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Abstract—Regression test is an effective means to ensure the 
quality of software. But the test efficiency will become lower 
and lower as the test case library becomes increasingly large 
in the test. Therefore, in order to improve the efficiency and 
quality of regression test, it is necessary to implement the 
test case safety reduction. The optimization selection of the 
test case is an effective means of the test case safety 
reduction. In order to solve the problem of test cases 
optimization selection, this paper proposes a test case 
selection method based on the improved harmony search 
algorithm. Specifically, the researcher adds an excellent 
harmony element library based on the classical harmony 
search algorithm for storing the searched excellent test case; 
meanwhile, he also improves the way of generating the new 
harmony to allow these excellent test cases to be retained 
with a certain probability. In the search process, the 
researcher makes the adaptive adjustment of the algorithm 
parameter BW in a non-linear incremental manner, 
improving the global search capability of the algorithm. In 
addition, the excellence protection strategies are also 
increased to prevent against the degradation in the 
optimization search process. In order to verify the feasibility 
of the improved algorithm, the researcher writes four 
programs: the genetic algorithm, differential evolution 
algorithm, classical harmony algorithm and improved 
algorithm, and conducted the comparative experiment. The 
experimental result shows that the improved algorithm 
significantly improves the optimization search performance 
compared with the classical harmony search algorithm and 
has the better performance compared with the genetic 
algorithm and differential evolution algorithm. 
 
Index Terms—regression test; test case selection problem; 
harmony search algorithm. 

I.  INTRODUCTION 

The regression test refers to the re-test on the existing 
software which has been modified to confirm that there is 

no a new error appearing or there is no side effect on the 
existing unmodified module when making amendment [1]. 
The regression test, as an integral part of software life 
cycle, accounts for a large proportion in the whole 
software test process, which has important significance in 
assuring the software quality. In the software life cycle, in 
order to fix software bugs or respond to customers’ 
demands for change, the software will be frequently 
revised and new software versions continue to be 
introduced, resulting in the dramatic increase of the 
accumulated test cases in the test case library. As the 
changed module is limited in a modification, there will be 
a considerable number of test cases in the current baseline 
test case library which are insensitive to the modified 
module and have no ability to explore errors. In order to 
improve the efficiency of regression test, for this revision, 
we must select the test case suite from the test case 
library which has stronger ability of exploring regression 
errors; this is the test case selection problem. Currently, 
the test case selection techniques the researchers have 
proposed generally fall into the following categories: 
Integer Programming, Heuristic Greedy Search, 
Intelligent Optimization Search Algorithm, Graph Walk 
based Approach, Firewalls Method [2-7]. These test case 
selection techniques have some deficiencies in 
application scope, computational efficiency, the 
algorithm performance and other aspects. To address 
these shortcomings, this paper proposes an improved 
harmony search algorithm — Harmony Search Algorithm 
with Excellent Element Library (EELHS), to complete 
the selection of the test cases in the regression test. 

II.  TEST CASES SELECTION 

A.  Definitions 
Definition 1. Sensitive function: A program covers a 

large number of functions, which will be given different 
attentions at a regression test; the function which is given 
the particular attention at a test is called “sensitive 
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function”. The common sensitive functions include the 
following categories: newly modified function, coupling 
function of the newly modified function, function of the 
selling point of the program, function of the most fatal 
part of the program and the more vulnerable function of 
the program. 

Definition 2. The function test coverage: The test 
coverage of the function F:  TCoverageF=|TCF|/|TTotal|, 
where |TCF| is number of the test case of covering 
function “F” and |TTotal| is the number of test cases. 

Definition 3. Test case selection problem: Suppose: the 
old version of the program is P, the new version of the 
program is P’, which has “m” sensitivity functions 
MF={f1, f2, ... fm}; the original baseline test case library 
T0 has n test use cases T0={t01, t02, ... t0n}. The test case 
selection problem refers that we select r test cases from 
the test case library T0 to form a test suite STr = {ts1, ts2, ... 
tsr} in order to test P’ so that the test coverage of the MF 
can be as good as possible and the test cost can be as low 
as possible. 

B.  Test Suite Evaluation Criteria 
According to the requirements of the test case selection 

problem, we formulate the criteria to evaluate on the 
advantages and disadvantages of the test suite: sensitivity 
function test coverage criteria and test cost criteria. 

Sensitivity function test coverage criteria: The bigger 
the average test coverage of sensitivity function is, the 
better it is; the smaller the mean square error of the test 
coverage of the sensitive function is, the better it is; 
namely, various sensitive functions should have the 
relatively high and uniform test coverage. 

Test cost standard: The smaller the sum of execution 
time of test cases in the test suite is, the better it is. 

C.  The Mathematical Model of the Test Case Selection 
Problem 

Based on the above analysis, the test case selection 
problem can be expressed as a multi-objective 
programming problem.  

Suppose: the set of sensitive functions in  this test is 
FSensitive={fS1,fS2,…., fSp}, the test coverage of the function 
f Si is TCf Si; the original baseline test case library T0 has 
n test cases T0={t01,t02,…t0n};the execution time of the 
test case Ti is Tti; the selected test suite STr={ ts1,ts2,…tsr }. 
In this case, the mathematical model of the test case 
selection problem is as follows: 
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In this formula, p is the size of the set of sensitive 
function FSensitive; )(xTC is the average value of the test 

coverage of the sensitive functions; )(xδ  is the mean 
square error of test coverage of the sensitive functions; 

)(summation xT  is the total execution time for the test cases. 
On the basis of standardizing the targets, the problem can 
be converted to the following model through the linear 
weighing:   
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III.  HARMONY SEARCH ALGORITHM 

The harmony search algorithm is an emerging heuristic 
search algorithm, which was first proposed in 2001 by 
Zong Woo Geem after he was inspired by the 
improvisation of musicians [8]. As the harmony search 
algorithm uses the random search rather than the gradient 
search, it solves the problem without any gradient 
information, and it has the advantages of strong 
versatility and easy implementation. The harmony search 
algorithm has been successfully applied to solve different 
scientific and engineering problems [9], such as structural 
design [10-11], the pipe network design [12], scheduling 
problems [13], groundwater management [14], the path 
planning [15] and reliability optimization problem [16] and 
so on. 

The optimization process of the harmony search 
algorithm includes five steps: initializing the algorithm 
parameters, initializing the harmony memory, 
improvising a new harmony, updating the harmony 
memory and test stopping criteria. 

Step 1: Initialize the algorithm parameters. 
The main task is to complete the determination of the 

objective function and configure the algorithm 
parameters. The algorithm parameters include harmony 
memory size (HMS, that is, the number of solutions each 
generation retains, similar to the population size in the 
genetic algorithm), harmony memory considering rate 
(HMCR ) , pitch adjusting rate (PAR), bandwidth (BW), 
and the number of improvisations (NI). 

Step 2: Initialize the harmony memory 
In step 2, use the randomly generated HMS solution 

vector to initialize the harmony memory HM. 
Step 3: Improvise a new harmony 
Each component of the new harmony 

)',...,','(' 21 NxxxX = is generated in three ways: select 
one randomly from the range of decision variables with 
the probability (1-HMCR); select from the memory with 
the probability HMCR; select from the memory with 
probability HMCR×PAR and make the pitch adjustment. 
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In this formula, RandomR = 1-HMCR, MemoryR = 

HMCR, PitchR = HMCR×PAR. 
Step 4: Update the harmony memory.  
Make evaluation on the new harmony “Xnew” obtained 

at Step 3: if Xnew is superior to the worst harmony Xworst in 
the current harmony memory and the harmony the same 
as Xnew doesn’t exist in the harmony memory, replace 
Xworst with Xnew.   

Step 5: Test stopping criteria  
Judge whether to meet the stopping criteria; if so, 

report the optimization results; otherwise, implement   
Step 3 and 4 in a circular way.  

IV.  EELHS-BASED TEST CASE SELECTION 

The harmony search algorithm mainly has the 
following weaknesses: In the first place, the number of 
the algorithm parameters is relatively large, the 
relationships between parameters are more complex, and 
the search performance has stronger sensitivity and 
dependence on the parameters. Secondly, it is difficult to 
obtain the global optimal solution within a limited period 
of time, so the global search performance needs to be 
enhanced. In response to these weaknesses, the 
researchers have proposed many improved algorithms, 
which mainly concentrate in three aspects: improving the 
algorithm parameter configuration mode [11, 17-21], 
combining with other algorithms to form the hybrid 
harmony search algorithm [16] and add new operators [22]. 
To further improve the efficiency of the harmony search 
algorithm in solving the test case selection problem, the 
harmony search algorithm is improved in three aspects 
based on the research result of other researchers in 
combination with the characteristics of the test case 
selection problem, forming the EELHS.  

A.  Harmony Search Algorithm with Excellent Element 
Library(EELHS) 

Definition 4. Harmony element: In the harmony search 
algorithm, a solution vector of the problem to be solved 
constitutes a harmony; a component )..1( Nixi = in   the 

harmony ),...,,( 21 NxxxX =  is called “harmony 
element”.  

The classical harmony search algorithm is improved 
through EELHS from three aspects.  

Improvement 1: Add the excellent harmony element 
library, and make a corresponding improvement of the 
generation way of the new harmony in order to preserve 
the relatively excellent harmony, improving search 
performance of the algorithm. 

Introduce an Excellent Element Library (EEL) storing 
the excellent harmony elements for the algorithm. The 
excellent harmony element consists of two parts: the 
intersection of the set composed of the elements of the 
harmony with the optimal total target and the set 
composed of the suboptimum harmony elements; the 
intersection of the set composed of the elements of the 
harmony with the optimal sub-target and the set 

composed of the suboptimum harmony elements. We 
update the optimal harmony library once every certain 
search generation. Let’s take the test case selection 
problem as an example. In case of the search at the i-th 
generation, the harmony with the best total target value is 
TBs={tbs1, tbs2,…., tbsn}, the harmony with the second 
best total target value is TBt={tbt1, tbt2,…., tbtn}; the 

harmony with the best average test coverage TC  is 
TCBs={tcbs1, tcbs2,…., tcbsn}, the harmony with the 

second best average test coverage variance TC  is 
TCBt={tcbt1, tcbt1,…., tcbtn}; the harmony with the best 
mean square error of the coverage (δ ) is ΔBs={δbs1, 
δbs2,…., δbsn}, the harmony with the second best mean 
square error of the coverage (δ ) isΔBt={δbt1, δbt2,…., 
δbtn}; the harmony with the best total execution time is 
TiBs={Timebs1, Timebs2,…., Timebsn}, the harmony 
with the second best total execution time is 
TtBt={Timebt1, Timebt2,…., Timebtn}. The formula of 
EEL is as follows:  

))()()()(( TiBtTiBsBtBsTCBtTCBsTBtTBsEHL ∩∪∩∪∩∪∩ ΔΔ=
On the basis of introducing the EEL, the generation of the 
new harmony is completed in the following ways.  

When the EEL is empty, the new harmony is generated 
in the same way as the classic harmony; when the EEL is 
not empty, the generation method of each component of 
the new harmony   increases from three kinds to four 
kinds: select from the memory with the probability 
HMCROriginally; select from EEL with probability 
HMCRBest; randomly select one from the range of 
decision variable values with the probability 1-
HMCRBest-HMCROriginally; select from the memory or 
EEL with the probability HMCRBest+ HMCROriginally 
× PAR and make the pitch adjustment. 
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In this formula, RandomR = 1-HMCRBest-

HMCROriginally, MemoryR = 

HMCROriginally, Excellent R = HMCRBest , PitchR = 
(HMCRBest+HMCROriginally)×PAR; EELS represent 
the number of harmony in the excellent harmony library. 

Improvement 2: Automatically adjust the algorithm 
parameters with the search generations. 

The harmony search algorithm is more sensitive to the 
algorithm parameters. In order to overcome the lack of 
fixed parameters and improve the search performance of 
the algorithm, we add the adaptive adjustment functions 
of parameters to the improved algorithm. The improved 
algorithm includes three core parameters, namely, 
HMCRBest, PAR and BW (i.e. the step size at the time of 
pitch adjustment). In order to determine the adaptive 
adjustment functions of the parameters of the improved 
algorithm, we experiment many times with each core 
parameter adopting some adjustment functions such as 
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linear increment, linear decrement, non-linear increment 
and non-linear decrement; meanwhile we also make the 
portfolio adjustment experiment with the parameters PAR 
and BW. In the experiment, each configuration 
independently runs 50 times. According to the mean and 
standard deviation of the obtained optimal objective 
function value, we judge the performance of 
configuration solution. The experimental results show 
that, for the regression test cases selection problem, 
whether the incremental adjustment method or the 
decremental adjustment method is adopted, the adaptive 
adjustment of the parameters “HMCRBest” and “PAR” 
cannot improve the search performance of the algorithm. 
The adjustment of the parameter “BW” in the way of 
decrement cannot improve the performance of the 
algorithm; in the incremental way, BM can improve the 
algorithm performance, and the non-linear incremental 
adjustment is better than the linear incremental 
adjustment. In view of this, in the improved algorithm, 
the following functions are used to make the adaptive 
adjustment of BW; other parameters don’t make 
adjustment. 

11
1)( 3

3
3

3 −
−+

−
−=

MaxGn
MaxBWMaxGngn

MaxGn
MaxBWgnBW  

 In this formula, MaxBW stands for the supposed 
maximum value of the BW parameter; MaxGn stands for 
the search stopping generation.  

Improvement 3: Increase the excellence protection 
measures to prevent against the degradation in the 
optimization search process. 

Without the measures for excellence protection, the 
classical harmony search algorithm degradation may 
occur, resulting in the loss of excellent individuals 
obtained in the previous search. To avoid this 
phenomenon, the excellence protection strategy is added 
to the improved algorithm. 

The process flow of the improved algorithm is shown 
in Figure 1.  

B.  EELHS-based Test Case Selection Problem Solution 
The EELHS-based test case selection problem solution 

includes four major steps: 1. test case entry; 2. analysis of 
code change; 3. test case optimization selection; 4. test 
coverage analysis. 

Step 1: Test case entry 
Before testing, first, use the source code 

instrumentation to treat the test program. The probe 
inserted in the source code is used to collect the 
information of test cases and store the captured test case 
execution path, execution time and other relevant 
information in the database. These practical operational 
information creates the conditions for the optimization 
selection of test cases and their coverage analysis. Based 
on the source code instrumentation, the test case entry 
work can be completed through running the test cases in 
the original baseline test case library T0. 

Step 2: Code change analysis 
The code change analysis refers that the program 

change report and sensitive function information are 
obtained through the comparison of old and new versions 

in the program code. Generally speaking, the code change 
analysis is divided into four kinds: namely, packet level, 
class level, function level and statement level. For the 
package level and class level, as the granularity compared 
is too coarse, it will affect the quality of regression test 
optimization. For the statement level, as the granularity 
compared is the smallest, the analysis result obtained is 
the most accurate, and the regression test has the highest 
quality. However, compared with the function-level 
change analysis, the quality difference of regression test 
is very limited; in addition, as it causes the excessive cost 
in the execution time, the efficiency of regression 
analysis will be affected. Therefore, we use the function-
level change analysis as the change granularity of the 
regression test. 

 
Figure 1.   The Processing Flow of EELHS 

In the code change analysis, the function is taken as the 
unit. First, decompose the code into individual functions, 
and normalize the statements in the function. The main 
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purpose of statement standardization is to format the 
valid statements, that is, form the format of a statement in 
each row, so that the differences can be compared. The 
main work of statement standardization mainly includes 
five aspects: first, removing the comment statement; 
second, statement decomposition, that is, decompose 
multiple statements existing in one line into the format of 
one statement in one line; third, statement composition, 
that is, merge the statements spreading over multiple lines 
into one line; fourth, treat the braces, that is, isolate the 
braces “{“and “}”in the statement and make them form a 
line independently; fifth, judgment statement processing, 
that is, if the keyword  “else” follows the keyword “if” in 
one line, the “if” statement shall be separated out to form 
an independent line. Secondly, obtain the changed 
function in the code, i.e. FunChanged,     through the 
static analysis of source files of old and new versions 
after normalization treatment; then, search the function 
calling “FunChanged” in the code and get the function 
“FunCoupling” having the coupling relationship with the 
change function; finally, through the communication with 
the developers, obtain the functions of part of the selling 
points of the program, the function of the fatal part of the 
program, the function of the more vulnerable part of the 
program and other sensitive functions.    

Step 3: Test case optimization selection 
In accordance with the mathematical model of the test 

case selection problem given in Section 2.3, we use 
EELHS to complete the search work of excellent test 
cases. It shall be noted that, in the new harmonies 
generated in STEP3, the same harmony element may 
appear more than once in a certain harmony, that is, the 
same test case is selected repeatedly; in this case, such 
harmony cannot meet the requirements, so the adjustment 
is necessary. The adjustment method is as follows: first, 
obtain the sequence of sensitive functions, i.e. Funs = (F1, 
F2, ..., Fn), in accordance with the ascending order of test 
coverage; then, according to the sequence of from F1 to 
Fn, sequentially select the test cases covering the function 
in “Funs” to replace the same harmony element until this 
harmony meets the requirements. This adjustment method 
can guarantee that the functions with the lower test 
coverage can be tested comprehensively. 

Step 4: Test coverage analysis 
According to the execution paths of the selected test 

cases, submit the coverage analysis report so that the 
testers can compile or modify the test cases based on it. 

V.  EXPERIMENTS AND ANALYSIS 

A.  Value of HMCRBest 

According to the research result of ZONG WOO 
GEEM, the ideal value range of the parameter HMCR is 
0.7 - 0.95 [23]. In order to determine the optimal value 
solution of HMCRBest, set the value of HMCRBest 
respectively as 0.05, 0.02, ..., 0.30, and then calculate 10 
times for each value and record the average value of the 
objective functions found in the 10 optimization 
processes. The experimental result is shown in Figure 2.  

 
Figure 2.   The Influence of the HMCRBest Value on the Optimization 

Result  

As is shown in Figure 2, when the HMCRBest value is 
less than or equal to 0.2, the fitness of optimal solution 
increases with the increase of HMCRBest; when the 
HMCRBest value is greater than 0.2, the fitness of the 
optimal solution tends to stabilize; when the HMCRBest 
value is 0.27, the fitness of the best individual obtained is 
the largest. Thus, the ideal value range of HMCRBest is 
0.20-0.30. 

B.  Comparison with Other Algorithms 
In order to test the validity of the EELHS algorithm in 

solving the test case selection problem, we wrote four 
sets of software: standard genetic algorithm (GA), 
standard differential evolution algorithm (DE), standard 
harmony search algorithm (SH) and harmony search 
algorithm with excellent element library (EELHS), and 
made the comparative experiment in the same software 
and hardware environment. In the experiment, each 
algorithm respectively ran 100 times. After that, we made 
the comparison in the mean and mean square error of the 
maximum objective function values found by algorithms, 
the maximum objective function values found by 
algorithms and the optimization process to find the best 
value. 

Scheme Design: 
Experimental data: The code to be tested contains a 

total of 200 functions, of which 49 sensitive functions are 
our concern; in the original baseline test case library Ti, 
there are 5000 test cases, of which 4,606 test cases cover 
the sensitive functions of this test. It is required that 200 
test cases shall be selected from 4606 test cases for this 
regression test. 

Experimental platforms: Intel Core i3 2.13GHZ CPU, 
2.0GB RAM, Windows 7 operating system. 

Test software development platform: Microsoft Visual 
Studio 2010. 

Experimental Results:  
The maximum objective function values found by 

algorithms in 100 operation processes and their means 
and mean square errors are shown in Table 1.  

TABLE I.    

ALGORITHM PERFORMANCE COMPARISON TABLE 

algorithm Mean of the 
best fitness 

MSE of the 
best fitness Best fitness 

GA 348.1183 9.1324 366.860490774905 
DE 352.2584 7.3098 378.077184939278 
HS 350.4941 8.3399 366.456281001912 
EELHS 384.2363 9.9892 416.290332829723 
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The distribution of the maximum objective function 
values found by algorithms in 100 operation processes is 
shown in Figure 3. 

 
Figure 3.   Distribution Comparison of the best fitness 

It can be seen from TABLEⅠand Figure 3 that the 
EELHS can find greater best fitness with satisfactory 
mean square errors. 

The optimal evolution processes of algorithms in 100 
operation processes are shown in Figure 4. 

 
Figure 4.   Comparison of Optimal Evolution Processes of Algorithms 

 Result Analysis: 
Table 1 shows that the average value of the maximum 

objective functions searched by EELHS is significantly 
better compared to other three algorithms. The maximum 
objective function values searched by EELHS mainly 
concentrate between 370 and 390, and those searched by 
other three algorithms concentrate between 340 and 360. 
The EELHS algorithm is able to search the better 
solutions for two reasons: first, the way of generating 
new harmony of the algorithm can make the excellent 
harmony elements searched by many generations be 
retained so that the newly generated harmony can be 
relatively good; second, as the algorithm has stronger 
continuous optimization ability, it is not easy to fall into 
the state of local optimum, which can be seen clearly 
from the figure of Comparison of Optimal Evolution 
Processes of Algorithms. Throughout the search process, 
the EELHS algorithm has always maintained an 
evolutionary trend towards the global optimal solution 
while other algorithms fall into the “premature” state 
after the 10th generation. The continuous optimization 
capability of the algorithm is mainly due to the nonlinear 

incremental dynamic adjustment strategy of the algorithm 
BW. At the middle and later stage of optimizing the 
search process, the BW parameter will become relatively 
larger, increasing the toning step size in the process of 
generating new harmony. Thus, the algorithm can have 
the broader scope of search, improving the global search 
capability of the algorithm. 

VI.  CONCLUSION 

The regression test, as a part of the software life cycle, 
accounts for a large proportion of the workload in the 
whole software test process as it is conducted repeatedly 
at all stages of the software development. In the software 
life cycle, even if a test case library is well-maintained, it 
may become quite large, which makes it impractical that 
all the test cases re-run for each regression test. In order 
to reduce the cost of regression test and improve test 
efficiency, it is necessary to conduct the safety reduction 
for the test cases, specifically, select the test cases with 
the close relationship with the concerned codes to 
complete the test work. This paper proposes a test case 
selection problem solution, which uses the improved 
harmony search algorithm to optimize the selection of 
test cases. Compared with the genetic algorithm, 
differential evolution algorithm and classical harmony 
search algorithm, this algorithm has better search 
performance. The next step of work is to study the 
automatic generation of test cases covering the specified 
functions, namely, according to the function coverage 
analysis report, for the function with the lower test 
coverage, i.e. Fi, automatically generate the test case suite 
SetTSFi, making the test cases in SetTSFi cover the 
function Fi. 
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