

Challenges in Modeling Evolving Access Control
Policies using Feature Modeling

K.Shantha Kumari

Research Scholar, Department of Banking Technology, Pondicherry University, India
Email: shanthajayakumar@gmail.com

T.Chithralekha

Associate Professor, Department of Computer Science, Pondicherry University, India
Email: tchitu@yahoo.com

Abstract — With the growth of Enterprises and
organizations, the paper-based systems are replaced with
software systems. These software systems are built to
support a multitude of users with a variety of roles accessing
the resources from anywhere and at any time. These
operations are regulated through proper definition of
Access control policies (Permissions); this plays a major role
in protecting the system and its resources. Initially the
software developers focused solely on the customer's
requirements without concentrating on access control
policies [1]. The later inclusion of them in the software
system always created problems that resulted in financial
loss, data loss and integrity loss of critical systems [2]. The
significance of the Access control policies has made the
researchers to recommend its adoption in the early phases
of the software development. Unlike olden days, today's
business processes are evolving day by day. The Access
control policies also continually evolve to meet the
organization's business needs and customer's interest. This
issue is serious because if the evolving Access control
policies are not handled properly, the system is continuously
vulnerable to data loss, financial loss and integrity loss. The
existing works in the literature rarely address the
approaches for handling the evolving Access control policies
[3]. New abstraction and approaches are needed to
represent such policies specific during the software design.

This paper discusses research directions that could result in
approaches for handling the evolving access control policies
in the design phase. This should also ensure the early
inclusion of the access control policies at design phase.

Index Terms— Access control policies, Model based
approaches, Evolutions, Feature modeling

I. MOTIVATION

In the recent years, large scale software systems are
progressively being placed as indispensable essentials of
the government sector and industry. In tandem with this
increase, there has been an overwhelmed awareness of
security, in particular to the authorized access to the
resources related to the systems. Hence the software
systems of such organizations are developed with utmost
care to handle the security issues in an efficient way. In
multi-user information systems, certain resources are

open to everyone and certain resources are for restricted
usage.

These requirements are modeled using an Access
control model like Role based access control model that
defines the same as Access control policies [ACPs]. An
Access control policy defines the (high-level) rules
according to which access control to the resources must
be regulated. An ACP may express conditions that must
be satisfied before an access request can be granted.

Given the magnitude and complexity of the software
systems, the design of the ACPs that protect the software
systems and information resources also becomes an
increasingly complex and difficult problem. From simple
Access control lists [ACLs]; the ACPs of today’s
software systems are totally complicated and spread over
the entire functionality of the system. The simple ACLs
are added to the software system after the implementation
phase. Though it is suitable for those simpler policies, it
is not an advisable solution for today’s complex software
critical systems.

We observe that the ACPs are determined by the
corresponding Functional requirements of the software
system [4]. The ACPs may have an impact on multiple
Functionalities of the system. There might be some
scenario that may lead to inconsistency between the
ACPs and the functionalities [5]. This issue should be
considered as a serious issue as this makes the system
vulnerable to the threats. The effect of the ACPs on the
Functional requirements is not taken into account in the
traditional software engineering approach as they always
recommend the later inclusion of the ACPs. And this
would lead to poor design and further security failures,
violations of the access control rules, leakage of vital
information etc. [2]. With respect to the complexity and
pervasiveness of today's software systems, this kind of
late & ad-hoc inclusion of ACPs might not be completely
satisfactory.

Many researchers proposed that the ACPs should be
considered during the early analysis and design phases of
the software development process to increase the overall
system security. From the design perspective, access
control policies provide an insight into the various kinds
of threats, violations which could be handled effectively

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1089

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.5.1089-1094

in further software development process. The overall
system development process is fruitful when the design
phase supports modeling of ACPs with the functional
requirements.

Based on this viewpoint, one group of researchers [6],
[7] and [8] analyzed the ACPs by externalizing them
from the application domain. This approach provided an
additional advantage – the changes to policies can be
performed without the need to modify applications. Since
the ACPs are separated from applications, it can be
rebuilt, shared, and thus reused. But the independent
specification of security policies presents a problem—
how to integrate the policies in an application design.

Following this, the research community proposed for
integrated modelling of the ACPs along with the
functional requirements from the initial phase of system
development. This helped to deal with complex ACPs

and also avoid many inconsistency issues. Addressing the
ACPs in the earlier phases is one of today’s challenges in
software and requirements engineering research since
they cannot be blindly inserted into the system design.
The ACPs have to be conceptualized / modeled with
suitable abstractions and then have to be validated prior
to their inclusion.

Multitudes of research works for this purpose are
available in the literature. The researchers propose many
solutions to address the ACPs in the design phase using
various abstraction mechanisms. The following diagram
presents the classification of the most prominent
approaches in the area of research-Modeling ACPs. This
classification covers almost all the approaches that are
available in the literature.

Figure 1: Classification of ACP Modeling approaches at Design Phase

These approaches provide effective modeling
abstractions for ACPs in the design phase. Also certain
approaches specify systematic approach for the
composition of the ACPs with the Functional
requirements [9]. Still there is a need for enhancements in
these approaches to handle the modeling of evolving
access control policies at the design phase.

From the initial literature review [3], we were able to
find the lacking factors of the existing methodologies
towards addressing the evolution in ACPs. From that we

identified certain requirements that should be fulfilled by
a modeling approach in order to handle the evolving
ACPs at design phase. The following table lists the
identified requirements to be fulfilled by a modeling
approach, so that it is suitable for handling the evolving
ACPs. We analyzed the abilities & limitations of the
existing approaches based on the identified requirements.

The shortcomings of the approaches give the
motivation for further research that has to be performed
for handling the evolving issues in the ACPs.

Secure Patterns

UML Template
classes

OCL and Class
Diagrams

Usecase, Object,
Class and Sequence

diagrams

UMLSec

SecureUML

UML Patterns UML Diagrams UML Profiles

Aspects

Features

Classification of access control policy modeling
approaches at Design phase

Model based approaches
Process –Based Approaches

HLL Formal Logic

1090 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

TABLE 1
REQUIREMENTS FOR AN ACP MODELING APPROACH TO SUPPORT EVOLUTION- COMPARATIVE ANALYSIS

Requirements to be fulfilled by

an ACP modeling approach
Formal Methods

[10][11] [12][13]
[14] [15] [16]

High Level
Languages

[17] [18] [19]

UML Diagram &
Profiles

[20] [21] [22][23] [24]

Aspects

[25] [26]

Features

[27] [28] [29]

Simplicity ∗

Amenable for analysis

Usability

Understandability ∗

Clarity in syntax & Semantics ∗ ∗ ∗ ∗ ∗
Ability to model the crosscutting
ACPs

Ability to foresee the likely
evolutionary changes in the
ACPs

 ∗

Ability to model the multiple
occurrences of an ACP in the
design.

Ability to support the scalability
issues in the ACPs ∗

Ability to present the
commonalities and differences
between multiple & related
ACPs

Ability to represent the real-time
constraints & dependencies
between ACPs

 ∗ ∗

 - Yes ; - No ; ∗ - Partial

The above table presented the abilities of the existing
ACP modeling approaches during the design phase and
also highlighted their limitations with certain issues like
ACP Evolution, Scalability and Consistent performance
during ACP Evolution. In the following section, these
issues are detailed to be used as pointers for future
directions of research.

II DIRECTIONS FOR FUTURE RESEARCH

Our preliminary research and studies show that the
ACPs evolution or the change occurs either periodically
or irregularly. We need an approach to model the
evolution suitably at the design phase. We begin by
defining the ACP evolution and identifying a suitable
abstraction. Later we present the kind of improvements
needed to be attributed to the identified abstraction so
that it satisfies the requirements listed in Table 1.

A. ACP Evolution
The Research Institute in Software Evolution (RISE)

formally defines software evolution as the set of activities,
both technical and managerial, that ensures that
software continues to meet organizational and business
objectives in a cost effective way.

When the software continues to evolve, the associated
ACPs also evolve. The Evolution in ACPs may be
involved with the addition or removal of roles, rules,
operations or objects with respect to the system. E.g.
Policy 1 – Manager can read only the customer’s
accounts is now changed into Policy 2 – Manager can
perform both read & write access to the customer’s

account. Here ‘Manager’ is the role and the ‘Customer’s
account’ is the object. The access operations are ‘read’ &
‘write’. By providing new permissions to the role
“Manager”, we need to check for conflicts in the existing
setup and also assure the enforcement of the new policy
in the model.

B. Abstraction for Modeling ACP and its Evolution
An abstraction that models the complex ACPs and also

its evolution effectively without affecting the consistency
has to be identified. An evolution can be an incremental
& planned change or a sudden event. When an evolution
occurs, the evolved policy can be treated as a variant of
the previous version of the same policy. The evolution
component acts as the variance between the two policies.
So the abstraction should be able to represent the
variability of an ACP in terms of its entities involved viz.
Role, resource / object and access permission of the role
of that object/resource is required.

From our literature survey [3], we observed that
compared to other abstractions, “Feature” is quite
suitable for representing the ACPs as it treats ACP as an
externally visible and significant characteristic added to
the system. Also its significance as a variability
modelling tool makes it to be more suitable for our
purpose. By representing the ACP as an external visible
Feature and arranging them in a Feature Model, we can
get twofold advantages.

• Feature model is regarded as an efficient domain

analysis tool. It helps in the analysis of the entire set

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1091

© 2014 ACADEMY PUBLISHER

of ACPs governing the software system of a business
through common features and variable features. By
this virtue, whenever a new ACP arises, it can be
analyzed with the existing Features. There by the
evolutionary process can be easily represented.

• Feature model is used to reduce the gap between the
problem space [system specifications established
during domain analysis and requirement engineering
phases] and the solution space [architecture, design
and implementation phases] by managing the
variability. This simplifies the management of
evolution both in the software systems and in the
ACPs [30]. This ensures the consistency of the
system after enforcing the evolved ACPs.

After choosing Feature to be ours abstraction, we have

to research for further improvements on the Feature
Model in order to facilitate the modelling of ACP
evolution because the existing works on Features [27, 28,
29] does not address the same. We brief the same in the
following sub-sections.
1. ACP Evolution Analysis

We recommend using mathematical models to study
the changes due Role evolution, Permissions re-
assignment & Resource-set Modification. This would
facilitate in detailed analysis of dependencies between
Roles, Permissions & Objects during the ACP evolution.
Also this kind of formal studies would ensure the
consistency in the system design.
2. Separate Analysis of Variability decomposition &

Functional decomposition:
A Feature can undergo decomposition in two ways –

variability and functional decomposition. Functional
decomposition represents that Feature “A” [Whole] is
decomposed into Feature “B” & “C”. Variability
decomposition represents Feature “A” can have variants
Feature “A.1”, Feature “A.2”. This is explained with the
following example.

The following diagram shows an example Feature
model taken from [31]. This model mainly focuses on
modelling the functional requirements represented as
Features decomposed into sub-Features; e.g. a Cellular
Phone has the functionality of Display that can be either
Normal or Touch Screen. This Functional Decomposition
defines the whole-part relationship between Features &
Sub Features.

Figure 2: Feature Model of Cellular Phone

Variability is defined as the ability of an entity to
evolve into various variants. This decomposition has to
be clearly represented as it presents the variants that are
needed for evolution. E.g. Functional Feature Touch
Screen may further evolve into different variants like
Voice enabled Screen or nail touch Screens.

To handle both types of decompositions, research is
required to determine how to separately handle the
information regarding the functionality & variability,
especially during decomposition. This will help in
avoiding erroneous modelling of the ACPs and also its
evolution [32].
3. Redefinition of Feature without its type

A Feature is always defined with its functional
property & also with information that states whether it is
mandatory or optional. When a Feature is introduced in
the design as a Mandatory Feature, it always remains the
same. Its behavior doesn’t change in the course of time.
After certain evolution, usage of the mandatory feature
may not be needed. This has to be recorded in the design
also. The existing design approaches doesn’t facilitate
this change of type information.

We may define ACPs mandatory for accessing certain
objects for specific roles; Later those ACPs may become
optional for those roles. So we have a hindrance in
modelling the ACPs as Features following the standard
approaches. Referring to the works of [33], we can
research further to define an ACP-Feature without its
type.
4. Inclusion of new relationships and constraints

The real time access control policies are very complex
and have intricate dependencies. Also the relationships of
ACPs with Roles & objects are also not a simple one.
Many times, conflicting issues confront the designers.

Since we recommended Feature & Feature model to be
our representation, we analyzed the relationships &
constraints that are already defined. The existing
approach only supports Generalization/Specialization
dependency relations and requires/excludes constraints
which are not being sufficient to capture all the different
types of relationships between ACPs, especially in a
situation when ACPs evolve. Hence, research needs to be
carried out to identify new relationships and constraints
to model the evolving ACPs.
5. Feature Warehouse

Generally, in Policy based access control mechanisms,
ACPs are defined and stored in policy repositories. Later
they are extracted & applied to check the authorization.
Research can be directed to define a similar kind of
Feature warehouse that would store the defined ACP
Features. A Logical model for Feature storage along with
its storing & retrieving methodologies can be defined
6. Scalable & Large Feature models

The ACPs of an organization will scale along with the
organization’s growth. When these ACPs are represented
as Feature models, it would be a large and cramped
model. It will lack the required clarity and presentation.
The maintenance of Large ACP-Feature models would be

1092 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

a laborious task. From [34] we found that researchers
tried to automate the analysis of large Feature models
either using satisfiabililty [SAT] solvers or Binary
Decision Diagrams [BDD]. But our objective is to model
the scaling ACPs efficiently using Feature models. So
that it is possible that even a large Feature model can be
split or modularized into small & multiple Feature
models to enable their easy maintenance and analysis.
But we need to take care of the constraints and
interdependencies during splitting. Hence there should be
a justifiable factor on which the Feature models can be
split up into small Feature models.

According to our objective, we can split feature models
based on Roles, or based on objects. The works of [33]
suggested considering “Perspectives” to handle large &
scalable Feature models. The work in [35] explained that
business or legal or technical concerns may drive to
reduce the overall Feature model to a representative
subset for efficiently testing the complete Feature model.
And [36] suggested Fragmenting the changing Features
alone and thereby handling the large feature models.
These works give motivation for further research works
in this direction.

CONCLUSION

In this position paper, we have presented the issues in
modelling the evolving ACPs using the existing
modelling techniques. We have also listed the pointers
for future work that are required to be done in order to
handle the issues pertaining to evolving ACPs efficiently.

REFERENCES

[1] Premkumar T. Devanbu and Stuart Stubblebine, "Software
engineering for security: a roadmap," in Proceedings of the
Conference on The Future of Software Engineering (ICSE
'00), 2000, pp. 227-239.

[2] G Georg, I Ray, and R France, "Using aspects to design a
secure system," In Proceedings of the International
Conference on Engineering Complex Computing Systems
(ICECCS 2002), Greenbelt, MD, ACM Press., 2002.

[3] K ShanthaKumari and T Chithralekha, "A Comparative
Analysis of Access Control Policy Modeling Approaches,"
International Journa lof Secure Software Engineering, pp.
65-83, 2012.

[4] Qingfeng He and Annie I. Antón, "Deriving Access
Control Policies from Requirements Specifications and
Database Designs," 2004.

[5] Romuald Thion and Stéphane Coulondre, "Integration of
access control in information systems : From role
engineering to implementation," Informatica, vol. 30, pp.
87-95, 2006.

[6] Jerome H. Saltzer and Michael D. Schroeder, "The
Protection of Information in Computer Systems," in
Proceedings of the IEEE, vol. 9, 1975, pp. 1278-1308.

[7] Stefan Savage Brian N. Bershad, Przemyslaw Pardyak,
David Becker, Marc Fiuczynski, and Emin Gün Sirer,
"Protection Is A Software Issue," in Proceedings of the
Workshop on Hot Topics in Operating Systems, Orcas
Island, Washington, 1995.

[8] Robert Grimm and Brian Bershad, "Separating Access

Control Policy, Enforcement and Functionality in
Extensible Systems," ACM Transactions on Computer
Systems, pp. 36-70, 2001.

[9] Eunjee Song et al., "Verifiable composition of access
control features and applications," in Proceedings of 10th
ACM Symposium on Access Control Models and
Technologies (SACMAT 2005), 2005.

[10] S Barker, "Security Policy Specification in Logic," in
International Conference on Artificial Intelligence
(ICAI2000), Las Vegas, Nevada, USA., 2000.

[11] Steve Barker and Arnon Rosenthal, "Flexible security
policies in SQL," in Proceedings of the fifteenth annual
working conference on Database and application security,
Niagara, Ontario, Canada, 2001, pp. 167-180.

[12] Elisa Bertino, Piero Andrea Bonatti, and Elena Ferrari,
"TRBAC: a temporal role-based access control model," in
RBAC '00 Proceedings of the fifth ACM workshop on
Role-based access control, Berlin, Germany, 2000, pp. 21–
30.

[13] Fang Chen and Ravi S. Sandhu, "Constraints for role-
based access control," in RBAC '95 Proceedings of the first
ACM Workshop on Role-based access control , 1995, p.
Article No. 14.

[14] R Hayton, J Bacon, and K Moody, "Access Control in an
Open Distributed Environment," in IEEE Symposium on
Security and Privacy, 1998, pp. 3-14.

[15] R Ortalo, "A Flexible Method for Information Systems
Security Policy Specification," in Proceedings of the 5th
European Symposium on Research in Computer Security,
Louvain-la-Neuve, Belgium, 1998.

[16] Michael Hitchens and Vijay Varadharajan, "Tower: A
Language for Role-Based Access Control," in POLICY '01
Proceedings of the International Workshop on Policies for
Distributed Systems and Networks, Bristol, U.K. , 2001,
pp. 88 - 106.

[17] James A Hoagland, Raju Pandey, and Karl N Levitt,
"Security Policy Specification Using a Graphical
Approach," 1998.

[18] OASIS. (2002) http://www.oasis-
open.org/committees/xacml.

[19] C Ribeiro, A Zuquete, and P. Ferreira, "SPL: An Access
Control Language for Security Policies with Complex
Constraints.," in Proceedings of the Network and
Distributed System Security Symposium, San Diego, CA.,
2001.

[20] D Kim, I Ray, R France, and N Li, "Modeling Role-Based
Access Control Using Parameterized UML Models," in
FASE 2004. LNCS, vol. 2984, 2004, pp. 180–193.

[21] Torsten Priebe, Eduardo B. Fernandez, Jens I. Mehlau, and
Günther Pernul, "A PATTERN SYSTEM FOR ACCESS
CONTROL," in Proceedings of Eighteenth Annual
Conference on Data and Applications Security, Catalonia,
Spain, 2004, pp. 235-249.

[22] I Ray, N Li, R. B France, and D. K Kim, "Using UML to
visualize role-based access control constraints," in
Proceedings of the Symposium on Access Control Models
and Technologies (SACMAT), 2004, pp. 31-40.

[23] T. Lodderstedt, D. Basin, and J. Dose, "Secureuml: A uml-
based modeling language for model-driven security," in
Proceedings of the International Conference on the
Unified Modeling Language, UML'2002, 2002, pp. 426-
441.

JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014 1093

© 2014 ACADEMY PUBLISHER

[24] Jan Jürjens, "UMLsec: Extending UML for Secure
Systems Development.," in UML '02 Proceedings of the
5th International Conference on The Unified Modeling
Language, Germany, 2002, pp. 412-425.

[25] Robert E.Filman, Tzilla Elrad, Siobhan Clarke, and
Mehmet Aksit, Aspect-Oriented Software Development.:
Addison-Wesley Professiona, 2004.

[26] Geri Georg, Robert France, and Indrakshi Ray, "An
Aspect-Based Approach to Modeling Security Concerns,"
in Proceedings of the Workshop on Critical Systems
Development with UML, Dresden, Germany, 2002.

[27] S Kim, D K Kim, L Lu, S Kim, and S Park, "A Feature-
Based Approach for Modeling Role-Based Access Control
Systems," Journal of Systems and SoftwareVol. 84, No. 12,
pp. 2035-2052., 2011.

[28] D K Kim, L Lu, and S Kim,".A verifiable modeling
approach to configurable role-based access control," in In
the proceedings of FASE 2010. LNCS, vol. 6013, 2010, pp.
188–202.

[29] L Sun and G. Huang, "Modeling Access Control
Requirements in Feature Model," in Software Engineering
Conference, APSEC '09,Asia-Pacific, 2009, pp. 241 - 248.

[30] Kathrin Berg and Judith Bishop, "Tracing Software
Product Line Variability – From Problem to Solution
Space," in Proceedings of SAICSIT 2005, 2005, pp. 111-
120.

[31] Suntae Kim, Dae-Kyoo Kim, Lunjin Lu, and Sooyong
Park, "Quality-driven architecture development using
architectural tactics," Journal of Systems and Software,
vol. 82, no. 8, pp. 1211-1231, 2009.

[32] Thomas von der Maßen and Horst Lichter, "Deficiencies
in Feature Models," in Workshop on Software Variability
Management for Product Derivation - Towards Tool
Support, 2004.

[33] L Abo Zaid, F Kleinermann, and O De Troyer, "Feature
Assembly Framework: Towards Scalable and Reusable
Feature Models," in Proceedings of the 5th Workshop on
Variability Modeling of Software-Intensive Systems,
Namur, Belgium, 2011, pp. 1-9.

[34] M. Mendonça, "Efficient Reasoning Techniques for Large
Scale Feature Models," School of Computer Science,
University of Waterloo, PhD 2009.

[35] Julia Schroeter, Malte Lochau, and Tim Winkelmann,
"Multi-perspectives on feature models," in Proceedings of
the15th international conference on Model Driven
Engineering Languages and Systems (MODELS'12), 2012,
pp. 252-268.

[36] Andreas Pleuss, Goetz Botterweck, Deepak Dhungana,
Andreas Polzer, and Stefan Kowalewski, "Model-driven
support for product line evolution on feature level,"
Journal of Systems & Software, vol. 85, no. 10, pp. 2261-
2274, 2012.

1094 JOURNAL OF SOFTWARE, VOL. 9, NO. 5, MAY 2014

© 2014 ACADEMY PUBLISHER

