
The Large-scale Dynamic Data Rapid Reduction
Algorithm Based on Map-Reduce

Jing-ling Yuan

Computer Science and Technology school, Wuhan University of Technology, Wuhan, China
Email:yuanjingling@126.com

Jing Xie, Yan Yuan, Lin Li

Computer Science and Technology school, Wuhan University of Technology, Wuhan, China
School of Urban Design, Wuhan University, Wuhan, China

Email:kk-yuhui@163.com

Abstract—With the advent of the era of “Big Data”, the
application of the large-scale data is becoming popular.
Efficiently using and analyzing the data has become an
interesting research topic. Traditional knowledge reduction
algorithms read small data samples once into a computer
main memory for reduction, but it is not suitable for
large-scale data. This paper takes large-scale sensor
monitoring dynamic data as the research object and puts
forward an incremental reduction algorithm based on
Map-Reduce. Using a Hash fast partitioning strategy this
algorithm divides the dynamic data set into multiple
subdatasets to compute, which has greatly reduced the
calculation time and space complexity of each node.
Finally，experiments are conducted on the data from UCI
Machine Learning Repository using Hadoop platform to
prove that the algorithm is efficient and suitable for
large-scale dynamic data. Compared to the traditional
algorithms, the highest speedup of the parallel algorithm
can be increased up to 1.55 times.

Index Terms— Large-scale dynamic data, increment
knowledge reduction, Hash algorithm, Map-Reduce

I. INTRODUCTION

With the advent of the era of “Big Data”, the
application of the large-scale data such as all kinds of
sensor data, network data, mobile device data, RFID data
and so on [1] is becoming more and more popular. We will
confront the problem of ample data and poor knowledge.
How to use and analyze this large-scale data efficiently is
becoming an important issue. Researchers obtain
effective information by various methods such as data
mining, knowledge reduction and so on. As a form of
data reduction, knowledge reduction is the preprocessing
set of data mining and it deletes unnecessary or unrelated
knowledge on the premises of keeping the data
classification ability to reduce the time space exploration
and improves the efficiency of follow-up work. One of
the core problems of rough set theory (RST) put
forward by Z.Pawlak[21] who is a mathematician from
Poland is knowledge reduction. RST can effectively
analyze and deal with all kinds of incomplete information

which is inaccurate, inconsistent or incomplete, and
discovers tacit knowledge and suggests potential rules.
Thus RST plays an important role in many fields such as
data mining, pattern recognition, decision analysis, image
processing, medical diagnosis, artificial intelligence and
so on.

The contributions of this paper are:
1. We state a traditional dynamic data reduction

algorithm and mainly analyze the incremental reduction
algorithm. The algorithm firstly obtains the reduction of a
part of decision set, and adds the rest step by step. After
several iterations it would get the final reduction set.

2. We further study the incremental reduction
algorithm based on distributed computing framework
Map-Reduce. With the idea of parallel, the algorithm
divides large-scale data into small data fragmentations to
calculate separately and gathers the results to get the final
reduction. Through simulation experiment we know that
for large-scale dynamic data, the parallel reduction
algorithm based on Map-Reduce is more efficient
compared to traditional dynamic data reduction
algorithms.

II. RELATED WORK

Many scholars have carried out extensive researches
for reduction algorithms.[2,3,4,5,6] Skowron A. et al. [7, 8, 9, 10]
presented a knowledge reduction algorithm based on
discernibility matrices and its time complexity was
O(|C2||U2|). Liu Shaohui et al. [11] presented an
equivalence partitioning algorithm which used quick sort
scheme to sort knowledge set and its time complexity
was O(|C||U||logU|). Xu Zhangyan[12] presented a
positive region algorithm based on radix sort and its time
complexity was O(|C||U|). Wang Guoyin et al. [13, 14, 15]
introduced a reduction algorithm based on information
entropy whose time complexity was O(|C2||U2|). Feng
Lin et al. [19, 20] introduced a reduction algorithm based on
continuous valued attributes whose time complexity was
O(|C||U|). In practice, when processing more data,
large-scale data cannot be resided in memory at all, it
will require a mass of I/O operations which consume a

1028 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.4.1028-1035

lot of time and increase the time cost of reduction that
causes inefficiency. For large-scale data set, Wang
Guoyin et al. [16, 17] presented a rapid knowledge
reduction algorithm based on the idea of divide and
conquer. Combined with the idea of parallel computing
the algorithm assigned the task of knowledge reduction
to multiple processors to operate at the same time, which
has greatly improved the efficiency. Its time complexity
was O(|C2||U|) and space complexity was O(|U|+P×|C|).
Wu Zite et al. [18] put forward a fast scalable attribute
reduction algorithm with the thought of SLIQ. The
algorithm divided the decision table into different
knowledge lists lengthways and stored them in the hard
disk only when necessary to load into memory. Because
only one decision table existed in memory, it could save a
lot of memory space and help to improve the efficiency.

However, at present, the study of methods for
processing large-scale dynamic data is a few. Because of
the accumulation of the sensor data, large-scale dynamic
data exists in many practical engineering monitoring
projects such as the monitoring of tunnel and bridge,
building health detection and so on. Based on the
large-scale dynamic data set, this paper learns from the
traditional reduction algorithm and uses the idea of
distributed architecture and parallel computing to achieve
the large-scale dynamic data reduction algorithm. The
algorithm calculates distributed file reduction results,
then uses dynamic incremental reduction algorithm to get
the final reduction results. The algorithm does not need a
large number of I/O operations. So it greatly saves the
computation time and improves the efficiency of
reduction.

III. TRADITIONAL REDUCTION ALGORITHM

Recently, rough set theory is an effective mathematical
tool for dealing with uncertainty besides probability
theory, fuzzy sets and evidence theory. As a relatively
new soft computing method, rough set has received
increasing attention and its efficiency has been confirmed
in some successful applications of many science and
engineer fields. Rough set is one of the hot spots in
current artificial intelligence theory and its applications.
In many practical systems there are uncertainty factors to
various degrees, and collected data often contains noises,
indeterminacy and imperfection. The main idea of rough
set theory is that using the known knowledge base to
portray the imprecise and uncertain knowledge
approximately.

A. Basic Concepts
In this section, several basic concepts are reviewed,

such as information systems, decision tables, equivalence
relation, partition, lower and upper approximations and
partial relation of knowledge.

In the following, we first recall the concepts of
information systems.

Definition 1. An information system is a pair
(U, A C D, V, f)IS = = ∪ , where

(1) U is a non-empty finite set of objects;
(2) A is a non-empty finite set of knowledge; and

(3) For every knowledge a A∈ , there is a mapping f,
: af U V→ with aV being called the value set of a A∈ .
A decision table is an information system

S = (U, A = C D,V, f)∪ with C D =Φ∩ where each
element of C is called condition knowledge, C is called a
condition knowledge set, each element of D is called
decision knowledge, and D is called a decision
knowledge set.

Definition 2.
Given a decision table DS = (U, A = C D,V, f)∪ and a

knowledge set (C)P D⊆ ∪ . P defines an equivalence
relation (P)IND on U as

(P) {(x , y) | ((x , y) U U)(a P (a(x) a(y)))}IN D = ∈ × ∀ ∈ = .
Obviously, (P)IND is an indiscernibility relation. The
partition of P on U is marked by / (P)U IND or just / PU
by notation of

(P)[x] [x]IND p= . We refer to the
equivalence block of P containing the instance x U∀ ∈ .

Definition 3.
Given a decision table DS = (U, A = C D,V, f)∪ , if

(C)P D⊆ ∪ and x U∈ , the lower-approximation of X to
P is _ {x | (x U) ([x] U)}pP = ∀ ∈ ∧ ⊆ and the

upper-approximation of X to is
(x) {x | (x U) ([x])}pP X− = ∀ ∈ ∧ ∩ ≠ Φ
Definition 4[15].
Given a decision table DS = (U, A = C D,V, f)∪ ,

(C D)P ⊆ ∪ , the positive region of P with reference to
D is defined as

/ ((D) _ (X)p X U IN D DP O S P∈= ∪ .
The decision values of instances in (D)pPOS can be

completely predicted according to their corresponding
condition knowledge values vectors, this is, (D)pPOS is
the deterministic part of the universe of a decision table.

Definition 5[15].
A decision table DS = (U, A = C D,V, f)∪ is

consistent if and only if (D) UpPOS = .
Definition 6.
An information system DS = (U, A = C D,V, f)∪ ,

where C is called a condition knowledge set, and D is
called a decision knowledge set, P C⊆ , /E U P= ,

1 2,x x U∈ . If decision values of all elements in E are
same, then E is called consistent classification. Otherwise,
E is called inconsistent classification. That is to say for

1 2,x x E∀ ∈ , if
1 2(x) d(x)d = , E is called consistent

classification. When P C= consistent classification is
also known as consistent subset or consistent record and
inconsistent classification is also known as inconsistent
subset.

Definition 7.
An information system DS = (U, A = C D,V, f)∪ , where

C is called a condition knowledge set, P C⊆ , /G U P= ,
if G is consistent classification, then G is called
consistent state.

Definition 8.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 1029

© 2014 ACADEMY PUBLISHER

An information system DS = (U, A = C D,V, f)∪ , where
C is called a condition knowledge set, and D is called a
decision knowledge set, P C⊆ ,

{X | X is consistent subset and X POS (D)}pEp = ⊆ , suppose

a C∈ , if
{a}| POS (D) | | POS (D) |C C−≠ , then for D

knowledge a is indispensable.
Supposing R C⊆ , if satisfied to restrain:
(1) | POS (D) | | POS (D) |C R=
(2) a R∀ ∈ , {a}| POS (D) | | POS (D) |R R−≠ , we call R is a
relative reduction of C. The interaction of relative
reduction in C is called core of C noted as CORE (C)D

.

B. Traditional Reduction Algorithm
Generally speaking, the traditional dynamic data

reduction algorithm is a kind of incremental algorithms.
The algorithm firstly obtained the reduction of a part of
decision set, and added the rest step by step. After several
iterations it would get the final reduction set.

In an information system S0={U,C,V,F} the core is
CORE(S0), reduction set is R0, the incremental attribute
set is X. In a new information system S={U,C’,V’,F’},
C’=C∪X, the core is , reduction set is R. In the
information system S0’={U,X,V’,F’}composed by X, the
core is CORE(S0’), reduction set is R0’. The relationship
between the several sets is as follow:

'
0

0

0

|m|
0

' |n|
0

(S) CORE(S) (C)

{m | m CORE(S) POS c | m |}

{n | n CORE(S) POS X | n |}

c
R

X
R

CORE CORE
Δ

Δ

= + −

∈ ∩ = Δ −

∈ ∩ = Δ

The core of original system plus the core of
incremental system, removes the redundant attributes to
get the core of new information system. The reduction set
is based on the reduction of original system and gets rid
of the redundant attributes to get the final reduction set.
Multiple attributes incremental reduction algorithm is
described as follow:
Input: S0={U,C,V,F}, S0’={U,X,V’,F’}
Output: CORE(S), R
1. S=S0∪S0’; R=R0
2. S0=NULL; for every attribute a of S0, compute M0=

△a({a}), 0
'
0

0 ({ })M
R

N POS a= .

If (M0= =N0), S0=S0∪a
3. S0’=NULL, for every attribute a of S0’, compute

M0’=△X({a}), '
0

0

'
0 ({ })M

RN POS a= .

If (M0’= =N0’), S0’=S0’ ∪a
4. CORE(S)=CORE(S)-S0-S0’
5. Set T’=NULL; for every attribute a of R1, compute

M=△R1({a}),
0
({ })M

RN POS a=

If (M= =N&&POSR1-{a}({a}) ∈ POSR1-{a}({R0}))
T’=T’ ∪{a} go to 7

6.
1

minarg (card(R ({w})))t
w t

= Δ
∈

 , R1=R1-{t}

7. If (T’!= NULL) go to 6; else go to 8
8. T= NULL, for every attribute a of R, compute M=△

R({a}),
1

({ })M
RN POS a=

If (M= =N&&POSR0-{a}({a}) ∈ POSR0-{a}({Rt}))
T’=T ∪{b} go to 10

9.
1

minarg (card(R ({w})))t
w T

= Δ
∈

, R=R-{t}, go to 8

10. If (T= =NULL) go to 9, else R=R∪R1, R is the
reduction set we want to get.

Incremental attributes reduction algorithm can process
the relationship between the original reduction and the
assuring reduction well when attributes increase. But
when the data volume is very big, computers need to
process I/O operations frequently, memory utilization
rate is higher, and computation needs a lot of time. The
traditional incremental reduction algorithms cannot deal
with time overhead of large-scale data reduction process.
Therefore, for the reduction of large-scale dynamic data,
this paper puts forward a reduction algorithm under the
framework of Map-Reduce.

IV. THE REDUCTION ALGORITHM BASED ON MAPREDUCE

Under the challenges of big data, the scale of modern
system is bigger and bigger and the data is more and
more. In terms of large-scale data, we cannot read all data
into memory all at once, so we need to use disk access.
We can read a part of the data into memory firstly,
compute the reduction set and write it to the file.
And then read another part into memory, compute the
reduction set and write it to the file. Until reading the
data to the end, we can use the reduction sets we have
gotten to get the final reduction set that we want.

A. Hadoop
Today, we are surrounded by data. People upload

videos, take pictures on their cell phones, text friends,
update their Facebook status, leave comments around the
web, click on ads, and so forth. Machines, too, are
generating and keeping more and more data. The
exponential growth of data first presented challenges to
current computing equipment. Existing tools were
becoming inadequate to process such large data set like
terabytes and petabytes. A system processing large-scale
distribute data has aroused a lot of interest. Hadoop is a
framework for writing and running distributed
applications that process large-scale data. Distributed
computing is a wide and varied field, but the key
distinctions of Hadoop are as follow.

1) Accessible. Hadoop runs on large clusters of
commodity machines or on cloud computing
services.

2) Robust. Because it is intended to run on
commodity hardware, Hadoop is architected with
the assumption of frequent hardware malfunctions.
It can gracefully handle most such failures.

3) Scalable. Hadoop scales linearly to handle larger
data by adding more nodes to the cluster.

4) Simple. Hadoop allows users to quickly write
efficient parallel code.

Hadoop’s accessibility and simplicity give it an edge
over writing and running large distributed programs. On

1030 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

the other hand, its robustness and scalability make it
suitable for even the most demanding jobs at Facebook.
These features make Hadoop popular in both academia
and industry.

B. Map-Reduce Framework
Map-Reduce is a programming model for processing

large data sets with a parallel and distributed algorithm. It
includes three aspects:(1) the distributed file system; (2)
the parallel programming model and (3) parallel
execution engine. A Map-Reduce program comprises a
Map() procedure that performs filtering and sorting and a
Reduce() procedure that performs a summary operation.

The Map () and Reduce () functions of Map-Reduce
are both defined with respect to data structured in (key,
value) pairs. Map () takes one pair of data with a type in
one data domain, and returns a list of pairs in a different
domain: Map(k1,v1) → list(k2,v2). The Map function is
applied in parallel to every pair in the input dataset. This
produces a list of pairs for each call. After that, the
Map-Reduce framework collects all pairs with the same
key from all lists and groups them together, creating one
group for each key. The Reduce function is then applied
in parallel to each group, which in turn produces a
collection of values in the same domain: Reduce (k2, list
(v2)) → (k3, v3). The specific calculation process is
shown as Figure 1.

Figure 1. The computing process of Map-Reduce

To serve as the mapper, a class implements from the
Mapper interface and inherits the MapReduceBase class.
The Mapper interface is responsible for the data
processing step. It utilizes Java generics of the form
Mapper<K1, V1, K2, V2> where the key classes and
value classes implement the WritableComparable and
Writable interfaces, respectively. Its single method is to
process an individual (key / value) pair:
Void map (K1 key,

V1 value,
OutputCollector<K2, V2> output,
Reporter reporter
) throws IOException

The function generates a (possibly empty) list of (K2,
V2) pairs for a given (K1, V1) input pair. The
OutputCollector receives, and the Reporter provides the

option to record extra information about the mapper as
the task progresses.

When the reducer task receives the output from the
various mappers, it sorts the incoming data on the key of
the (key / value) pair and groups together all values of the
same key. The reduce() function is then called, and it
generates a (possibly empty) list of (K3, V3) pairs by
iterating over the values associated with a given key. The
OutputCollector receives the output of the reduce process
and writes it to an output file. The Reporter provides the
option to record extra information about the reducer as
the task progresses.

C. Large-scale Dynamic Data Parallel Reduction
Algorithm Based on Map-Reduce

The reduction based on Map-Reduce is a kind of
parallel reduction, which should solve two problems such
as finding the parallel point results and obtaining the final
result by local ones. The data can be divided into disjoint
subsets by Map-Reduce to form a number of data
fragmentations. Map () procedure completes the
equivalence class computing of different data
fragmentations and Reduce () procedure accomplishes
the computing of number of the positive region,
information Entropy or undecipherable object in the same
equivalence class. The two procedures realize the data
and task parallelism in the reduction algorithm based on
Map-Reduce. Figure 2 shows the Map-Reduce task flow
chart.

Applying the idea of parallelism to traditional hash
reduction algorithm, the parallelism of the algorithm is
shown as follow.

1) Data parallelism.
ⅰ When calculating the hash table of the

information system, we can divide the original data into
different fragmentations and obtain the hash table of

each data fragmentation. We can get the hash table

of the original data set through , .

ⅱ When calculating the importance of attributes, the
optional attributes can be sliced to get the importance of
every attribute in each fragmentation, and then
summarize the importance of all attributes to get the
attribute having the biggest importance.

2) Task parallelism.
ⅰ When calculating core attributes, we can use task

parallelism. Each task computes whether a list of
attributes are core attributes or not separately and
summarizes all the results.
ⅱ When calculating the number of inconsistent set in

hash table, we can use task parallelism for each
fragmentation. We can get the importance of each
optional attribute to improve the parallelism.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 1031

© 2014 ACADEMY PUBLISHER

Figure 2. Map-Reduce task flow chart

The parallel reduction algorithm based on
Map-Reduce mainly includes 3 parts which are Map
function, Reduce function and Master control process
described as follow.

1) Map function

Input: data fragmentation Si, optional attribution C
Output: <hash table H0, Core(Si) >

① For data fragmentation Si using hash
operation to get hash table Hi and statistic the
inconsistent records in hash tables.

② Using the idea of task parallelism to get the
core of Hi Supposing there are m optional attributes
and m copy of Hi which should delete the attribute
column to judge whether the attribute is core attribute
or not. If it is the core attribute, it can be add into
Core.

Hi = hash(Si); // Do hash operation for Si
for(each a∈C)// Operate each attribute in m
{
if(is Core(a))// Judge whether attribute a is a core

attribute
{
Core = Core∪a;// If a is the core attribute, then

add it into Core
}
}

2) Reduce function

Input: the fragmentation of inconsistent set Si,

Core
Output: <attribute set C, attribute weighting

score SGF>
For each attribute data fragmentation Di, we can

use the idea of task parallelism. Supposing there are m
optional attributes and m copy of Di, we can get the
weighting score of each attribute in Di and output
<attribute set C, attribute importance SGF>.

for(each a ∈ C)// for each attribute a in C
{
 SGF(a);// compute attribute weighting score

which is the number of the inconsistent set in Di
}

3) Master Control Process

Input: information system U(C, D)
Output: relatively minimal reduction R(U)
① Set R to NULL
② The information system U can be sliced and

then start a Map function. After all fragmentations
performing the Map function, it will summarize the
results of fragmentations and get the hash structure
and core of U.

③ Taking the Core as effective attributes, we
can do hash operation for hash tables of U and get the
inconsistent set recording U’.

④ For the data partition of the optional
attributes in U’, starting a process and performing the
Reduction function to find the attribute a which has
the greatest SGF and put a into the Core.

⑤ If U’ ≠ NULL, then skip to step ④, else
continue.

⑥ Check the redundancy of the Core and
delete the redundant attributes.

At this time, the Core is also the final reduction set
R.

V. ALGORITHM ANALYSIS AND EXPERIMENT

A. Map-Reduce Reduction Model Analysis
Supposing there are n nodes in parallel, in original

algorithm, the time for hash procedure is TH, and the time
for computing Core is TC. In the Map function, because
of fragmentation, the ideal time for hash is TH / n and for

1032 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

 is TC / n. Adding to the communicating time, in the
whole Map procedure, the ideal speedup is :

() CH
H C S

TTspeed T T T
n n

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

In Reduce function, the time for getting all attributes

significance is Ti, because of fragmentation, the ideal
time is Ti /n. The time for counting the sum of the
importance is Tm, and adding the communicating time TS,
the ideal speedup is:

() i
i m S

Tspeed T T T
n

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

From the two speedups, we can know that the parallel
reduction algorithm based on Map-Reduce is difficult to
achieve the ideal speedup n , because with the increase of
the data size, the communication time also increases.
When the decision set is small, time and reduction
efficiency of parallel algorithm is worse than the serial
algorithm. Only when the data volume is large and the
computation time of each fragmentation is far greater
than communication overhead, parallel algorithm can
reflect its value and function.

B. The Comparison and Analysis of The Experiment
Experiments are conducted on the data from UCI

Machine Learning Repository using Hadoop platform on
a PⅢ800PC(512M RAM, Win). In experiment 1, we use
the traditional reduction algorithm (algorithm a) and the
reduction algorithm proposed by this paper (algorithm b)
respectively. We reduce six decision tables from UCI
machine learning repository. The results are shown in
Table 1.

TABLE 1
 THE COMPARISON OF EXPERIMENT 1

Data Set Number of
instances

Number of
attributes

Algorithm
a

Algorithm
b

T/ms T/ms

Livedisorder 345 6 82 98

Tic-tac-toe 958 9 296 327

Mushroom 8124 22 5705 5016

Letter-recogn
ition 20000 16 11514 9821

Chess 28056 6 10170 8959

covtype 581012 54 — 97257

In experiment 2, we take Letter-recognition, Chess and

n copies of the two sets as our experimental data to
reflect the superiority of Map-Reduce work better when
dealing with the large-scale dynamic data. and
are the results of Letter-recognition and Chess copying
twice, and and are the results of
Letter-recognition and Chess copying four times. The
results are shown in Table 2.

TABLE 2
THE COMPARISON OF EXPERIMENT 2

Data Set Number of
instances

Number of
attributes

Algorithm
a

Algorithm
b

T/ms T/ms
Letter-reco

gnition 20000 16 11514 9821

Chess 28056 6 10170 8959

 40000 16 19354 12728

 56112 6 16803 11625

 80000 16 30013 19367

 112224 6 31278 21569

LD Ttt MR CT LR Chess L1 C1 L2 C2
0

1

2

3

4

5

6

7

8

9

10
x 104

Ti
m

e(
m

s)

Algorithm a
Algorithm b

Region 2

Region 1

Figure 3. The experiment results

LD Ttt MR CT LR Chess L1 C1 L2 C2
0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

S
pe

ed
 u

p

Region 2

Region 1

Figure 4. The comparison of speedup

In Figure 3, from the Region 1, we know that for
small-scale data the speed of traditional reduction
algorithm (Algorithm a) is faster than the parallel
reduction algorithm based on Map-Reduce (Algorithm b),
but when the data size is bigger, algorithm b is superior
to algorithm a, especially when the data size is more than
500000 lines the advantage is more obvious.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 1033

© 2014 ACADEMY PUBLISHER

In Figure 3, from the Region 2, we can know that with
the increase of the data size, for the same data set the
running time gap of the two algorithms is larger and
larger.

In Figure 4, from the Region 1, we know that when the
data size is very small the speedup is less than 1. That is
to say for sample data the traditional reduction algorithm
is superior to the parallel reduction algorithm based on
Map-Reduce. When the data size is large the efficiency is
shown. This is due to the fragmentation time is greater
than the communication time in the parallel reduction
algorithm.

In Figure 4, from the Region 2, we can know that for
the same data set the speedup increases with the increase
of the data size.

The experiments simulate 3 nodes under the Hadoop
pseudo-distributed mode, and the results cannot fully
reflect the advantages of Map-Reduce in dealing with the
large-scale data. But it also can be seen that with the
increase of the data size the advantages of parallel
algorithm are more obvious and the overall time grows
gently. In this paper we only extract some parallel points
from the hash reduction algorithm to use. There are some
serial parts in Map-Reduce, when the data set is very
large it would significantly affect the efficiency of
parallelism and the speedup. So we can continue to
improve the parallel algorithm in the future research and
design specific algorithm for parallel reduction. Our
experiments were conducted in pseudo-distributed mode
and the communication overhead is very small so as to
have a certain influence on the results. However in
general, Map-Reduce is efficient, and can effectively deal
with large-scale data reduction problems and obtain ideal
results. Setting up Hadoop in fully-distributed mode, we
can simulate more nodes so that Map-Reduce can play its
advantages better.

VI. CONCLUSION

In order to realize the reduction of large-scale dynamic
data, parallel knowledge reduction model based on
Map-Reduce is put forward by deeply analyzing the
parallelizable operation in traditional Hash algorithm in
this paper. Simulation experiments are conducted using
Hadoop platform and results are compared with a
traditional dynamic data reduction algorithm. We find
that the algorithm proposed is efficient in processing
large-scale dynamic data. The highest speedup is up to
1.55 times. In this paper we have obtained some
preliminary results but there is a large room to improve.
There are some serial parts in the algorithm so that we
should design new parallel algorithms to meet the
requirement of the parallel reduction for large-scale data
in the future research.

ACKNOWLEDGEMENT

This paper is supported by National Natural Science
Foundation of China under Grant Number 51208388 and
61303029, National Key Technology R&D Program
under Grant Number 2012BAH89F00, and The

Fundamental Research Funs for the Central University
under Grant Number 2013-IV-054. At the same time, I
would like to express my gratitude to Yawar Abbas
Bangash who helped me during the modification of this
paper.

REFERENCES

[1] Qin XiongPai, Wang HuiJu, Du XiaoYong, Wang Shan.
Big Data Analysis—Competition and Symbiosis of
RDBMS and MapReduce. Journal of Software,
2012.23(1):32-45.

[2] Chouchoulas A., Shen Q. Rough set-aided keyword
reduction for text categorization. Applied Artificial
Intelligence, 2001, 15(9): 843-873.

[3] Qianjin Wei, Tianlong Gu. Ymbolic Representation for
Rough Set Attribute Reduction Using Ordered Binary
Decision Diagrams. Journal of Software. 2011,
6(6):977-984.

[4] Xu E, Yuqiang Yang, Yongchang Ren. A New Method of
Attribute Reduction Based On Information Quantity in An
Incomplete System. Journal of Software. 2012,
7(8):1881-1888.

[5] Lin T. Y., Yin P. Heuristically Fast Finding of the Shortest
Reducts. Rough Sets and Current Trends in Computing
(RSCTC2004), Uppsala, Sweden, 2004: 465-470.

[6] Swiniarski R.W., Skowron A. Rough set methods in
feature selection and recognition, Pattern Recognition
Letters, 2003, 24(6): 833-849.

[7] Skowron A., Rauszer C. The discernibility matrices and
functions in information systems // R. Slowinski.
Intelligent Decision Support: Handbook of Applications
and Advances to Rough Sets Theory. Dordrecht: Kluwer
Academic, 1992: 331-362.

[8] Ye Dongyi, Chen Zhaojiong. A New Discernibility Matrix
and the Computation of a Core. Chinese Journal of
Electronics,2002,30(7):1086-1088

[9] M. Yang, Z.H. Sun, Improvement of discernibility matrix
and the computation of a core, Journal of Fudan
University (Natural Science) 43 (2004) 865–868. in
Chinese.

[10] Yang Ming. An Incremental Updating Algorithm for
Attribute Reduction Based on Improved Discernibility
Matrix. Chinese Journal of Computers, 2007, 30
(5):815-821.

[11] Liu ShaoHui, Sheng QiuJian, Wu Bin, Shi ZhongZhi, Hu
Fei. Research on efficient algorithms for rough set
methods. Chinese Journal of Computers, 2003, 26(5):
524-529.

[12] Xu ZhangYan, Liu ZuoPeng, Yang BingRu, Song Wei. A
quick attribute reduction algorithm with complexity of
max (O(|C||U|),O(|C|2|U/C|)), Chinese Journal of
Computers, 2006, 29(3):391-399.

[13] Wang Guoyin, Yu Hong, Yang Dachun. Decision Table
Reduction Based on Conditional Information Entropy.
Chinese Journal of Computers, 2002, 25 (7):759-766.

[14] Guoyin Wang, Jun Zhao, Jiujiang An, Yu Wu. A
Comparative Study of Algebra Viewpoint and Information
Viewpoint in Attribute Reduction. Fundamenta
Informaticae 68(2005)289-301.

[15] Li Xiaoyong, Gui Xiaolin, Mao Qian, Leng Dongqi.
Adaptive Dynamic Trust Measurement and Prediction
Model Based on Behavior Monitoring. Chinese Journal of
Computers. 2009, 32(4):664-674.

[16] Hu Feng, Wang Guo-Yin.Quick Reduction Algorithm
Based on Attribute Order. Chinese Journal of Computers.
2007, 30(6):1429-1435.

1034 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

[17] Xiao Da-wei,Wang Guo-yin,Hu Feng. Fast Parallel
Attribute Reduction Algorithm Based on Rough Set
Theory. Computer Science. 2009, 36(3):208-211.

[18] Wu Zite, Ye Dongyi. A Fast Scalable Attribute Reduction
Algorithm. Pattern Recognition and Artificial Intelligence.
2009, 22(2):234-239.

[19] Feng Lin, Li Tianrui ,Yu Zhiqiang . Attributes Reduction
Based on the Variable Precision Rough Set in Decision
Tables Containing Continuous-valued Attributes.
Computer Science. 2010,37(9):205-208.

[20] Feng Lin ,Wang Cuo-yin,Li Tian-rui. Knowledge
Acquisition from Decision Tables Containing
Continuous-Valued Attributes. Chinese Journal of
Electronics, 2009 , 37 (11): 2432-2438.

[21] Dianhong Wang, Xingwen Liu, Liangxiao Jiang, Xiaoting
Zhang, Yongguang Zhao. Rough Set Approach to
Multivariate Decision Trees Inducing. Journal of
Computers,7(4) (2012): 870—879.

[22] Jingling Yuan, Hongfu Du, Luo Zhong. Knowledge
Reduction Algorithm based on Relative Conditional
Partition Granularity. IEEE International Conference on
Granular Computing 2010. GrC.2010. 2010:604-608.

Jingling Yuan, Dr. Yuan Jingling is
an associate professor in Computer
Science and Technology School at
Wuhan University of Technology. She
received a Ph.D. in Civil Engineering
from Wuhan University of Technology.
Her research interests include artificial
intelligent, machine learning,
multi-core architecture analysis and
resource allocation.

Jing Xie, Miss Xie is a master student
in Computer Science and Technology
School at Wuhan University of
Technology. Her research interests
include intelligence algorithm and data
mining.

Yan Yuan, Dr. Yuan Yan is an
associate professor in School of Urban
Design at Wuhan University. She
received a Ph.D. from Tongji
University. Her research interests
include urban space, sustainable design
of architecture and urban and BIM.

Lin Li, Dr. Li Lin is an associate
professor in Computer Science and
Technology School at Wuhan
University of Technology. She received
a Ph.D. from University of Tokyo. Her
research interests include artificial
intelligence and data mining, especially
Web mining and information retrieval.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 1035

© 2014 ACADEMY PUBLISHER

