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Through analyzing the attributes of ݒ from its profile, 
its static attribute can be derived: 				ܥሺݒሻ ൌ ሼ1,0ሽ,							݃ ൌ 1,… , ݊           (3) 
If ݒconforms to some static characteristics, ܥሺݒሻ ൌ 1, 
otherwise ܥሺݒሻ ൌ 0 .  ሻmeans different kinds ofݒሺܥ	
static attributes we extracted, for example, ܥଵሺݒሻ 
represents user’s gender and 	ܥሺݒሻ  represents user’s 
information of its label.  

Similarly, degree node also has its static attribute: ܥ‘൫ݒ൯ ൌ ሼ1,0ሽ	,			݃ ൌ 1,… , ݊          (4) 
If ݒconforms to some static characteristics, ܥ‘൫ݒ൯ ൌ 1, 
otherwise ܥ‘൫ݒ൯ ൌ 0 . The static attribute of degree 
node is use to defining dynamic attribute which will be 
described as followes. 
We assume: 

ܵሺݒሻ ൌ ∑ ሺ‘ቀ௩ೖቁୀଵసభ,ೖసభ ሻሺ௩ሻ          (5) 		݃ ൌ 1,… , ݊ 
When ܵሺݒሻreaches a certain threshold, we define 

dynamic attribute as: 

ܤ ൌ ۔ە
ۓ ܾଵ, if ܵሺݒሻ  ,ܾଶ																		ଵߪ ifߪଶ%  ܵሺݒሻ  ,ଷ%…ܾߪ if ܵሺݒሻ ൏        (6)															௦%ߪ

݃ ൌ 1,… , ݊ 
We use Graph theory to simplify the process of 

calculation of ܵሺݒሻ . Suppose ܦ ∈ ሼ0,1ሽ୬ൈ୬  is the 
adjacency matrix [7] of target node. ݀୧୩ ∈ ሼ0,1ሽ . If ݀୧୩ ൌ 1, it means that ݒ connects with ݒ. 

Assume static matrix of target node and degree node 
as: ݑ 	ቊ1, if	ܥሺݒሻ ൌ 1	 ∧ ൯ݒ൫‘ܥ ൌ 10, if	ܥሺݒሻ ൌ 0	 ∧ ൯ݒ൫‘ܥ ൌ 0       (7) 

       
Then ܷ ൌ ሾݑሿ ൌ ሾݑଵ ଶݑ 	 ሿ்       (8)ݑ… ܵሺݒሻ ൌ ݀	ܷ‖݀‖ଶ 																												ሺ9ሻ 

 

III. BUILDING BAYESIAN NETWORK 

A． Definition of parameter in Bayesian Network 
Bayesian network (BN) is made up of conditional 

probability and topological structure [8]. The relationship 
between variables is depends on the reality [9].Thus the 
connection between variables is the structure of BN while 
the conditional probability of variable is parameter of BN 
[10]. BN has a strong self-study ability which means it can 
learn structure and parameter from data.  

We build a BN model so to detect whether a target node 
belongs to a target community through the attribute of 

target node and degree node. According to the theory of 
BN, we assume target parameter ܶ: ܶ ൌ ൜true, if	ݒbelongs	to	target	community	false, otherwise																																											         (10) 

Then assume 	ܥ and 	ܮ as a parameter: 	ܥ ൌ ቊ true, 				if	ܥሺݒሻ ൌ 1																								false,				 if				ܥሺݒሻ ൌ 0																								(11) ݃ ൌ 1,… , ܮ ݊ ൌ ቄmaybe		notbe		                                                  (12) 
If ܮ=maybe, means that 	ݒ probably belongs to the 

target community. If ܮ=notbe,		ݒdoes not belong to 
target community. 
According to the BN theory: Pሺܤหܮሻ ൌ ሺหሻ൫൯൫൯                     (13) 

B． Learning Parameter in Bayesian Network 
There are two kinds of methods to learn parameter in 

BN. One is Maximum likelihood estimate  [11], the other  
is Bayesian estimation method [12]. Because the lack of 
prior probability, and if there are no examples with 
missing values in the training set, we assume parameter 
independence, we use maximum likelihood estimates. 

TABLE Ⅰ.  
 DECISION TABLE ܤଵ  ଵܵ ܲሺܮଵൌ ଵൌܮଵሻ ܲሺܾ|ܾ݁ݕܽ݉ ଵܾଵଵܾ|ܾ݁ݐ݊  50% 75% 25% ܾଵଶ 35%  ଵܵ ൏ 50% 60% 40% ܾଵଷ 20%  ଵܵ ൏ 35% 50% 50% ܾଵସ 5%  ଵܵ ൏ 20% 15% 85% ܾଵହ ଵܵ ൏ 5% 10% 90% 

 

IV. EXPERIMENTAL STUDIES 

A． Defining Attributes of Node and Selecting Parameter 
We took microblog which is one of the most popular 

social networks as an object of the research. First, we 
assume Z community as the target community. Second, 
through data mining, we collected structured and 
unstructured data. 

According to equation (10), we assume parameter as:  ܶ ൌ ൜݁ݑݎݐ, if	ݒbelongs	to	Z	݂݈ܽ݁ݏ, otherwise								  

To simplify, we assume one static attribute of 	ݒ: ܥଵሺݒሻ ൌ ሼ1,0ሽ,							݃ ൌ 1,… , ݊ 
If 	ݒ’s profile contains the fields that are associated with 
target community Z, then 	ܥଵሺݒሻ=1.For example, the 
profile of target user	ݒଵଶଷ contains community Z’s name, 
then 	ܥଵሺݒଵଶଷሻ=1. 

Then, transform ܥଵሺݒሻ, to parameters in BN according 
to equation (11): 
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ଵܥ	 ൌ ൜ true, 				if	ܥଵሺݒሻ ൌ 1																								false,				 if				ܥଵሺݒሻ ൌ 0																								 
Similarly, static attribute of out-degree node: ܥ‘ଵ൫ݒ൯ ൌ ሼ1,0ሽ,							݃ ൌ 1,… , ݊ 
Static attribute of in-degree node: ܥ‘ଶ൫ݒ൯ ൌ ሼ1,0ሽ,							݃ ൌ 1,… , ݊ 

Besides, in microblog, users can follow a group called 
microgroup. So we view Microgroup as a kind of an 
out-degree node. Static attribute of Microgroup: ܥ‘ଷ൫ݒ൯ ൌ ሼ1,0ሽ,							݃ ൌ 1,… , ݊ 

Calculate ଵܵሺݒሻ , 	ܵଶሺݒሻand	ܵଷሺݒሻ that corresponding 
to out-degree node, in-degree node and Microgroup. 

ଵܵሺݒሻ ൌ ∑ ሺܥ‘ଵ൫ݒ൯ ൌ 1ୀଵ,ୀଵ ሻ݂ሺݒሻ  ܵଶሺݒሻ ൌ ∑ ሺܥ‘ଶ൫ݒ൯ ൌ 1ୀଵ,ୀଵ ሻ݂ሺݒሻ  ܵଷሺݒሻ ൌ ∑ ሺܥ‘ଷ൫ݒ൯ ൌ 1ୀଵ,ୀଵ ሻ݂ሺݒሻ  

In the following section we talk about the calculation of 
remaining parameters , and structure of BN. 

B． Parameter Learning in Hybrid Bayesian Networks ܮ is parent node of ܤ so that we can assume its initial 
prior probability value as 0.5. The value of ܮ will change 
with conditional probability of  ܤ. That is why the initial 
prior probability value will not affect the final result. 

We take ܤଵ as an example. It is difficult to 
assess 	Pሺܾଵ|ܮଵ ൌ maybeሻ  and Pሺܾଵ|ܮଵ ൌ notbeሻ . 
Sowe assess Pሺܮଵ ൌ maybe|ܾଵሻ  and Pሺܮଵ ൌnotbe|ܾଵሻ  first, then figure out Pሺܾଵ|ܮଵ ൌ maybeሻ 
and Pሺܾଵ|ܮଵ ൌ notbeሻ. TABLE Ⅰ is the decision table of ܤଵ. 

 In TABLE Ⅰ, for examplePሺܮଵ ൌ maybe|ܾଵሻ=75% 
means when ଵܵሺݒሻ  reach over 50%, we consider the 
probability of  ܮଵ ൌ maybe is 75%. ܤଵ has five variables that means m=5. Then assume 

 Pሺܾଵ୫ሻ=0.2. According to Bayes formula, we can 
acquire Pሺܾଵ|ܮଵ ൌ maybeሻ: Pሺܾଵ|ܮଵ ൌ maybeሻ ൌ Pሺܮଵ ൌ ଵሻܮଵሻPሺܾଵሻPሺܾ|ܾ݁ݕܽ݉  

Similarly, we can calculate the conditional probability of  ܤଶ,	ܤଷ.As can be seen in Table Ⅱ (a), Table  Ⅱ(b)and Table  
Ⅱ (c). 

TABLE Ⅱ (a). 
 PROBABILITY OF  ܤଵ ܮଵ maybe notbe ܾଵଵ 0.357 0.086 ܾଵଶ 0.286 0.138 ܾଵଷ 0.238 0.172 ܾଵସ 0.071 0.293 ܾଵହ 0.048 0.311 

 
 

TABLE Ⅱ (b).  
PROBABILITY OF  ܤଶ ܮଶ maybe notbe ܾଶଵ 0.357 0.086 ܾଶଶ 0.286 0.138 ܾଶଷ 0.238 0.172 ܾଶସ 0.071 0.293 ܾଶହ 0.048 0.311 

 
TABLE Ⅱ (c) . 

PROBABILITY OF  ܤଷ ܮଷ maybe notbe ܾଷଵ 0.468 0.179 ܾଷଶ 0.344 0.321 ܾଷଷ 0.188 0.5 
As mentioned above, in lack of prior probability of ܶ 

we use maximum likelihood estimates. 
After learning parameters in GeNIe which is a kind of 

software for BN, we acquired prior probability of 	ܥଵ and ܶ which shown in TABLE III and TABLE IV (a)(b). 
 

TABLE III. 
 PRIOR PROBABILITY OF 	ܥଵ 

true 0.304 
false 0.696 

 
TABLE IV. (a) 

PRIOR PROBABILITY OF ܶ WHENܥଵ ൌ true 
  

TABLE IV. (b) 
 PRIOR PROBABILITY OF ܶ WHENܥଵ ൌ false 

 
C． Calculating 	 ܵሺݒሻ	based on Graph Theory 

Figure 2 indicats a simple relationship between six 
users in social networks. The black nodes 
signifyܥ‘൫ݒ൯ ൌ 1 or ܥሺݒሻ ൌ 1. The white ones mean  ܥ‘൫ݒ൯ ൌ 0 or ܥሺݒሻ ൌ 0. 

ଵܥ                 false  ܮଵ maybe notbe ܮଶ maybe notbe maybe notbe ܮଷ maybe notbe maybe notbe maybe notbe maybe notbe
true 0.99 0.51 0.40 0.53 0.81 0.89 0.65 0.001
false 0.01 0.49 0.60 0.47 0.19 0.11 0.35 0.999

ଵܥ true	ܮଵ maybe notbeܮଶ maybe notbe	 maybe notbeܮଷ maybe notbe maybe notbe	 maybe	 notbe maybe notbetrue 0.99 0.97 0.52 0.68	 0.41	 0.43 0.82 0.89false 0.01 0.03 0.48 0.32	 0.59	 0.57 0.18 0.11
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Figure2. Relationship of users in social networks 

 
Suppose node 6 is target user which means we want to 

calculate 	ܥሺ6ሻ.Then its adjacency matrix is: 

[ ]1 2 6

0 1 1 1 0 0

1 0 1 0 0 0

1 1 0 1 1 0
=D

1 0 1 0 1 1

0 0 0 1 0 1

0 0 0 1 1 0

= Td d d…

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
According to equation (7), static matrix of target node 

and degree nodes is: 
[ ] [ ]1 0 0 1 1 0 T

iU u= =  
Then 

( )

[ ][ ]

6

6

2
6

1
0 0 0 1 1 0

 
=

1 0 0 1 1 0 =1
2

 g

T

d U
S

d

=

In 

the same way, we can also calculate other target nodes as 
followes: 

( ) 1 1 2 1 1
1

3 2 3 2 2
 g i

T

S v = ⎡ ⎤
⎢ ⎥⎣ ⎦

 

 

D． Reliability Test of Hybrid Bayesian Networks 
In order to test the reliability of Hybrid Bayesian, we 

input the data of  training set into this model. For example, 
there is a user whose number is 59321. His profile contains 
some fields associated with target community Z, 
meaning ( )1 59321 1C = . And 

its ( )1 70%59321S = , ( )2 88%,59321 S = ,

( )3 20%59321S = . From this percentage, we knew this 

user’s dynamic attribute belongs to 11 21, 33,b b b .Then this 
parameter is into Hybrid Bayesian networks shown in 

Figure3. 

 
Figure3. The test result of user no.59321 

 
The model in Figure 3 proves that the probability of 

reliability of the one who is identified as belonging to 
community Z in reality is 83%. 

Figure4 shows the result of probability of user 
reliability through teston Hybrid Bayesian networks. If a 
user’s mark is 1, that means we can affirm this user is part 
of community Z. The “Result” means 

1 1 2 3( | , , , )P A true C B B B= .It can be seen from Figure 4 
that the simulation result is close to reality.Then we can 
classify the threshold to meet different requests, for 
example, when the percentages in “Result” is over 55%, 
users which satisfies this condition can be considered to 
belong to community Z.  

V. CONCLUSIONS 

Both products and marketing strategy should be of 
pertinence. Therefore, in big data era, whether 
E-commerce companies can accurately find out the target 
market has become the key to success. Plenty of 
communities exist in social networks. These communities 
must include the target markets of companies. So our 
model is to help enterprises to find out their target 
communities in social networks. We built a Hybrid 
Bayesian network with the data from users’ profiles. 
Through structured data, we could obtain Binary logic data 
and Discrete ones and employ graph theory to optimize the 
model. This model can provide personal community 
detection while making use of users’ profiles and features 
of target community. Therefore we could provide personal 
community detection for each user in social network. 
Mining community becomes more flexible resulting from 
taking advantage of conditional probability. This research 
only provides a basic model and its parameters   can be 
modified depending on different characteristics of 
different target communities. 
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Figure 4. The result of probability of users’ reliability  
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