
Application of Improved Harmony Search
Algorithm in Test Case Selection

Ming Huang

Software Technology Institute, Dalian Jiao Tong University, Dalian, China
Email: dlhm@263.net

Shujie Guo

Mechanical Engineering Institute, Dalian Jiao Tong University, Dalian, China

Xu Liang
Software Technology Institute, Dalian Jiao Tong University, Dalian, China

Xuan Jiao

Management Institute, Dalian University of Technology, Dalian, China

Abstract—Regression test is an effective means to ensure the
quality of software. But the test efficiency will become lower
and lower as the test case library becomes increasingly large
in the test. Therefore, in order to improve the efficiency and
quality of regression test, it is necessary to implement the
test case safety reduction. The optimization selection of the
test case is an effective means of the test case safety
reduction. In order to solve the problem of test cases
optimization selection, this paper proposes a test case
selection method based on the improved harmony search
algorithm. Specifically, the researcher adds an excellent
harmony element library based on the classical harmony
search algorithm for storing the searched excellent test case;
meanwhile, he also improves the way of generating the new
harmony to allow these excellent test cases to be retained
with a certain probability. In the search process, the
researcher makes the adaptive adjustment of the algorithm
parameter BW in a non-linear incremental manner,
improving the global search capability of the algorithm. In
addition, the excellence protection strategies are also
increased to prevent against the degradation in the
optimization search process. In order to verify the feasibility
of the improved algorithm, the researcher writes four
programs: the genetic algorithm, differential evolution
algorithm, classical harmony algorithm and improved
algorithm, and conducted the comparative experiment. The
experimental result shows that the improved algorithm
significantly improves the optimization search performance
compared with the classical harmony search algorithm and
has the better performance compared with the genetic
algorithm and differential evolution algorithm.

Index Terms—regression test; test case selection problem;
harmony search algorithm.

I. INTRODUCTION

The regression test refers to the re-test on the existing
software which has been modified to confirm that there is

no a new error appearing or there is no side effect on the
existing unmodified module when making amendment [1].
The regression test, as an integral part of software life
cycle, accounts for a large proportion in the whole
software test process, which has important significance in
assuring the software quality. In the software life cycle, in
order to fix software bugs or respond to customers’
demands for change, the software will be frequently
revised and new software versions continue to be
introduced, resulting in the dramatic increase of the
accumulated test cases in the test case library. As the
changed module is limited in a modification, there will be
a considerable number of test cases in the current baseline
test case library which are insensitive to the modified
module and have no ability to explore errors. In order to
improve the efficiency of regression test, for this revision,
we must select the test case suite from the test case
library which has stronger ability of exploring regression
errors; this is the test case selection problem. Currently,
the test case selection techniques the researchers have
proposed generally fall into the following categories:
Integer Programming, Heuristic Greedy Search,
Intelligent Optimization Search Algorithm, Graph Walk
based Approach, Firewalls Method [2-7]. These test case
selection techniques have some deficiencies in
application scope, computational efficiency, the
algorithm performance and other aspects. To address
these shortcomings, this paper proposes an improved
harmony search algorithm — Harmony Search Algorithm
with Excellent Element Library (EELHS), to complete
the selection of the test cases in the regression test.

II. TEST CASES SELECTION

A. Definitions
Definition 1. Sensitive function: A program covers a

large number of functions, which will be given different
attentions at a regression test; the function which is given
the particular attention at a test is called “sensitive

Project supported by the National High Technology Research and
Development Program of China (No. 2012AA041402-4);

Manuscript received July 23, 2013; revised September 11, 2013;
accepted September 14, 2013.

1170 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1170-1176

function”. The common sensitive functions include the
following categories: newly modified function, coupling
function of the newly modified function, function of the
selling point of the program, function of the most fatal
part of the program and the more vulnerable function of
the program.

Definition 2. The function test coverage: The test
coverage of the function F: TCoverageF=|TCF|/|TTotal|,
where |TCF| is number of the test case of covering
function “F” and |TTotal| is the number of test cases.

Definition 3. Test case selection problem: Suppose: the
old version of the program is P, the new version of the
program is P’, which has “m” sensitivity functions
MF={f1, f2, ... fm}; the original baseline test case library
T0 has n test use cases T0={t01, t02, ... t0n}. The test case
selection problem refers that we select r test cases from
the test case library T0 to form a test suite STr = {ts1, ts2, ...
tsr} in order to test P’ so that the test coverage of the MF
can be as good as possible and the test cost can be as low
as possible.

B. Test Suite Evaluation Criteria
According to the requirements of the test case selection

problem, we formulate the criteria to evaluate on the
advantages and disadvantages of the test suite: sensitivity
function test coverage criteria and test cost criteria.

Sensitivity function test coverage criteria: The bigger
the average test coverage of sensitivity function is, the
better it is; the smaller the mean square error of the test
coverage of the sensitive function is, the better it is;
namely, various sensitive functions should have the
relatively high and uniform test coverage.

Test cost standard: The smaller the sum of execution
time of test cases in the test suite is, the better it is.

C. The Mathematical Model of the Test Case Selection
Problem

Based on the above analysis, the test case selection
problem can be expressed as a multi-objective
programming problem.

Suppose: the set of sensitive functions in this test is
FSensitive={fS1,fS2,…., fSp}, the test coverage of the function
f Si is TCf Si; the original baseline test case library T0 has
n test cases T0={t01,t02,…t0n};the execution time of the
test case Ti is Tti; the selected test suite STr={ ts1,ts2,…tsr }.
In this case, the mathematical model of the test case
selection problem is as follows:

p

xTC
xTC

p

i
fSi∑

== 1

)(
)(max

∑
=

−=
p

i
fSi xTCxTC

p
x

1

2))()((1)(min δ

∑
=

=
r

i
t xTxT
si

1
summation)()(min

In this formula, p is the size of the set of sensitive
function FSensitive;)(xTC is the average value of the test

coverage of the sensitive functions;)(xδ is the mean
square error of test coverage of the sensitive functions;

)(summation xT is the total execution time for the test cases.
On the basis of standardizing the targets, the problem can
be converted to the following model through the linear
weighing:

∑
=

==∈

−−=
3

1

331

1)3,2,1](1,0[

)()()()(max

i
ii

summation

i

xTxxTCxF

λλ

λδλλ

III. HARMONY SEARCH ALGORITHM

The harmony search algorithm is an emerging heuristic
search algorithm, which was first proposed in 2001 by
Zong Woo Geem after he was inspired by the
improvisation of musicians [8]. As the harmony search
algorithm uses the random search rather than the gradient
search, it solves the problem without any gradient
information, and it has the advantages of strong
versatility and easy implementation. The harmony search
algorithm has been successfully applied to solve different
scientific and engineering problems [9], such as structural
design [10-11], the pipe network design [12], scheduling
problems [13], groundwater management [14], the path
planning [15] and reliability optimization problem [16] and
so on.

The optimization process of the harmony search
algorithm includes five steps: initializing the algorithm
parameters, initializing the harmony memory,
improvising a new harmony, updating the harmony
memory and test stopping criteria.

Step 1: Initialize the algorithm parameters.
The main task is to complete the determination of the

objective function and configure the algorithm
parameters. The algorithm parameters include harmony
memory size (HMS, that is, the number of solutions each
generation retains, similar to the population size in the
genetic algorithm), harmony memory considering rate
(HMCR) , pitch adjusting rate (PAR), bandwidth (BW),
and the number of improvisations (NI).

Step 2: Initialize the harmony memory
In step 2, use the randomly generated HMS solution

vector to initialize the harmony memory HM.
Step 3: Improvise a new harmony
Each component of the new harmony

)',...,','(' 21 NxxxX = is generated in three ways: select
one randomly from the range of decision variables with
the probability (1-HMCR); select from the memory with
the probability HMCR; select from the memory with
probability HMCR×PAR and make the pitch adjustment.

⎪
⎩

⎪
⎨

⎧

±
∈

∈
←

Pitchi

Memory
HMS
iiii

Randomiiiii
new
i

RpwBWkx
Rpwxxxkx
Rpwkxxxkx

x
..)(

..},...,{)(
..)}(),...2(),1({)(

21

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1171

© 2014 ACADEMY PUBLISHER

In this formula, RandomR = 1-HMCR, MemoryR =

HMCR, PitchR = HMCR×PAR.
Step 4: Update the harmony memory.
Make evaluation on the new harmony “Xnew” obtained

at Step 3: if Xnew is superior to the worst harmony Xworst in
the current harmony memory and the harmony the same
as Xnew doesn’t exist in the harmony memory, replace
Xworst with Xnew.

Step 5: Test stopping criteria
Judge whether to meet the stopping criteria; if so,

report the optimization results; otherwise, implement
Step 3 and 4 in a circular way.

IV. EELHS-BASED TEST CASE SELECTION

The harmony search algorithm mainly has the
following weaknesses: In the first place, the number of
the algorithm parameters is relatively large, the
relationships between parameters are more complex, and
the search performance has stronger sensitivity and
dependence on the parameters. Secondly, it is difficult to
obtain the global optimal solution within a limited period
of time, so the global search performance needs to be
enhanced. In response to these weaknesses, the
researchers have proposed many improved algorithms,
which mainly concentrate in three aspects: improving the
algorithm parameter configuration mode [11, 17-21],
combining with other algorithms to form the hybrid
harmony search algorithm [16] and add new operators [22].
To further improve the efficiency of the harmony search
algorithm in solving the test case selection problem, the
harmony search algorithm is improved in three aspects
based on the research result of other researchers in
combination with the characteristics of the test case
selection problem, forming the EELHS.

A. Harmony Search Algorithm with Excellent Element
Library(EELHS)

Definition 4. Harmony element: In the harmony search
algorithm, a solution vector of the problem to be solved
constitutes a harmony; a component)..1(Nixi = in the

harmony),...,,(21 NxxxX = is called “harmony
element”.

The classical harmony search algorithm is improved
through EELHS from three aspects.

Improvement 1: Add the excellent harmony element
library, and make a corresponding improvement of the
generation way of the new harmony in order to preserve
the relatively excellent harmony, improving search
performance of the algorithm.

Introduce an Excellent Element Library (EEL) storing
the excellent harmony elements for the algorithm. The
excellent harmony element consists of two parts: the
intersection of the set composed of the elements of the
harmony with the optimal total target and the set
composed of the suboptimum harmony elements; the
intersection of the set composed of the elements of the
harmony with the optimal sub-target and the set

composed of the suboptimum harmony elements. We
update the optimal harmony library once every certain
search generation. Let’s take the test case selection
problem as an example. In case of the search at the i-th
generation, the harmony with the best total target value is
TBs={tbs1, tbs2,…., tbsn}, the harmony with the second
best total target value is TBt={tbt1, tbt2,…., tbtn}; the

harmony with the best average test coverage TC is
TCBs={tcbs1, tcbs2,…., tcbsn}, the harmony with the

second best average test coverage variance TC is
TCBt={tcbt1, tcbt1,…., tcbtn}; the harmony with the best
mean square error of the coverage (δ) is ΔBs={δbs1,
δbs2,…., δbsn}, the harmony with the second best mean
square error of the coverage (δ) isΔBt={δbt1, δbt2,….,
δbtn}; the harmony with the best total execution time is
TiBs={Timebs1, Timebs2,…., Timebsn}, the harmony
with the second best total execution time is
TtBt={Timebt1, Timebt2,…., Timebtn}. The formula of
EEL is as follows:

))()()()((TiBtTiBsBtBsTCBtTCBsTBtTBsEHL ∩∪∩∪∩∪∩ ΔΔ=
On the basis of introducing the EEL, the generation of the
new harmony is completed in the following ways.

When the EEL is empty, the new harmony is generated
in the same way as the classic harmony; when the EEL is
not empty, the generation method of each component of
the new harmony increases from three kinds to four
kinds: select from the memory with the probability
HMCROriginally; select from EEL with probability
HMCRBest; randomly select one from the range of
decision variable values with the probability 1-
HMCRBest-HMCROriginally; select from the memory or
EEL with the probability HMCRBest+ HMCROriginally
× PAR and make the pitch adjustment.

⎪
⎪
⎩

⎪
⎪
⎨

⎧

±
∈
∈

∈

←

Pitchi

EELS
iiii

Memory
HMS
iiii

Randomiiiii

new
i

Rpwkx
Rpwxxxkx
Rpwxxxkx
Rpwkxxxkx

x

..)BW(
..},...,{)(
..},...,{)(
..)}(),...2(),1({)(

Excellent
21

21

In this formula, RandomR = 1-HMCRBest-

HMCROriginally, MemoryR =

HMCROriginally, Excellent R = HMCRBest , PitchR =
(HMCRBest+HMCROriginally)×PAR; EELS represent
the number of harmony in the excellent harmony library.

Improvement 2: Automatically adjust the algorithm
parameters with the search generations.

The harmony search algorithm is more sensitive to the
algorithm parameters. In order to overcome the lack of
fixed parameters and improve the search performance of
the algorithm, we add the adaptive adjustment functions
of parameters to the improved algorithm. The improved
algorithm includes three core parameters, namely,
HMCRBest, PAR and BW (i.e. the step size at the time of
pitch adjustment). In order to determine the adaptive
adjustment functions of the parameters of the improved
algorithm, we experiment many times with each core
parameter adopting some adjustment functions such as

1172 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

linear increment, linear decrement, non-linear increment
and non-linear decrement; meanwhile we also make the
portfolio adjustment experiment with the parameters PAR
and BW. In the experiment, each configuration
independently runs 50 times. According to the mean and
standard deviation of the obtained optimal objective
function value, we judge the performance of
configuration solution. The experimental results show
that, for the regression test cases selection problem,
whether the incremental adjustment method or the
decremental adjustment method is adopted, the adaptive
adjustment of the parameters “HMCRBest” and “PAR”
cannot improve the search performance of the algorithm.
The adjustment of the parameter “BW” in the way of
decrement cannot improve the performance of the
algorithm; in the incremental way, BM can improve the
algorithm performance, and the non-linear incremental
adjustment is better than the linear incremental
adjustment. In view of this, in the improved algorithm,
the following functions are used to make the adaptive
adjustment of BW; other parameters don’t make
adjustment.

11
1)(3

3
3

3 −
−+

−
−=

MaxGn
MaxBWMaxGngn

MaxGn
MaxBWgnBW

 In this formula, MaxBW stands for the supposed
maximum value of the BW parameter; MaxGn stands for
the search stopping generation.

Improvement 3: Increase the excellence protection
measures to prevent against the degradation in the
optimization search process.

Without the measures for excellence protection, the
classical harmony search algorithm degradation may
occur, resulting in the loss of excellent individuals
obtained in the previous search. To avoid this
phenomenon, the excellence protection strategy is added
to the improved algorithm.

The process flow of the improved algorithm is shown
in Figure 1.

B. EELHS-based Test Case Selection Problem Solution
The EELHS-based test case selection problem solution

includes four major steps: 1. test case entry; 2. analysis of
code change; 3. test case optimization selection; 4. test
coverage analysis.

Step 1: Test case entry
Before testing, first, use the source code

instrumentation to treat the test program. The probe
inserted in the source code is used to collect the
information of test cases and store the captured test case
execution path, execution time and other relevant
information in the database. These practical operational
information creates the conditions for the optimization
selection of test cases and their coverage analysis. Based
on the source code instrumentation, the test case entry
work can be completed through running the test cases in
the original baseline test case library T0.

Step 2: Code change analysis
The code change analysis refers that the program

change report and sensitive function information are
obtained through the comparison of old and new versions

in the program code. Generally speaking, the code change
analysis is divided into four kinds: namely, packet level,
class level, function level and statement level. For the
package level and class level, as the granularity compared
is too coarse, it will affect the quality of regression test
optimization. For the statement level, as the granularity
compared is the smallest, the analysis result obtained is
the most accurate, and the regression test has the highest
quality. However, compared with the function-level
change analysis, the quality difference of regression test
is very limited; in addition, as it causes the excessive cost
in the execution time, the efficiency of regression
analysis will be affected. Therefore, we use the function-
level change analysis as the change granularity of the
regression test.

Figure 1. The Processing Flow of EELHS

In the code change analysis, the function is taken as the
unit. First, decompose the code into individual functions,
and normalize the statements in the function. The main

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1173

© 2014 ACADEMY PUBLISHER

purpose of statement standardization is to format the
valid statements, that is, form the format of a statement in
each row, so that the differences can be compared. The
main work of statement standardization mainly includes
five aspects: first, removing the comment statement;
second, statement decomposition, that is, decompose
multiple statements existing in one line into the format of
one statement in one line; third, statement composition,
that is, merge the statements spreading over multiple lines
into one line; fourth, treat the braces, that is, isolate the
braces “{“and “}”in the statement and make them form a
line independently; fifth, judgment statement processing,
that is, if the keyword “else” follows the keyword “if” in
one line, the “if” statement shall be separated out to form
an independent line. Secondly, obtain the changed
function in the code, i.e. FunChanged, through the
static analysis of source files of old and new versions
after normalization treatment; then, search the function
calling “FunChanged” in the code and get the function
“FunCoupling” having the coupling relationship with the
change function; finally, through the communication with
the developers, obtain the functions of part of the selling
points of the program, the function of the fatal part of the
program, the function of the more vulnerable part of the
program and other sensitive functions.

Step 3: Test case optimization selection
In accordance with the mathematical model of the test

case selection problem given in Section 2.3, we use
EELHS to complete the search work of excellent test
cases. It shall be noted that, in the new harmonies
generated in STEP3, the same harmony element may
appear more than once in a certain harmony, that is, the
same test case is selected repeatedly; in this case, such
harmony cannot meet the requirements, so the adjustment
is necessary. The adjustment method is as follows: first,
obtain the sequence of sensitive functions, i.e. Funs = (F1,
F2, ..., Fn), in accordance with the ascending order of test
coverage; then, according to the sequence of from F1 to
Fn, sequentially select the test cases covering the function
in “Funs” to replace the same harmony element until this
harmony meets the requirements. This adjustment method
can guarantee that the functions with the lower test
coverage can be tested comprehensively.

Step 4: Test coverage analysis
According to the execution paths of the selected test

cases, submit the coverage analysis report so that the
testers can compile or modify the test cases based on it.

V. EXPERIMENTS AND ANALYSIS

A. Value of HMCRBest

According to the research result of ZONG WOO
GEEM, the ideal value range of the parameter HMCR is
0.7 - 0.95 [23]. In order to determine the optimal value
solution of HMCRBest, set the value of HMCRBest
respectively as 0.05, 0.02, ..., 0.30, and then calculate 10
times for each value and record the average value of the
objective functions found in the 10 optimization
processes. The experimental result is shown in Figure 2.

Figure 2. The Influence of the HMCRBest Value on the Optimization

Result

As is shown in Figure 2, when the HMCRBest value is
less than or equal to 0.2, the fitness of optimal solution
increases with the increase of HMCRBest; when the
HMCRBest value is greater than 0.2, the fitness of the
optimal solution tends to stabilize; when the HMCRBest
value is 0.27, the fitness of the best individual obtained is
the largest. Thus, the ideal value range of HMCRBest is
0.20-0.30.

B. Comparison with Other Algorithms
In order to test the validity of the EELHS algorithm in

solving the test case selection problem, we wrote four
sets of software: standard genetic algorithm (GA),
standard differential evolution algorithm (DE), standard
harmony search algorithm (SH) and harmony search
algorithm with excellent element library (EELHS), and
made the comparative experiment in the same software
and hardware environment. In the experiment, each
algorithm respectively ran 100 times. After that, we made
the comparison in the mean and mean square error of the
maximum objective function values found by algorithms,
the maximum objective function values found by
algorithms and the optimization process to find the best
value.

Scheme Design:
Experimental data: The code to be tested contains a

total of 200 functions, of which 49 sensitive functions are
our concern; in the original baseline test case library Ti,
there are 5000 test cases, of which 4,606 test cases cover
the sensitive functions of this test. It is required that 200
test cases shall be selected from 4606 test cases for this
regression test.

Experimental platforms: Intel Core i3 2.13GHZ CPU,
2.0GB RAM, Windows 7 operating system.

Test software development platform: Microsoft Visual
Studio 2010.

Experimental Results:
The maximum objective function values found by

algorithms in 100 operation processes and their means
and mean square errors are shown in Table 1.

TABLE I.

ALGORITHM PERFORMANCE COMPARISON TABLE

algorithm Mean of the
best fitness

MSE of the
best fitness Best fitness

GA 348.1183 9.1324 366.860490774905
DE 352.2584 7.3098 378.077184939278
HS 350.4941 8.3399 366.456281001912
EELHS 384.2363 9.9892 416.290332829723

1174 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

The distribution of the maximum objective function
values found by algorithms in 100 operation processes is
shown in Figure 3.

Figure 3. Distribution Comparison of the best fitness

It can be seen from TABLEⅠand Figure 3 that the
EELHS can find greater best fitness with satisfactory
mean square errors.

The optimal evolution processes of algorithms in 100
operation processes are shown in Figure 4.

Figure 4. Comparison of Optimal Evolution Processes of Algorithms

 Result Analysis:
Table 1 shows that the average value of the maximum

objective functions searched by EELHS is significantly
better compared to other three algorithms. The maximum
objective function values searched by EELHS mainly
concentrate between 370 and 390, and those searched by
other three algorithms concentrate between 340 and 360.
The EELHS algorithm is able to search the better
solutions for two reasons: first, the way of generating
new harmony of the algorithm can make the excellent
harmony elements searched by many generations be
retained so that the newly generated harmony can be
relatively good; second, as the algorithm has stronger
continuous optimization ability, it is not easy to fall into
the state of local optimum, which can be seen clearly
from the figure of Comparison of Optimal Evolution
Processes of Algorithms. Throughout the search process,
the EELHS algorithm has always maintained an
evolutionary trend towards the global optimal solution
while other algorithms fall into the “premature” state
after the 10th generation. The continuous optimization
capability of the algorithm is mainly due to the nonlinear

incremental dynamic adjustment strategy of the algorithm
BW. At the middle and later stage of optimizing the
search process, the BW parameter will become relatively
larger, increasing the toning step size in the process of
generating new harmony. Thus, the algorithm can have
the broader scope of search, improving the global search
capability of the algorithm.

VI. CONCLUSION

The regression test, as a part of the software life cycle,
accounts for a large proportion of the workload in the
whole software test process as it is conducted repeatedly
at all stages of the software development. In the software
life cycle, even if a test case library is well-maintained, it
may become quite large, which makes it impractical that
all the test cases re-run for each regression test. In order
to reduce the cost of regression test and improve test
efficiency, it is necessary to conduct the safety reduction
for the test cases, specifically, select the test cases with
the close relationship with the concerned codes to
complete the test work. This paper proposes a test case
selection problem solution, which uses the improved
harmony search algorithm to optimize the selection of
test cases. Compared with the genetic algorithm,
differential evolution algorithm and classical harmony
search algorithm, this algorithm has better search
performance. The next step of work is to study the
automatic generation of test cases covering the specified
functions, namely, according to the function coverage
analysis report, for the function with the lower test
coverage, i.e. Fi, automatically generate the test case suite
SetTSFi, making the test cases in SetTSFi cover the
function Fi.

ACKNOWLEDGMENT

Thanks National High-Tech Research and
Development Program of China (863 Program) for its
funding of sub-project “Testing of the operating system
kernel module and software library” (No.
2012AA041402-4). We are grateful to other members of
the project team for their valuable help and suggestions.

REFERENCES

[1] S. Raju, G. V. Uma Factors Oriented, “Test Case
Prioritization Technique in Regression Testing using
Genetic Algorithm”, European Journal of Scientific
Research,vol.74 no.3, pp.389-402, 2012.

[2] GUQing, TANGBao, CHENDao-Xu, “A Test Suite
Reduction Technique for Partial Coverage of Test
Requirements”, Chinese Journal of Computers, vol.34 no.5:
pp.879-887. 2011

[3] Bharti Suri, Isha Mangal, “Analyzing Test Case Selection
using Proposed Hybrid Technique based on BCO and
Genetic Algorithm and a Comparison with ACO”,
International Journal of Advanced Research in Computer
Science and Software Engineering, vol.2 no.4: pp.206-211,
2012.

[4] Zheng, J., Williams, L., Robinson, B. , et al.. “Regression
test selection for black-box dynamic link library
components”, Proceedings of the Second International
Workshop on Incorporating COTS Software into Software

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1175

© 2014 ACADEMY PUBLISHER

Systems: Tools and Techniques, Minneapolis, MN, USA:
pp.9–14, 2007.

[5] Ying-Dar Lin, Chi-Heng Chou, Yuan-Cheng Lai, et al..
“Test coverage optimization for large code problems”,
Journal of Systems and Software, vol.85 no.1: pp.16–27,
2012.

[6] S. Yoo, M. Harman, “Regression testing minimization,
selection and prioritization: a survey”, Software Testing,
Verification and Reliability, vol.22 no.2: pp.67–120, 2012.

[7] Monthawan Raengkla, Taratip Suwannasart. “A Test Case
Selection from Using Use Case Description Changes”,
Proceedings of the International MultiConference of
Engineers and Computer Scientists 2013, Hong Kong:
pp.507-510, 2013.

[8] Z.W. Geem, J.H. Kim, G.V. Loganathan, “A new heuristic
optimization algorithm: harmony search”, Simulation,
vol.76 no.2: pp.60–68, 2001.

[9] Z.W. Geem, Recent Advances in Harmony Search
Algorithm. Berlin, Springer, 2009.

[10] M.P. Saka. “Optimum design of steel sway frames to
BS5950 using harmony search algorithm”, Journal of
Constructional Steel Research, vol.65 no.1: pp.36–43,
2009.

[11] S.O. Degertekin, “ Improved harmony search algorithms
for sizing optimization of truss structures”, Computers and
Structures,vol.92 no.93: pp.229–241, 2012.

[12] Z.W. Geem, “ Particle-swarm harmony search for water
network design” Engineering Optimization, vol.41 no.4:
pp.297–311, 2009.

[13] Z.W. Geem, “ Multiobjective optimization of time-cost
trade-off using harmony search”, ASCE Journal of
Construction Engineering and Management, vol.136 no.6:
pp.711–716, 2010.

[14] M. Tamer Ayvaz, “Application of harmony search
algorithm to the solution of groundwater management
models”, Advances in Water Resources vol.32 no.6
pp.916–924, 2009.

[15] Z.W. Geem, K.S. Lee, Y. Park, “Application of harmony
search to vehicle routing”, American Journal of Applied
Sciences vol.2 no.12 pp.1552–1557, 2005

[16] Dexuan Zou, Liqun Gao, Jianhua Wu et al.. “An effective
global harmony search algorithm for reliability problems”,
Expert Systems with Applications, vol.38: pp.4642–4648,
2011.

[17] Majid Jaberipour , Esmaile Khorram, “Two improved
harmony search algorithms for solving engineering
optimization problems”, Commun Nonlinear Sci Numer
Simulat, vol.15: pp.3316–3331, 2010.

[18] Dexuan Zou, Liqun Gao, Steven Li,Jianhua Wu, “Solving
0–1 knapsack problem by a novel global harmony search
algorithm”, Applied Soft Computing, vol.11: pp.1556–1564,
2011.

[19] Bilal Alatas, “Chaotic harmony search algorithms “,
Applied Mathematics and Computation, vol.216 : pp.2687–
2699 , 2010.

[20] M. Mahdavi,M. Fesanghary,E. Damangir, “An improved
harmony search algorithm for solving optimization
problems”, Applied Mathematics and Computation,
vol.188: pp.1567–1579 , 2007.

[21] Jing Chen, Quan-ke Pan, Jun-qing Li, “Harmony search
algorithm with dynamic control parameters”, Applied
Mathematics and Computation, vol. 219: pp.592.–
604 ,2012.

[22] Zong Woo Geem,”Improved Harmony Search from
Ensemble of Music Players”, KES 2006, Bournemouth, UK,
Part I, LNAI 4251: pp.86–93,2006.

[23] Zong Woo Geem,”Optimal cost design of water
distribution networks using harmony search”, Engineering
Optimization, vol. 38, no. 3, pp.259-277, 2006.

Ming Huang Male, Professor of Dalian Jiaotong University, his
research interest is software engineering.

Shujie Guo Male, PhD candidate, his research interest is
software engineering.

Xu Liang Female, Professor of Dalian Jiaotong University, her
research interest is information management.

Xuan Jiao Female, PhD candidate, her research interest is s
business administration.

1176 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

