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Abstract—To characterize one kind of association relation of 
different objects in a complex system, a computational 
model of association activity measure among different 
objects is presented after defined some concepts. To 
implement the computational model, a simple 
computational algorithm of association activity measure is 
introduced. After designed some appropriate data 
structures, an improved computational algorithm is 
presented by using the strategy of spending more space to 
decrease time cost. Through the simulations of one kind of 
artificial hypergraph with several pairs of parameters, we 
can verify that the two algorithms are equivalent and the 
improved algorithm holds some validity with less time cost. 
In the end, a research expectation is given to disinter and 
popularize the computational model and its algorithms. 
 
Index Terms—hypergraph, association relation, association 
activity measure, computational model 
 

I.  INTRODUCTION 

Recently, social networks [1] bring more challenges 
and opportunities to some researchers.  Social network 
analysis [2], [3], [4], [5], [6] views the associated 
relationship of network elements by using some advanced 
techniques, such as data mining, graph theory, 
hypergraph theory, and so on. Social networks are often 
depicted in a social network diagram, where nodes are 
represented as points and ties are represented as lines. 

Facebook [7], Quazza.com, Myspace, Orkut, and 
Twitter are several famous social network websites. 
Many researchers try to mining some valuable 
information from the large number of user generated 
content [8], [9]. For example, now the interpersonal 
tightness of social networks is becoming a research 
hotspot. 

Due to the further expansion of social networks, 
exploring valuable information with multidimensional 
and multiscale relationship from massive object libraries 
in social networks attracts the attention of some 
researchers. In exploring the different relationship and 
interesting characters of complex social networks, 
hypergraph model obtains more research and application. 

Today, hypergraph [10], [11], [12], which is an extension 
of the traditional graph theory and can describe some 
complex systems more clearly, has obtained more 
attention in the fields of complex social network analysis, 
searching in Internet, searching in Internet of Things, and 
so on. 

Hypergraph model can describe and organize objects 
of the real world very well by using a framework with 
some abstract data types. Hypergraph model gets a good 
development in Europe, especially in France. United 
States, Canada, Japan, and China, also have some reports 
about the hypergraph model theory and its applied 
research. Research and application confirm that 
hypergraph theory has strict data elements and flexible 
data structures. 

The remainder of this paper is organized as follows. 
Section 2 gives some definitions and the computational 
model of association activity measure among different 
objects. Section 3 presents two examples of the 
computational model. Section 4 introduces a simple 
computational algorithm of the association activity 
measure and its improved version. Section 5 compares 
and validates the equivalence of the two algorithms and 
the effect of the improved algorithm by some simulation 
experiments. Conclusions and future works are presented 
in Section 6. 

II.  SOME DEFINITION AND THE COMPUTATIONAL MODEL 
OF ASSOCIATION ACTIVITY MEASURE 

A.  Description of The Problem and Some Related 
Definitions 

Suppose a hypergraph H is described by a set of 
objects, OS = {o1, o2, …, on}, a set of weight of objects, 
OW = {ow1, ow2, …, own}, a set of hyperedges, ES = {e1, 
e2, …, em}, which describes the group relationship in the 
set OS, and a set of weight of hyperedges, EW = {ew1, 
ew2, …, ewm}. Obviously, this kind of hypergraph model 
can be used to describe some complex systems, such as 
the group system of Tencent's QQ and a schoolfellows' 
relationship network. In the group system of Tencent's 
QQ, the set of objects is composed of all QQ numbers, 
and the set of hyperedges is composed of all QQ group 
numbers. Tencent's QQ system can be described by a 
usual graph model and a hypergraph model together. And 
it can also be described by a hypergraph model. In the 
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schoolfellows' relationship network, the set of objects is 
composed of ID numbers of all registered students, and 
the set of hyperedges is composed of ID numbers of all 
registered schools. If using a usual graph model to 
describe the schoolfellows' relationship network, a very 
complex graph is needed. If using a hypergraph model to 
describe the schoolfellows' relationship network, a very 
simple hypergraph is enough. 

Definition 1. The associated matrix [10] B = (bik)n*m 
between the set of objects, {o1, o2, …, on}, and the set of 
hyperedges, {e1, e2, …, em}, can be defined as: 
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Definition 2. The set of associated hyperedges of 
object oi (i = 1, 2, …, n) can be defined as: 

}},...,2,1{,|{)( mkeoeoAES kiki ∈∈≡                  (2) 
Usually, the number of hyperedges of object oi is 

regarded as its degree of associated hyperedges, denoted 
by |AES(oi)|. Obviously, |AES(oi)| is equal to the sum of 
the i-th row elements in the associated matrix B. 

Definition 3. The set of associated objects of object oi 
(i = 1, 2, …, n) can be defined as: 

}},...,2,1{};,...,2,1{,,,|{)( mknjijeoeoooAOS kjkiji ∈∈≠∈∈≡

         (3) 
Usually, the number of objects sharing common 

hyperedges with object oi is regarded as its degree of 
straight-connected points, denoted by |AOS(oi)|. 

Definition 4. The  set of objects of  hyperedge ek (k = 1, 
2, …, m) can be defined as: 

}},...,2,1{,|{)( nieooeEOS kiik ∈∈≡         (4) 
    Usually, the number of objects contained in hyperedge 
ek is regarded as its degree of associated points, denoted 
by |EOS(ek)|. Obviously, |EOS(ek)| is equal to the sum of 
the k-th column elements in the associated matrix B. 

Definition 5. Referencing associated matrix [10] 
between objects and hyperedges, the matrix of activity (or 
participation) measure, C = (cik)n*m, between the set of 
objects, {o1, o2, …, on}, and the set of hyperedges, {e1, 
e2, …, em}, can be defined as: 
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If object oi belongs to hyperedge ek, cik takes a measure 
u(i, k) that reflects the activity (or participation) degree of 
object oi in hyperedge ek. The measure u(i, k) is a positive 
number, an interval, or other measures suited to concrete 
problems. 

Obviously, these definitions and concepts can also be 
applied to usual simple graphs. For example, when 
|EOS(ek)| = 2 is satisfied for all k = 1, 2, …, m, this kind 
of hypergraph will be a usual simple graph. In usual 
simple graphs, two and only two elements in each column 
of associated matrix B take 1, |AOS(oi)| is the degree of 
vertex oi, EOS(ek) is the set of two vertexes of edge ek, 
and AES(oi) is the set of edges containing vertex oi. 
Generally, for most sparse graphs, associated matrix can 
save more storage space than adjacency matrix. 

B.  A General Computational Model of Associated 
Activity Measure 

According to the matrix of activity (or participation) 
measure, C = (cik)n*m, between the set of objects, {o1, 
o2, …, on}, and the set of hyperedges, {e1, e2, …, em}, and 
the associated similarity sim(cik, cjk) between two 
different active elements cik and cjk in the same hyperedge 
ek, a general computational model of associated activity 
measure between two different objects oi and oj can be 
defined as: 
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By using the associated matrix B between objects and 

hyperedges, equation (6) can also be expressed as: 
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Where the associated similarity sim(cik, cjk) between two 
different active elements cik and cjk in the same hyperedge 
ek is often defined according to the concrete application 
problems. For example, two kind of definitions of 
associated similarity are presented in the next two 
examples. 

C.  A Concrete Computational Model of Associated 
Activity Measure 

According to some concrete application problems, 
after given the matrix of activity (or participation) 
measure, C = (cik)n*m, between the set of objects, {o1, 
o2, …, on}, and the set of hyperedges, {e1, e2, …, em}, a 
concrete computational model of associated activity 
measure between two different objects oi and oj can be 
defined as: 
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    Equation (8) means that the associated activity measure 
between two different objects oi and oj is their scale 
summation of activity (or participation) measure in their 
common hyperedges. By using the associated matrix B 
between objects and hyperedges, equation (8) can also be 
expressed as: 
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Where the associated similarity sim(cik, cjk) between two 
different active elements cik and cjk in the same hyperedge 
ek is often defined according to the concrete application 
problems. Obviously, after set sim(cik, cjk) = 
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computing equation (8). 

III.  TWO APPLICATION EXAMPLES OF THE 
COMPUTATIONAL MODEL 

A.  The Computational Problem of Schoolship Measure in 
Schoolfellow Network 

Suppose there are n registered students who have 
registered their study experience and m registered schools 
which have been registered by those registered students 
in a schoolfellow database. This problem will become 
more simple and convenient if using a hypergraph model. 

In this problem, it is better that the activity (or 
participation) measure u(i, k) of registered student oi in 
his (or her) school ek takes one (or more) studying time 
section. If let |cik| record the cumulative length of section 
u(i, k) and let samelength(cik, cjk) record the common 
studying time in school ek of registered students oi and oj, 
then a more reasonable associated similarity of two 
schoolfellows oi and oj in school ek can be defined as 
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 is the sum of all studying time of student oi. 

If all schools are equally important, then we can set ewk 
= 1 for k = 1, 2, …, m. According to the registered 
studying information of all students, it is easy to compute 
the associated similarity of any two schoolfellows by 
using equation (10). After that, the associated activity 
measure in schoolfellow network of any two students can 
be computed by using equation (6). 

B.  The Computational Problem of Intimacy Measure of 
Different Users in Tencent's QQ System 

Suppose there are n registered QQ IDs and m registered 
QQ group IDs in Tencent's QQ database. Each QQ ID 
stores all QQ IDs of its friends and its QQ group IDs. 
This problem will become more simple and convenient if 
using a graph model and a hypergraph model. 

In the hypergraph model, it is better that the activity (or 
participation) measure u(i, k) of QQ user oi in his QQ 
group ek takes one (or more) speaking time section. If let 
|cik| record the cumulative length of section u(i, k), which 
is the sum of speaking time, and let samelength(cik, cjk) 
record the common speaking time in group ek of users oi 
and oj, which can be computed from the chatting log of 
group ek. Then a more reasonable associated similarity of 
two users oi and oj in group ek can be defined by using 
equation (10). Usually, we can regard the sum of online 
time of group ek as ewk for k = 1, 2, …, m. 

According to the chatting logs of all users, it is easy to 
compute the QQ group associated similarity of any two 
users by using equation (10). After that, the QQ group 
associated activity measure of any two users can be 
computed by using equation (6). 

In the graph model, the sum of the chatting time or the 
inputing words time is the most appropriate activity (or 
participation) measure t(oi, oj) of QQ users oi and oj. owi 
represents the total time of user oi chatting with or 
inputing words to its all QQ friends, so as owj. Then a 
more reasonable QQ friend associated measure between 
two QQ users oi and oj can be defined as: 

( )jijiji owowootooars /1/1),(),( +⋅=            (11) 
According to the chatting information of all QQ users, 

after computed the QQ group associated activity measure 
of two QQ users oi and oj by using equation (6) and the 
QQ friend associated measure of two QQ users oi and oj 
by using equation (11), the intimacy measure of two QQ 
users oi and oj can be defined as a weighted equation (see 
equation (12)) of the QQ group associated activity 
measure and the QQ friend associated measure. 

),(),(),( jijiji ooassooarsooapp ⋅+≡ λ          (12) 
Where parameter λ is a weighted coefficient. 

IV.  THE COMPUTATIONAL ALGORITHMS OF ASSOCIATED 
ACTIVITY MEASURE AMONG OBJECTS 

A.  A Simple Computational Algorithm of Associated 
Activity Measure Among Objects 

According to the above concrete computational model 
of associated activity measure, it is easy to design a 
simple computational algorithm. 

Algorithm Name: a simple computational algorithm of 
associated activity measure among objects (Algorithm 1). 

Input: a set of weight of hyperedges, EW = {ew1, 
ew2, …, ewm}; the matrix of activity  measure, C = (cik)n*m, 
between the set of objects, {o1, o2, …, on}, and the set of 
hyperedges, {e1, e2, …, em}. 

Output: associated activity measure among different 
objects. 

Procedure: 
Step1. According to the matrix C, compute the sum of 

activity measure of objects of every hyperedge in the set 
of hyperedges, ES, by using equation (8). The concrete 
implementation of this step is as follows: 

for (k = 1; k ≤ m; k++) 
{ 
 SumowInek[k] ← 0; /* The array element 

SumowInek [k] stores the sum of activity measure of all 
objects contained in hyperedge ek. */ 
 for (j = 1; j ≤ n; j++) 
  if (cjk > 0) /* Object oj belongs 
to hyperedge ek. */    
   SumowInek[k] ← 
SumowInek[k] + cjk; 

} 
Step2. According to the matrix C and the set EW, 

compute the activity measure of two different objects oi 
and oj (i < j) by using equation (8). The concrete 
implementation of this step is as follows: 

for (i = 1; i < n; i ++) 
 for (j = i + 1; j ≤ n; j++) 

 { 
  aij ← 0; 
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  for (k = 1; k ≤ m; k++) 
   if ((cik > 0) and (cjk > 0))  
   /* Objects oi and oj belong to 
hyperedge ek at the same time. */ 
    aij ← aij + (cik + cjk) * 
ewk / SumowInek[k]; 
 }  

Step3. aij (i < j) is just the associated activity measure 
between objects oi and oj. 

B.  An Improved Computational Algorithm of Associated 
Activity Measure Among Objects 

Algorithm Name: an improved computational 
algorithm of associated activity measure among objects 
(Algorithm 2). 

Input: a set of weight of hyperedges, EW = {ew1, 
ew2, …, ewm}; the matrix of activity  measure, C = (cik)n*m, 
between the set of objects, {o1, o2, …, on}, and the set of 
hyperedges, {e1, e2, …, em}. 

Output: associated activity measure among different 
objects. 

Procedure: 
Step1. According to the matrix C, definition 2, and 

definition 3, construct the set of associated hyperedges, 
AES(oi), and the set of associated objects, AOS(oi), for 
every object oi (i = 1, 2, …, n). According to the matrix C 
and definition 4, construct the set of objects, EOS(ek), for 
every hyperedge ek (k = 1, 2, …, m). 

The set AES(oi) of object oi and the set EOS(ek) of 
hyperedge ek can be constructed easily from the matrix C. 
The set AOS(oi) of object oi is constructed from the set 
AES(oi) and the set EOS(ek). Its concrete construction 
process is described as follows: 

/* Constructing the set AES(oi) of object oi (i = 1, 2, …, 
n). */  

for (i = 1; i ≤ n; i ++) 
{ 
 The set AES(oi) is set as the empty set; 

 for (k = 1; k ≤ m; k++) 
  if (cik > 0) /* Object oi belongs 
to hyperedge ek. */    
   AES(oi) ←AES(oi) ∪{ek};  

   /* Hyperedge ek is inserted 
into the set AES(oi). */ 

} 
 
/* Constructing the set EOS(ek) of hyperedge ek (k = 1, 

2, …, m). */  
for (k = 1; k ≤ m; k++) 
{ 
 The set EOS(ek) is set as the empty set; 

 for (i = 1; i ≤ n; i ++) 
  if (cik > 0) /* Object oi belongs 
to hyperedge ek. */    
   EOS(ek) ← EOS(ek) ∪{oi}; 
   /* Objects oi is inserted into 
the set EOS(ek). */ 

} 
 

/* Constructing the set AOS(oi) of object oi (i = 1, 2, …, 
n). */  

for (i = 1; i ≤ n; i ++) 
{ 
 The set AOS(oi) is set as the empty set; 
 for (every element ek in the set of AES(oi))  
 /* Hyperedge ek belongs to the set AES(oi) of 

object oi. */ 
  AOS(oi) ← AOS(oi) ∪ (EOS(ek) – {oi}); 
  /* The other elements in EOS(ek) is 

inserted into the set AOS(oi). */ 
} 
Step2. According to the matrix C and the set EOS(ek) 

of hyperedge ek (k = 1, 2, …, m), compute the sum of 
activity measure of all objects contained in hyperedge ek 
by using equation (8). The concrete implementation of 
this step is as follows: 

for (k = 1; k ≤ m; k++) 
{ 
 SumowInek[k] ← 0; /* The array element 

SumowInek [k] stores the sum of activity measure of 
objects contained in hyperedge ek. */ 

 for (j = 1; j ≤ n; j++) 
  if (cjk > 0) /* Object oj belongs 

to the hyperedge ek. */   
   SumowInek[k] ← 

SumowInek[k] + cjk; 
} 
Step3. According to the matrix C, the set EW, and two 

sets AES(oi) and AOS(oi) of object oi (i = 1, 2, …, n),  
compute the activity measure of two different objects oi 
and oj (i < j) by using equation (8). The concrete 
implementation of this step is as follows: 

for (i = 1; i < n; i ++) 
{ 
 for (every object oj which is in the set AOS(oi) 

subject to j > i) 
 { 
  aij ← 0; 
  Constructing the common associated 

edges between AES(oi) and AES(oj); 
  for (every hyperedge ek in the common 

associated edges between AES(oi) and AES(oj)) 
   aij ← aij + (cik + cjk) * ewk / 

SumowInek[k]; /* Objects oi and oj belong to 
hyperedge ek at the same time. */ 

 } 
 for (every object oj which is not in the set 

AOS(oi) subject to j > i) 
  aij ← 0; 
} 
Step4. aij (i < j) is the associated activity measure 

between objects oi and oj. 

C.  Some Notes of Two Algorithms 
Some notes of algorithm 1: 
(1) Time and space complexity analysis of algorithm 1: 
Step1 needs Time = O(n·m) and Space = O(n·m). 
Step2 needs Time = O(n2·m) and Space = O(n·m). 
(2) Algorithm 1 is a simple computational method 

based on equation (8). It does not use any features of 
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concrete application. If matrix C is very sparse, an 
improved algorithm can be designed by constructing the 
set of associated hyperedges for every object, the set of 
associated objects for every object, and the set of objects 
for every hyperedge in advance. 

Some notes of algorithm 2: 
(1) In Step 1, if the set of associated hyperedges of 

every object, the set of associated objects of every object, 
and the set of objects of every hyperedge are stored in 
ordered adjacency list structure [13], [14] (sorted in 
ascending order according to the label), performance can 
be improved by speeding up the retrieval speed and 
reduce the storage space. The ordered adjacency list 
structure of hypergraph storing the set of associated 
objects for every object is similar to the adjacency table 
structure of graph. 

(2) Time and space complexity analysis of algorithm 2: 
Step1 needs Time = O(n·m 

+ ( )∑ ∑
= ∈

⋅
n

i OAESe
ik

ik

OAOSeEOS
1 )(

|)(||)(| ) and Space = O(n·m 

+∑
=

n

i
ioAES

1
)(  + ∑

=

n

i
ioAOS

1
)( + ∑

=

m

k
keEOS

1
)( ). 

Step2 needs Time = O(∑
=

m

k
keEOS

1
)( ) and Space = 

O(n + m + ∑
=

m

k
keEOS

1
)( ). 

Step3 needs Time = 
O(

∑ ∑
= ∈

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+++

n

i
i

oAOSo
jii oAOSnoAESoAESoAOS

ij1 )(
))(()))()(()((

) and Space = O(n + m + ∑
=

n

i
ioAES

1
)(  + 

∑
=

n

i
ioAOS

1
)( ). 

(3) Algorithm 2 is an improved algorithm based on 
equation (8) by constructing the set of associated 
hyperedges of every object, the set of associated objects 
of every object, and the set of objects of every hyperedge. 
In fact, in Step3, there is no need to compute the 
association activity measure between objects oi and oj 
which is not in the set AOS(oi) subject to j > i. In some 
applications, we can directly get the set AES(oi), the set 
AOS(oi), and the set EOS(ek). In this case, the time and 
space cost of algorithm 2 can be accepted by some 
current computer systems. 

V.  SIMULATION EXPERIMENTS OF TWO COMPUTATIONAL 
ALGORITHMS 

A.  Experimental Design 
Our simulation experiments are finished in a personal 

computer (Basic configuration: Intel(R) Pentium(R) Dual 
CPU T4500 2.3GHz, 2G Memory). Experimental 
environment is Visual C++6.0 under Windows XP. 

To verify the correctness and the validity of two 
algorithms, there will be some experiments of one kind of 
artificial hypergraph in the next subsection. 

The artificial hypergraph has n objects and m 
hyperedges , where parameters n and m are a pair of 
intergers. The matrix C = (cik)n*m are designed by 
producing (n*m) random real numbers in the region [0, 1] 
such that the (i*k)-th random real number is assigned to 
the elment cik if it is larger than threshold parameter Δ. 
Otherwise 0 is assigned to the elment cik. The set EW = 
{ew1, ew2, …, ewm} are designed by producing m random 
positive real numbers. 

In the next part, algorithm 2 will be compared with 
algorithm 1 by using several hypergraphs with different 
values of parameters n and m. 

Performance of algorithms is measured by time cost 
(label: ST, unit: second). Effect of algorithms is measured 
by the percentage between the number of different pairs 
of objects whose association activity measure is larger 
than 0.00001 and the number of all different pairs of 
objects (label: Per). 

B.  Experimental Results 
Table 1 and Table 2 list some comparative 

experimental results of algorithm 1 and algorithm 2 by 
processing the artificial hypergraph with several pairs of 
parameters (n, m).  

TABLE I.  
COMPARATIVE EXPERIMENTAL RESULTS OF TWO ALGORITHMS  

(Threshold parameter Δ = 0.95 in the artificial hypergraph) 
Pairs of parameters 

(n, m) 
Algorithm 1 Algorithm 2

n m ST Per ST Per
10000 5 2 1.27% 5 1.27% 
10000 10 2 2.47% 13 2.47% 
10000 20 - - - - 
2000 5 0 1.20% 0 1.20% 
2000 10 0 2.54% 0 2.54% 
2000 20 0 5.04% 0 5.04% 
2000 30 0 7.41% 1 7.41% 
2000 40 1 9.62% 1 9.62% 
2000 50 1 11.77% 1 11.77% 
2000 60 1 13.65% 1 13.65% 
2000 70 - - - - 

 
TABLE II.  

COMPARATIVE EXPERIMENTAL RESULTS OF TWO ALGORITHMS 
(Threshold parameter Δ = 0.99 in the artificial hypergraph) 

Pairs of parameters 
(n, m) 

Algorithm 1 Algorithm 2

n m ST Per ST Per
10000 5 2 0.05% 0 0.05% 
10000 10 2 0.11% 0 0.11% 
10000 20 - - - - 
2000 50 0 0.53% 0 0.53% 
2000 80 0 0.80% - - 
2000 100 0 1.02% - - 
2000 120 1 1.22% - - 
2000 130 - - - - 

C.  Analysis and Conclusions of Experimental Results 
From Table 1, Table 2, and other experimental results,  

we observe that algorithm 1 and algorithm 2 have the 
same experimental results except the running time and 
space cost. This shows that algorithm 2 is equivalent to 
algorithm 1 in essence. Comparing Table 1 with Table 2, 
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we find that the larger the threshold parameter Δ is, the 
greater improvement algorithm 2 gets in time 
performance.  

Although parameters n and m in the experiments 
cannot be set too large due to memory constraints, the 
simulation results can still reflect the performance 
improvement of algorithm 2. 

VI. CONCLUSIONS 

In the environment of complex social networks, there 
is a wide variety of diverse relations among massive 
objects. In order to describe these relations more easily, 
this paper presents a computational model of associated 
activity measure among different objects and gives two 
concrete algorithms to achieve this computational model. 
Through designing appropriate data structures, an 
improved algorithm can be constructed based on the 
simple algorithm. Simulations of artificial hypergraph 
verify that the two algorithms are equivalent and the time 
performance of the simple computational algorithm can 
be improved. We can foresee that this kind of 
computational model has some theoretical value and 
application prospects. 

The next work is to do more experimental comparison 
and to study the relationship between the value of 
parameters and the experimental results. 
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