executed or
not.

All variables begin as false (not running activity),
except for the initial state that assumes the value true.
After the declaration of variables and their initial values,
for each element the implementing rules are defined.

To translate the transition behavior of the activities
some specific cases were identified.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1231

© 2014 ACADEMY PUBLISHER

The first
2). They are
- the control
or activity no

In this ca
post-conditio
the activity C
continue with

If the ac
Commission
transition the

In all oth
no dependen
activities flow

Therefore
have no depe
code shows t

MODULE
VAR
 initial:bo
 selectSi
 commis
 final:boo
ASSIGN
 init(initi
 next(sel
 next(co
 commi
 commi
 1 : 0;
 esac;
 next(fin
 commi
 commi
 1 : 0;
 esac;

The seco

contain bran
some boole
Therefore, t
logical-tempo
branch.

When ev
nondetermini
choice (accor

It may b
permanence
nondetermini

next(assi
 assignTa

one is a simp
common, and

l flow passes
ode.
ase, the execu
on to the execu
Commission a
h the value tru
ctivity Select
architect has

e true value.
her cases it hol
nce and only
w, it will alwa
e, the next ac
endency to be
the translation

main

oolean;
te:boolean;
sionArchitect:
olean;

al):= 1;
lectSite):= 1;
mmissionArch
issionArchitec
issionArchitec

al):= case
issionArchitec
issionArchitec

ond case occu
nches, specify
ean expressio
the verifier s
oral assertion

Figure 5. B

valuated elem
ism features
rding to the co
e noted the a
of values p

ism being ind

gnTasks):= c
asks = 1 : 1;

ple sequential
d occur when
immediately

ution of the ev
ution of the pr

architect has a
ue.

site has bee
 not, then it w

lds false. As t
y determines
ays start with
ctivity after th
e marked as tr
n in this case:

:boolean;

hitect):= case
ct = 1 : 1;
ct = 0 & select

ct = 1 : 1;
ct = 0 & select

urs when the
ying alternativ
on, as show
shall evaluate
s considering

Branches.

ments are invo
must be in

ode below).
adoption of ru
previously ass
dicated for oth

ase

transitions (F
a state is com
to the next a

valuated activ
revious ones.
already run, it

en performed
will assume in

the initial state
the start of

the true value
he initial state
rue. The follo

tSite = 1 : 1;

tSite = 1 : 1;

e activity diag
ve paths base
wn in Figur
e the validit
all paths from

olved in bran
ntroduced on

ules to ensure
signed - and
er cases.

igure
mplete
action

vity is
So if
t will

d, but
n that

te has
f the

e.
e will
owing

agram
ed on
re 5.
ty of
m the

nches,
n the

e the
d the

e
n

T
exec

T
para
ends

S
spec
para

n

n

C. T

 In
be m
an e
othe

T
use
simp
case
relat
relat
use

 releaseWork
 releaseWork
 1 : 0;

esac;
next(reschedu
 reprogramar
 releaseWork

 releaseWork
 1 : 0; esac;

The third ca
cution, as dem

This case dea
allelism and t
s.
Such occurren
cific treatmen
allel paths are

next(synchMo
 decompress
 1 : 0; esac;

next(streamAu
 decompress
 1 : 0; esac;

Translation of

n the Use Ca
mapped as a bo
enumeration an
er enumeration

TRANSLATI

U
A

Use case/In
Gener

There are two
case diagram
ply makes th
es, (2) the s
tionships: incl
tionship is ge
cases and acto

= 1 & resche
= 1 : {0, 1}

ule):= case
= 1 : 1;
= 1 & (assign
 | next(as
= 1 & assignT

ase refers to
monstrated in F

Figure 6. Paralle

als with both
the activities

nces are the
t, and the int
generically ha

uth):= case
= 1 : 1;

udio):= case
= 1 : 1;

f Use case dia

ase Diagram (
oolean variabl
nd include an
ns as shown T

TABLE
ION OF USE CAS

UML
Actor
nclude/Extend/
ralization

o specific case
: (1) the first

he connection
second case
lude, extend, o
enerated an en
ors who are pa

edule = 1 : 0;
};

nTasks = 1
ssignTasks = 1
Tasks = 0 : 1

o the flow
Figure 6.

el Execution.

the initial act
in which th

only ones de
termediate ele
andled as follo

agram

(Figure 3), ea
le, use cases a

nd extend relat
Table 2.

E 2.
SE DIAGRAM TO

S
Boolea

Elem
enumer

es in the tran
case is Assoc

n between ac
is the repre

or generalizat
numeration c
art of the relat

1)) : 0;
;

with parallel

tivities of the
he parallelism

ependent of a
ements of the
ows:

ach actor will
are mapped as
tionships with

SMV.

SMV
an variable
ment of
ration type

nslation of the
ciation, which
ctors and use
esentation of
tion. For each

containing the
tionship:

l

e
m

a
e

l
s
h

e
h
e
f
h
e

1232 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

MODULE main
VAR
 customer:boolean;
 retailInstitution:boolean;
 sponsoring:boolean;
 usecase: {perform, process, reconcile, manage};
ASSIGN
 next(usecase):= case
 customer: {perform, process, reconcile, manage};
 retailInstitution: {perform, process};
 sponsoring: {reconcile, manage};
 esac;

VI. VERIFICATIONS

In this section, we briefly present how properties can
be specified in order to apply and verify the UML activity
diagram through formal methods. A detailed description
can be found in [17].

In the state and activity diagrams it is possible to
check whether states or activities have been executed or
not in a given time.

To verify that the flow can always reach its end: if
there is no cycles without execution limits, that indicates
one can always reach the end of a flow. We have listed
some possible verification to be executed from the
translation made.

One can verify if “an action holds another will hold”.
Figure 7 represents the state transitions required for the
verification of this type of validation.

Considering that the variable First represents the first
action and Second the second one, the status 1 of an
action represents the execution while 0 represents that it
was not executed.

Thus, in the initial state, indicated by an upper arc,
both activities were not executed. Following, the action
First should be performed while the action Second
remains unexecuted.

Later, at some point, the state in which both actions
are carried out must be achieved and not abandoned until
the end of the flow.

Figure 7. An acion implies in another future action.

The following temporal logic formula, where First

and Second represent components of the flow describes
the SMV verification.

Basically, “In every action/states of the model where
the action First is performed, one will always execute
Second”:

SPEC AG(First -> AF (Second));

Another test can describe (Figure 8) that “An action
implies on not running another one”. The following
temporal logic formula describes the SMV verification:

SPEC AG(First -> AG(!Second));

Figure 8. An action implies on not running another one.

VII. THE UML CHECKER

In order to validate the proposed methodology, we
created the UML Checker that automates the entire
process, offers a set of rules for evaluating diagrams
(presented in the last section), performs validations
according to the rule set and displays the results obtained,
which are positive or negative. In the case of a negative
counterexample appears to justify the answer.

Figure 9 presents an overview of the tool architecture
that was developed using Java SE libraries. The open-
source JDOM library was also used, which is a library
that allows reading and writing files in XML format. In
addition, we introduced into the tool the symbolic model
checker NuSMV which is responsible for performing
validations.

Figure 9. Architecture.

The tool has two interfaces. The first one, called
“Translator” is responsible for translating the diagrams.
The second, called “Checker” is responsible for verifying
the models.

After the execution, the interface is responsible for
analyzing the responses and displaying them to the user
in a simplified manner.

The tool takes as input the model diagram in XMI
format. The translator is responsible for going through the
input file translating it to the verification model.

After the translation and together with the properties to
be validated (as informed by the user) the diagram is
checked by NuSMV.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1233

© 2014 ACADEMY PUBLISHER

VIII. EVALUATIONS

In order to evaluate the tool’s ability to detect
problems and effectively assist in validating the diagrams
we attempted to get real modeling, their previous reviews
and test them to draw a comparison.

All properties identified were tested, and in the case of
negative responses a counterexample is presented. We
privileged tests that used the original diagram (i.e.,
without changes), when this was possible. Otherwise, it
was decided to insert errors. Due to space limitations will
present only part of the activity diagram evaluations.

 Figure 10. Scheduler Diagram.

In the case study to be presented, the diagrams (a total

of 15 diagrams) describe a tool for extraction,
transformation and loading of data between two
repositories.

The primary purpose of the tool is the implementation
of an automated charging process to an intermediate data
model, providing consistent data for the process of data
collection.

The first activity diagram is the Scheduler, shown in
Figure 10. This diagram was used to model the activities
performed during the execution of scheduled tasks to
import the project data.

The second one is the Data Exclusion (Figure 11),
which represents the flow of all activities that are
performed by the system to delete a database.

One can use the activity diagram Scheduler. In this
diagram we tested the rule that whenever the action
“Read schedules” is performed (Figure 12), the action
“Read next scheduling on the list” will hold. The answer
is true for both activities.

Figure 11. Data Exclusion Diagram.

Figure 12. Read Schedules.

Checking the statement, if action “Read schedules”

holds, the action “All scheduling from the list were
examined” does not hold (Figure 13), we received a
correct answer (no) once the second action may not occur.
Note that, the second action depends on the branch to be
performed.

Figure 13. Loop Read Schedules.

Using the activity diagram Data Exclusion in Figure 11,
one can observe that there is no possible computation in

1234 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

which action “Save error message” holds and also
“Reads record” action holds – an expected result.

Figure 14. Open the data repository.

Note that, not always “Read next scheduling on the list”

holding will imply in “Read the list of organization”
action – here an uninterrupted loop will result in, at least,
one computation not reaching the second action.

Note the relationship between the activities “Read
schedules” and “All scheduling from the list were
examined” in Figure 13.

One can check if the first action holds the second one
will not. The result is negative because if the second
action is not performed when the first is, it does not mean
that the second one will never be.

One can check if there is a some sort of dependency
between action. Take as example, activities “Read
schedules” and “All scheduling from the list were
examined”. We checked if “All scheduling from the list
were examined” can be only executed if “Read schedules”
holds. As expected, a positive answer was generated.

 We check for activities that do not hold. One can think
as an error, but that is not always the case. Given the
activities from Figure 14 “Save error message” and
“Start reading records” a true answer was generated.
Note that all activities depend on the condition evaluation.

We also tested whether the tool correctly interprets the
parallelism rules, not applying the same logic of
conditional objects.

To do so we used the activities “Read next
organization” and “Run the process” that are positioned
in the activity diagram Scheduler (Figure 15)
immediately after the parallelism object and a correct
negative response was obtained.

Figure 15. Run the import process.

Figure 16. Read next record.

In the case of Figure 16, we tested if introducing an

error (disconnecting an element) then a true response
would be obtained.

We tested the action “Deletes a record in the
repository” from the Data Exclusion diagram, before and
after the deleting of the entry transition.

Thus, the test performed produced a negative answer.
Therefore, there is at least one way in which the activity
“Deletes a record in the repository” will be performed.

Then, we deleted the entry transition for the action in
question and the tool gave a positive response, as
expected, because the activity has no connection with
another activity of the diagram, so it is impossible that
such action is performed.

IX. CONCLUSION

In order to conduct verifications in UML diagrams,
many techniques have been proposed to transform UML
diagrams into formal specifications. For example, one can
mention the works done by [18, 19, 20, 21].

The work done by [18] presented a new method to
automatically transform a UML system model to the
formal method RTPA, contributing to formalization of
UML diagrams.

The paper [19] presents a Petri Nets model that can
express the formal semantic of State Diagrams, especially
for features like transitions conflict. A study done by [21]
uses Symbolic Model Verifier (SMV) to verify State
charts Diagrams showing that formal verification can be
used to verify UML models.

Through the related works found it was possible to
identify some of their limitations. The works focus on the
translation of UML state and activity diagrams because of
the proximity to the check pattern.

Furthermore, these works do not describe the patterns
used to translate the UML diagrams to Symbolic Model
Checking.

Given the need to ensure better quality of UML
models this work developed a framework to perform
automatic checking of UML models that have not been
addressed by these works.

Our work contributes by providing a standard for the
translation of UML behavioral diagrams to Symbolic
Model Checking.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1235

© 2014 ACADEMY PUBLISHER

ACKNOWLEDGMENT

The authors thank CAPES and FAPEMIG for the
support to their research.

REFERENCES
[1] V. R. Basili, B. T. Perricone, Software errors and

complexity: an empirical investigation. Communications of
the ACM, v.27, p.42-52, January, 1984.

[2] C. Kaner, J. L. Falk, H. Q. Nguyen, Testing computer
software. New York: John Wiley & Sons, 1999.

[3] N. Fenton, M. Neil, A critique of software defect
prediction models. IEEE Transactions on Software
Engineering, v.25, p.675-689, 1999.

[4] T. J. Ostrand, E. J. Weyuker, R. M. Bell, Where the bugs
are. ACM Sigsoft International Symposium on Software
Testing and Analysis, 2004. Proceedings of the ISSTA '04.
Boston: ACM, 2004. p.86-96.

[5] R. M. Bell, T. J. Ostrand, E. J. Weyuker, Looking for bugs
in all the right places. International Symposium on
Software Testing and Analysis, 2006. Proceedings of
ISSTA. Maine: ACM, 2006. p.61-72.

[6] T. Ostrand, E. Weyuker, R. Bell, Predicting the location
and number of faults in large software systems. IEEE
Transactions on Software Engineering, v.31, n.4, p.340-
355, Abril, 2005.

[7] R. S. Pressman, Software Engineering: A Practitioners
Approach. 7th ed. New York: McGraw Hill
Science/Engineering/Math, 2009.

[8] I. Sommerville, Software Engineering. 7th ed. Boston:
Pearson Addison Wesley, 2004.

[9] R. G. Sargent, Verification and validation of simulation
models. In: The Winter Simulation Conference, 2007.
Proceedings of the WSC '07. Washington: IEEE
Computing Society, 2007. p.124-137.

[10] D. Graham, E. Veenendaal, I. Evans, R. Black,
Foundations of software Testing: ISTQB certification.
Derby: Int. Thomson Business, 2008.

[11] G. Fraser, F. Wotawa, P. E. Ammann, Testing with model
checkers: a survey. Software Testing, Verification and
Reliability, v.19, p.215-261, September, 2009.

[12] E. M. Clarke, F. Lerda, Model Checking: Software and
Beyond. Journal of Universal Computer Science, v.13,
p.639-649, 2007.

[13] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking.
Cambridge, Massachusetts: The MIT Press, 1999.

[14] K. L. McMillan, Symbolic Model Checking. Norwell:
Kluwer Academic Publishers, 1993.

[15] E. M. Clarke, O. Grumberg, K. L. McMillan, X. Zhao,
Efficient generation of counterexamples and witnesses in
symbolic model checking. ACM/IEEE Design Automation
Conference, 32, 1995. Proceedings of DAC'95. San
Francisco: ACM/IEEE, 1995. p.427-432.

[16] A. Biere, A. Cimatti, E. M. Clarke, Y. Zhu, Symbolic
Model checking without BDDs. International Conference
On Tools And Algorithms For Construction And Analysis
Of Systems, 1999. Proceedings TACAS. Cleveland:
Carnegie Mellon University, 1999. p.193-207.

[17] Barros, Cristiano de Magalhães; Song, Mark Alan Junho.
Automatized Checking of Business Rules for Activity
Execution Sequence in Workflows. Journal of Software, v.
7, p. 374-381, 2012.

[18] Tian, Y., Wang, Y.; 2007. Transformation of UML Models
into Formal RTPA Specifications. In: Electrical and
Computer Engineering, CCECE.

[19] Guo, F., Zhang, M.; 2009. Translating UML Statechart
Diagrams to X-Nets. In: 1st Information Science and
Engineering (ICISE), pp.5279-5282, IEEE Press.

[20] Bruel, J., France, R.; 1998. Transforming UML Models to
Formal Specifications. In: Proceedings of UML'98-Beyond
the notation, Lecture Notes in Computer Science. Springer-
Verlag.

[21] Hai-yan, C., Wei, D., Ji, W., Huo-wang, C.; 2001. Verify
UML statecharts with SMV. In: Wuhan University Journal
of Natural Sciences, LNCS, Vol. 6, pp. 183-190. Springer.

1236 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

