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Abstract—With the advent of the era of “Big Data”, the 
application of the large-scale data is becoming popular. 
Efficiently using and analyzing the data has become an 
interesting research topic. Traditional knowledge reduction 
algorithms read small data samples once into a computer 
main memory for reduction, but it is not suitable for 
large-scale data. This paper takes large-scale sensor 
monitoring dynamic data as the research object and puts 
forward an incremental reduction algorithm based on 
Map-Reduce. Using a Hash fast partitioning strategy this 
algorithm divides the dynamic data set into multiple 
subdatasets to compute, which has greatly reduced the 
calculation time and space complexity of each node. 
Finally，experiments are conducted on the data from UCI 
Machine Learning Repository using Hadoop platform to 
prove that the algorithm is efficient and suitable for 
large-scale dynamic data. Compared to the traditional 
algorithms, the highest speedup of the parallel algorithm 
can be increased up to 1.55 times. 
 
Index Terms— Large-scale dynamic data, increment 
knowledge reduction, Hash algorithm, Map-Reduce 
 

I. INTRODUCTION 

With the advent of the era of “Big Data”, the 
application of the large-scale data such as all kinds of 
sensor data, network data, mobile device data, RFID data 
and so on [1] is becoming more and more popular. We will 
confront the problem of ample data and poor knowledge. 
How to use and analyze this large-scale data efficiently is 
becoming an important issue. Researchers obtain 
effective information by various methods such as data 
mining, knowledge reduction and so on. As a form of 
data reduction, knowledge reduction is the preprocessing 
set of data mining and it deletes unnecessary or unrelated 
knowledge on the premises of keeping the data 
classification ability to reduce the time space exploration 
and improves the efficiency of follow-up work. One of 
the core problems of rough set theory ( RST ) put 
forward by Z.Pawlak[21] who is a mathematician from 
Poland is knowledge reduction. RST can effectively 
analyze and deal with all kinds of incomplete information 

which is inaccurate, inconsistent or incomplete, and 
discovers tacit knowledge and suggests potential rules. 
Thus RST plays an important role in many fields such as 
data mining, pattern recognition, decision analysis, image 
processing, medical diagnosis, artificial intelligence and 
so on. 

The contributions of this paper are: 
1. We state a traditional dynamic data reduction 

algorithm and mainly analyze the incremental reduction 
algorithm. The algorithm firstly obtains the reduction of a 
part of decision set, and adds the rest step by step. After 
several iterations it would get the final reduction set. 

2. We further study the incremental reduction 
algorithm based on distributed computing framework 
Map-Reduce. With the idea of parallel, the algorithm 
divides large-scale data into small data fragmentations to 
calculate separately and gathers the results to get the final 
reduction. Through simulation experiment we know that 
for large-scale dynamic data, the parallel reduction 
algorithm based on Map-Reduce is more efficient 
compared to traditional dynamic data reduction 
algorithms. 

II. RELATED WORK 

Many scholars have carried out extensive researches 
for reduction algorithms.[2,3,4,5,6] Skowron A. et al. [7, 8, 9, 10] 
presented a knowledge reduction algorithm based on 
discernibility matrices and its time complexity was 
O(|C2||U2|). Liu Shaohui et al. [11] presented an 
equivalence partitioning algorithm which used quick sort 
scheme to sort knowledge set and its time complexity 
was O(|C||U||logU|). Xu Zhangyan[12] presented a 
positive region algorithm based on radix sort and its time 
complexity was O(|C||U|). Wang Guoyin et al. [13, 14, 15] 
introduced a reduction algorithm based on information 
entropy whose time complexity was O(|C2||U2|). Feng 
Lin et al. [19, 20] introduced a reduction algorithm based on 
continuous valued attributes whose time complexity was 
O(|C||U|). In practice, when processing more data, 
large-scale data cannot be resided in memory at all, it 
will require a mass of I/O operations which consume a 
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lot of time and increase the time cost of reduction that 
causes inefficiency. For large-scale data set, Wang 
Guoyin et al. [16, 17] presented a rapid knowledge 
reduction algorithm based on the idea of divide and 
conquer. Combined with the idea of parallel computing 
the algorithm assigned the task of knowledge reduction 
to multiple processors to operate at the same time, which 
has greatly improved the efficiency. Its time complexity 
was O(|C2||U|) and space complexity was O(|U|+P×|C|). 
Wu Zite et al. [18] put forward a fast scalable attribute 
reduction algorithm with the thought of SLIQ. The 
algorithm divided the decision table into different 
knowledge lists lengthways and stored them in the hard 
disk only when necessary to load into memory. Because 
only one decision table existed in memory, it could save a 
lot of memory space and help to improve the efficiency. 

However, at present, the study of methods for 
processing large-scale dynamic data is a few. Because of 
the accumulation of the sensor data, large-scale dynamic 
data exists in many practical engineering monitoring 
projects such as the monitoring of tunnel and bridge, 
building health detection and so on. Based on the 
large-scale dynamic data set, this paper learns from the 
traditional reduction algorithm and uses the idea of 
distributed architecture and parallel computing to achieve 
the large-scale dynamic data reduction algorithm. The 
algorithm calculates distributed file reduction results, 
then uses dynamic incremental reduction algorithm to get 
the final reduction results. The algorithm does not need a 
large number of I/O operations. So it greatly saves the 
computation time and improves the efficiency of 
reduction. 

III. TRADITIONAL REDUCTION ALGORITHM 

Recently, rough set theory is an effective mathematical 
tool for dealing with uncertainty besides probability 
theory, fuzzy sets and evidence theory. As a relatively 
new soft computing method, rough set has received 
increasing attention and its efficiency has been confirmed 
in some successful applications of many science and 
engineer fields. Rough set is one of the hot spots in 
current artificial intelligence theory and its applications. 
In many practical systems there are uncertainty factors to 
various degrees, and collected data often contains noises, 
indeterminacy and imperfection. The main idea of rough 
set theory is that using the known knowledge base to 
portray the imprecise and uncertain knowledge 
approximately. 

A. Basic Concepts 
In this section, several basic concepts are reviewed, 

such as information systems, decision tables, equivalence 
relation, partition, lower and upper approximations and 
partial relation of knowledge. 

In the following, we first recall the concepts of 
information systems. 

Definition 1.  An information system is a pair 
(U, A C D, V, f)IS = = ∪ , where 

(1) U is a non-empty finite set of objects; 
(2) A is a non-empty finite set of knowledge; and 

(3) For every knowledge a A∈ , there is a mapping f, 
: af U V→ with aV  being called the value set of a A∈ . 
A decision table is an information system 

S = (U, A = C D,V, f)∪  with C D =Φ∩  where each 
element of C is called condition knowledge, C is called a 
condition knowledge set, each element of D is called 
decision knowledge, and D is called a decision 
knowledge set. 

Definition 2. 
Given a decision table DS = (U, A = C D,V, f)∪  and a 

knowledge set (C )P D⊆ ∪ . P defines an equivalence 
relation (P)IND  on U as 

(P ) {(x , y) | ((x , y) U U )( a P (a(x) a(y)))}IN D = ∈ × ∀ ∈ = . 
Obviously, (P)IND  is an indiscernibility relation. The 
partition of P on U is marked by / (P)U IND  or just / PU  
by notation of 

(P)[x] [x]IND p= . We refer to the 
equivalence block of P containing the instance x U∀ ∈ . 

Definition 3. 
Given a decision table DS = (U, A = C D,V, f)∪ , if 

(C )P D⊆ ∪  and x U∈ , the lower-approximation of X to 
P is _ {x | ( x U) ([x] U)}pP = ∀ ∈ ∧ ⊆  and the 

upper-approximation of X to  is 
(x) {x | ( x U) ([x] )}pP X− = ∀ ∈ ∧ ∩ ≠ Φ  
Definition 4[15]. 
Given a decision table DS = (U, A = C D,V, f)∪ , 

(C D)P ⊆ ∪ , the positive region of P with reference to 
D is defined as 

/ ((D ) _ (X )p X U IN D DP O S P∈= ∪ . 
The decision values of instances in (D)pPOS can be 

completely predicted according to their corresponding 
condition knowledge values vectors, this is, (D)pPOS  is 
the deterministic part of the universe of a decision table. 

Definition 5[15]. 
A decision table DS = (U, A = C D,V, f)∪  is 

consistent if and only if (D) UpPOS = . 
Definition 6. 
An information system  DS = (U, A = C D,V, f)∪ , 

where C is called a condition knowledge set, and D is 
called a decision knowledge set, P C⊆ , /E U P= , 

1 2,x x U∈ . If decision values of all elements in E are 
same, then E is called consistent classification. Otherwise, 
E is called inconsistent classification. That is to say for 

1 2,x x E∀ ∈ , if 
1 2(x ) d(x )d = , E is called consistent 

classification. When P C=  consistent classification is 
also known as consistent subset or consistent record and 
inconsistent classification is also known as inconsistent 
subset. 

Definition 7. 
An information system DS = (U, A = C D,V, f)∪ , where 

C is called a condition knowledge set, P C⊆ , /G U P= , 
if G is consistent classification, then G is called 
consistent state. 

Definition 8. 
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An information system DS = (U, A = C D,V, f)∪ , where 
C is called a condition knowledge set, and D is called a 
decision knowledge set, P C⊆ ,  

{X | X  is consistent subset and X POS (D)}pEp = ⊆ , suppose 

a C∈ , if 
{a}| POS (D) | | POS (D) |C C−≠ , then for D 

knowledge a is indispensable. 
Supposing R C⊆ , if satisfied to restrain: 
(1) | POS (D) | | POS (D) |C R=  
(2) a R∀ ∈ , {a}| POS (D) | | POS (D) |R R−≠ , we call R is a 
relative reduction of C. The interaction of relative 
reduction in C is called core of C noted as CORE (C)D

. 

B. Traditional Reduction Algorithm 
Generally speaking, the traditional dynamic data 

reduction algorithm is a kind of incremental algorithms. 
The algorithm firstly obtained the reduction of a part of 
decision set, and added the rest step by step. After several 
iterations it would get the final reduction set. 

In an information system S0={U,C,V,F} the core is 
CORE(S0), reduction set is R0, the incremental attribute 
set is X. In a new information system S={U,C’,V’,F’}, 
C’=C∪X, the core is , reduction set is R. In the 
information system S0’={U,X,V’,F’}composed by X, the 
core is CORE(S0’), reduction set is R0’. The relationship 
between the several sets is as follow: 

'
0

0

0

|m|
0

' |n|
0

(S) CORE(S ) (C)

{m | m CORE(S ) POS c | m |}

{n | n CORE(S ) POS X | n |}

c
R

X
R

CORE CORE
Δ

Δ

= + −

∈ ∩ = Δ −

∈ ∩ = Δ

  

The core of original system plus the core of 
incremental system, removes the redundant attributes to 
get the core of new information system. The reduction set 
is based on the reduction of original system and gets rid 
of the redundant attributes to get the final reduction set. 
Multiple attributes incremental reduction algorithm is 
described as follow: 
Input: S0={U,C,V,F}, S0’={U,X,V’,F’} 
Output: CORE(S), R 
1. S=S0∪S0’; R=R0 
2. S0=NULL; for every attribute a of S0, compute M0=

△a({a}), 0
'
0

0 ({ })M
R

N POS a= .  

If (M0= =N0), S0=S0∪a 
3. S0’=NULL, for every attribute a of S0’, compute 

M0’=△X({a}), '
0

0

'
0 ({ })M

RN POS a= . 

If (M0’= =N0’), S0’=S0’ ∪a 
4. CORE(S)=CORE(S)-S0-S0’ 
5. Set T’=NULL; for every attribute a of R1, compute 

M=△R1({a}), 
0
({ })M

RN POS a=   

If (M= =N&&POSR1-{a}({a}) ∈ POSR1-{a}({R0})) 
T’=T’ ∪{a} go to 7 

6. 
1

minarg (card( R ({w})))t
w t

= Δ
∈

 , R1=R1-{t} 

7. If (T’!= NULL) go to 6; else go to 8 
8. T= NULL, for every attribute a of R, compute M=△

R({a}), 
1

({ })M
RN POS a=  

If (M= =N&&POSR0-{a}({a}) ∈ POSR0-{a}({Rt})) 
T’=T ∪{b} go to 10 

9. 
1

minarg (card( R ({w})))t
w T

= Δ
∈

, R=R-{t}, go to 8 

10. If (T= =NULL) go to 9, else R=R∪R1, R is the 
reduction set we want to get. 

Incremental attributes reduction algorithm can process 
the relationship between the original reduction and the 
assuring reduction well when attributes increase. But 
when the data volume is very big, computers need to 
process I/O operations frequently, memory utilization 
rate is higher, and computation needs a lot of time. The 
traditional incremental reduction algorithms cannot deal 
with time overhead of large-scale data reduction process. 
Therefore, for the reduction of large-scale dynamic data, 
this paper puts forward a reduction algorithm under the 
framework of Map-Reduce. 

IV. THE REDUCTION ALGORITHM BASED ON MAPREDUCE 

Under the challenges of big data, the scale of modern 
system is bigger and bigger and the data is more and 
more. In terms of large-scale data, we cannot read all data 
into memory all at once, so we need to use disk access. 
We can read a part of the data into memory firstly, 
compute the reduction set  and write it to the file. 
And then read another part into memory, compute the 
reduction set  and write it to the file. Until reading the 
data to the end, we can use the reduction sets we have 
gotten to get the final reduction set that we want. 

A. Hadoop 
Today, we are surrounded by data. People upload 

videos, take pictures on their cell phones, text friends, 
update their Facebook status, leave comments around the 
web, click on ads, and so forth. Machines, too, are 
generating and keeping more and more data. The 
exponential growth of data first presented challenges to 
current computing equipment. Existing tools were 
becoming inadequate to process such large data set like 
terabytes and petabytes. A system processing large-scale 
distribute data has aroused a lot of interest. Hadoop is a 
framework for writing and running distributed 
applications that process large-scale data. Distributed 
computing is a wide and varied field, but the key 
distinctions of Hadoop are as follow. 

1) Accessible. Hadoop runs on large clusters of 
commodity machines or on cloud computing 
services. 

2)  Robust. Because it is intended to run on 
commodity hardware, Hadoop is architected with 
the assumption of frequent hardware malfunctions. 
It can gracefully handle most such failures. 

3)  Scalable. Hadoop scales linearly to handle larger 
data by adding more nodes to the cluster. 

4)  Simple. Hadoop allows users to quickly write 
efficient parallel code. 

Hadoop’s accessibility and simplicity give it an edge 
over writing and running large distributed programs. On 

1030 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER



the other hand, its robustness and scalability make it 
suitable for even the most demanding jobs at Facebook. 
These features make Hadoop popular in both academia 
and industry. 

B. Map-Reduce Framework 
Map-Reduce is a programming model for processing 

large data sets with a parallel and distributed algorithm. It 
includes three aspects:(1) the distributed file system; (2) 
the parallel programming model and (3) parallel 
execution engine. A Map-Reduce program comprises a 
Map() procedure that performs filtering and sorting and a 
Reduce() procedure that performs a summary operation.  

The Map () and Reduce () functions of Map-Reduce 
are both defined with respect to data structured in (key, 
value) pairs. Map () takes one pair of data with a type in 
one data domain, and returns a list of pairs in a different 
domain: Map(k1,v1) → list(k2,v2). The Map function is 
applied in parallel to every pair in the input dataset. This 
produces a list of pairs for each call. After that, the 
Map-Reduce framework collects all pairs with the same 
key from all lists and groups them together, creating one 
group for each key. The Reduce function is then applied 
in parallel to each group, which in turn produces a 
collection of values in the same domain: Reduce (k2, list 
(v2)) → (k3, v3). The specific calculation process is 
shown as Figure 1. 

 
Figure 1. The computing process of Map-Reduce 

To serve as the mapper, a class implements from the 
Mapper interface and inherits the MapReduceBase class. 
The Mapper interface is responsible for the data 
processing step. It utilizes Java generics of the form 
Mapper<K1, V1, K2, V2> where the key classes and 
value classes implement the WritableComparable and 
Writable interfaces, respectively. Its single method is to 
process an individual (key / value) pair: 
Void map (K1 key, 

V1 value, 
OutputCollector<K2, V2> output, 
Reporter reporter 
) throws IOException 

The function generates a (possibly empty) list of ( K2, 
V2) pairs for a given (K1, V1) input pair. The 
OutputCollector receives, and the Reporter provides the 

option to record extra information about the mapper as 
the task progresses. 

When the reducer task receives the output from the 
various mappers, it sorts the incoming data on the key of 
the (key / value) pair and groups together all values of the 
same key. The reduce() function is then called, and it 
generates a (possibly empty) list of (K3, V3) pairs by 
iterating over the values associated with a given key. The 
OutputCollector receives the output of the reduce process 
and writes it to an output file. The Reporter provides the 
option to record extra information about the reducer as 
the task progresses. 

C. Large-scale Dynamic Data Parallel Reduction 
Algorithm Based on Map-Reduce 

The reduction based on Map-Reduce is a kind of 
parallel reduction, which should solve two problems such 
as finding the parallel point results and obtaining the final 
result by local ones. The data can be divided into disjoint 
subsets by Map-Reduce to form a number of data 
fragmentations. Map () procedure completes the 
equivalence class computing of different data 
fragmentations and Reduce () procedure accomplishes 
the computing of number of the positive region, 
information Entropy or undecipherable object in the same 
equivalence class. The two procedures realize the data 
and task parallelism in the reduction algorithm based on 
Map-Reduce. Figure 2 shows the Map-Reduce task flow 
chart. 

Applying the idea of parallelism to traditional hash 
reduction algorithm, the parallelism of the algorithm is 
shown as follow. 

1)  Data parallelism.  
ⅰ When calculating the hash table  of the 

information system, we can divide the original data into 
different fragmentations and obtain the hash table  of 

each data fragmentation. We can get the hash table  

of the original data set through , .  

ⅱ When calculating the importance of attributes, the 
optional attributes can be sliced to get the importance of 
every attribute in each fragmentation, and then 
summarize the importance of all attributes to get the 
attribute having the biggest importance. 

2)  Task parallelism.  
ⅰ When calculating core attributes, we can use task 

parallelism. Each task computes whether a list of 
attributes are core attributes or not separately and 
summarizes all the results.  
ⅱ When calculating the number of inconsistent set in 

hash table, we can use task parallelism for each 
fragmentation. We can get the importance of each 
optional attribute to improve the parallelism. 
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Figure 2. Map-Reduce task flow chart 

The parallel reduction algorithm based on 
Map-Reduce mainly includes 3 parts which are Map 
function, Reduce function and Master control process 
described as follow. 

1) Map function 
 
 
Input: data fragmentation Si, optional attribution C  
Output: <hash table H0, Core(Si) > 

① For data fragmentation Si using hash 
operation to get hash table Hi and statistic the 
inconsistent records in hash tables. 

② Using the idea of task parallelism to get the 
core of Hi Supposing there are m optional attributes 
and m copy of Hi which should delete the attribute 
column to judge whether the attribute is core attribute 
or not. If it is the core attribute, it can be add into 
Core. 

Hi = hash(Si); // Do hash operation for Si 
for(each a∈C)// Operate each attribute in m 
{ 
if(is Core(a))// Judge whether attribute a is a core 

attribute 
{ 
Core = Core∪a;//  If a is the core attribute, then 

add it into Core 
} 
} 
 

2) Reduce function 
 

 
Input: the fragmentation of inconsistent set Si, 

Core 
Output: <attribute set C, attribute weighting 

score SGF> 
For each attribute data fragmentation Di, we can 

use the idea of task parallelism. Supposing there are m 
optional attributes and m copy of Di, we can get the 
weighting score of each attribute in Di and output 
<attribute set C, attribute importance SGF>. 

for(each a ∈ C)// for each attribute a in C  
{ 
 SGF(a);// compute attribute weighting score 

which is the number of the inconsistent set in Di 
} 

3) Master Control Process 
 

 
Input: information system U(C, D) 
Output: relatively minimal reduction R(U) 
① Set R to NULL 
② The information system U can be sliced and 

then start a Map function. After all fragmentations 
performing the Map function, it will summarize the 
results of fragmentations and get the hash structure 
and core of U. 

③ Taking the Core as effective attributes, we 
can do hash operation for hash tables of U and get the 
inconsistent set recording U’. 

④ For the data partition of the optional 
attributes in U’, starting a process and performing the 
Reduction function to find the attribute a which has 
the greatest SGF and put a into the Core. 

⑤ If U’ ≠ NULL, then skip to step ④, else 
continue. 

⑥ Check the redundancy of the Core and 
delete the redundant attributes. 

At this time, the Core is also the final reduction set 
R. 

V. ALGORITHM ANALYSIS AND EXPERIMENT 

A. Map-Reduce Reduction Model Analysis 
Supposing there are n nodes in parallel, in original 

algorithm, the time for hash procedure is TH, and the time 
for computing Core is TC. In the Map function, because 
of fragmentation, the ideal time for hash is TH / n and for 
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 is TC / n. Adding to the communicating time, in the 
whole Map procedure, the ideal speedup is : 

( ) CH
H C S

TTspeed T T T
n n

⎛ ⎞= + + +⎜ ⎟
⎝ ⎠

 
In Reduce function, the time for getting all attributes 

significance is Ti, because of fragmentation, the ideal 
time is  Ti /n. The time for counting the sum of the 
importance is Tm, and adding the communicating time TS, 
the ideal speedup is:  

( ) i
i m S

Tspeed T T T
n

⎛ ⎞= + +⎜ ⎟
⎝ ⎠

 

From the two speedups, we can know that the parallel 
reduction algorithm based on Map-Reduce is difficult to 
achieve the ideal speedup n , because with the increase of 
the data size, the communication time also increases. 
When the decision set is small, time and reduction 
efficiency of parallel algorithm is worse than the serial 
algorithm. Only when the data volume is large and the 
computation time of each fragmentation is far greater 
than communication overhead, parallel algorithm can 
reflect its value and function. 

B. The Comparison and Analysis of The Experiment 
Experiments are conducted on the data from UCI 

Machine Learning Repository using Hadoop platform on 
a PⅢ800PC(512M RAM, Win). In experiment 1, we use 
the traditional reduction algorithm (algorithm a) and the 
reduction algorithm proposed by this paper (algorithm b) 
respectively. We reduce six decision tables from UCI 
machine learning repository. The results are shown in 
Table 1. 

TABLE 1 
 THE COMPARISON OF EXPERIMENT 1 

Data Set Number of 
instances 

Number of 
attributes 

Algorithm 
a 

Algorithm 
b 

T/ms T/ms 

Livedisorder 345 6 82 98 

Tic-tac-toe 958 9 296 327 

Mushroom 8124 22 5705 5016 

Letter-recogn
ition 20000 16 11514 9821 

Chess 28056 6 10170 8959 

covtype 581012 54 — 97257 

 
In experiment 2, we take Letter-recognition, Chess and 

n copies of the two sets as our experimental data to 
reflect the superiority of Map-Reduce work better when 
dealing with the large-scale dynamic data.  and  
are the results of Letter-recognition and Chess copying 
twice, and  and  are the results of 
Letter-recognition and Chess copying four times. The 
results are shown in Table 2. 
 

TABLE 2 
THE COMPARISON OF EXPERIMENT 2 

Data Set Number of 
instances 

Number of 
attributes 

Algorithm 
a 

Algorithm 
b 

T/ms T/ms 
Letter-reco

gnition 20000 16 11514 9821 

Chess 28056 6 10170 8959 

 40000 16 19354 12728 

 56112 6 16803 11625 

 80000 16 30013 19367 

 112224 6 31278 21569 

 

LD Ttt MR CT LR Chess L1 C1 L2 C2
0

1

2

3

4
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7

8
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x 104
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m
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m

s)

 

 
Algorithm a
Algorithm b

Region 2

Region 1

 
Figure 3. The experiment results 
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Figure 4. The comparison of speedup 

In Figure 3, from the Region 1, we know that for 
small-scale data the speed of traditional reduction 
algorithm (Algorithm a) is faster than the parallel 
reduction algorithm based on Map-Reduce (Algorithm b), 
but when the data size is bigger, algorithm b is superior 
to algorithm a, especially when the data size is more than 
500000 lines the advantage is more obvious. 
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In Figure 3, from the Region 2, we can know that with 
the increase of the data size, for the same data set the 
running time gap of the two algorithms is larger and 
larger. 

In Figure 4, from the Region 1, we know that when the 
data size is very small the speedup is less than 1. That is 
to say for sample data the traditional reduction algorithm 
is superior to the parallel reduction algorithm based on 
Map-Reduce. When the data size is large the efficiency is 
shown. This is due to the fragmentation time is greater 
than the communication time in the parallel reduction 
algorithm. 

In Figure 4, from the Region 2, we can know that for 
the same data set the speedup increases with the increase 
of the data size. 

The experiments simulate 3 nodes under the Hadoop 
pseudo-distributed mode, and the results cannot fully 
reflect the advantages of Map-Reduce in dealing with the 
large-scale data. But it also can be seen that with the 
increase of the data size the advantages of parallel 
algorithm are more obvious and the overall time grows 
gently. In this paper we only extract some parallel points 
from the hash reduction algorithm to use. There are some 
serial parts in Map-Reduce, when the data set is very 
large it would significantly affect the efficiency of 
parallelism and the speedup. So we can continue to 
improve the parallel algorithm in the future research and 
design specific algorithm for parallel reduction. Our 
experiments were conducted in pseudo-distributed mode 
and the communication overhead is very small so as to 
have a certain influence on the results. However in 
general, Map-Reduce is efficient, and can effectively deal 
with large-scale data reduction problems and obtain ideal 
results. Setting up Hadoop in fully-distributed mode, we 
can simulate more nodes so that Map-Reduce can play its 
advantages better. 

VI. CONCLUSION 

In order to realize the reduction of large-scale dynamic 
data, parallel knowledge reduction model based on 
Map-Reduce is put forward by deeply analyzing the 
parallelizable operation in traditional Hash algorithm in 
this paper. Simulation experiments are conducted using 
Hadoop platform and results are compared with a 
traditional dynamic data reduction algorithm. We find 
that the algorithm proposed is efficient in processing 
large-scale dynamic data. The highest speedup is up to 
1.55 times. In this paper we have obtained some 
preliminary results but there is a large room to improve. 
There are some serial parts in the algorithm so that we 
should design new parallel algorithms to meet the 
requirement of the parallel reduction for large-scale data 
in the future research.  
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