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Abstract— The size of Büchi Automata(BA) is a key fac-
tor during converting Linear-Time Temporal Logic(LTL)
formulae to BA in model checking. Most algorithms for
generating BA from LTL formulas involved intermediate
automata, degeneralization algorithm and simplification of
the formulas, but size of BA and time of converting can
be reduced further. In this paper, we present an improved
Tableau-based algorithm, which converts LTL formulae
to Transition-based Büchi Automata(TBA) more efficiently.
The algorithm is geared towards being used in model
checking in on-the-fly fashion. By attaching the satisfy
information of ∪-formula on states and transitions, we can
decide whether the sequences of the BA are acceptable
by using only one acceptance condition set, not multiple
ones. Binary Decision Diagrams(BDD) is used to describe
BA and simplify formulae. A better data structure, syntax
Directed Acyclic Graph(DAG), is adopted in the algorithm.
The size of product BA and computational complexity can
be reduced significantly by using on-the-fly degeneralization.
The algorithm can expand the state nodes while detecting the
validity of nodes, removing the invalid nodes and combining
equivalent states and transitions. Compared with other
recent conversion tools, the algorithm proposed in this paper
runs faster, with the smaller size of BA.

Index Terms— Büchi Automata, Linear-Time Temporal Log-
ic, Binary Decision Diagrams, Transition-based Büchi Au-
tomata

I. INTRODUCTION

MODEL Checking [1] is a formal analysis method
that has been developed to automatically validate

functional properties for software or hardware systems.
The properties of system are usually specified using
Linear-Time Temporal Logic or using Büchi Automata.
The common method of model checking usually consists
of the following steps [2]:

1) Converting system model M into BA AM whose
language L(AM ) is the set of all possible execution
sequences of M .

2) Transforming the negation of a given temporal
property φ to a BA A¬φ whose language L(A¬φ)
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is the set of all possible execution sequences that
would invalidate φ.

3) Synchronized product of AM and A¬φ. It con-
structs an automaton AM ⊗ A¬φ whose language
is L(AM ) ∩ L(A¬φ), that is, the set of executions
of the model M that would invalidate the temporal
property φ.

4) Emptiness check of the product automata. This
operation would tell us whether AM ⊗A¬φ accepts
an infinite word, and can return such a counter-
example if it does not. The model M verifies φ
iff L(AM ⊗A¬φ) = ∅ [2].

The number of states of the BA corresponding to a
given LTL formula may increase exponentially in the
worst case which is not expected in practice. It is very
critical to make BA contain as few states and transitions as
possible, because the algorithms for the emptiness check
are linear to the size of BA used for verification.

In this paper, an improved Tableau-based algorithm
which can generate TBA after expanding formula recur-
sively is presented. By attaching the satisfy information
of ∪-formula on states and transitions, We can decide
whether the runs of BA are acceptable according to only
one acceptance condition set. The paper focus on how
to improve the conversion efficiency, so binary decision
diagrams presentation and on-the-fly degeneralization are
adopted in the algorithm. In order to gain significant
reduction both on the size of product automata and on
the computational complexity, a new algorithm which
results in a vast improvement on the efficiency, especially
when handing formulas containing a large amount of
G∪−formulae or GF− formulae, is presented. Moveover,
the BA is stored in quite compact form, no larger than
that generated by some previous tools [3]. By comparative
testing with other latest conversion tools, it is proved that
the algorithm runs faster, with fewer states and transitions
of the automaton.

The rest of the paper is organized as follows. In
section II, we describe the related works about transform
algorithm from LTL to BA. Then, we provide background
information in Section III. The basic idea of the algorithm
and a detailed description are presented in Section IV.
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Proof of correctness of the algorithm are introduced in
Section V. In section VI, a comparison between our
method and previous work is presented. Finally, Section
VII closes the paper with conclusions.

II. RELATED WORKS

There are many methods of translating LTL formula
to BA in the early research stage, but most of them
were designed in concern of mathematic soundness but
not of efficiency. [4] translated a given LTL formula
into a very weak alternating automaton(VWAA) with a
co-Büchi accepting condition. VWAA is then translated
into a TGBA. Finally, TGBA is translated (degeneralized)
into a BA. It can complete the conversion in linear
time using VWAA as intermediate automaton, but the
worst-case time complexity of the alternation removal
is O(n2n)(which is the same magnitude as alternation
removal of Tableau-based algorithm) [5]. [6] proposed
a method which can be used to simplify every boolean
formula by using BDD. Similarly converting the BDD
into an irredundant sum of products helps to reduce the
number of outgoing arcs of each node. [7] proposed a
classic algorithm GPVW which resorted to Generalized
Büchi automaton(GBA). It can translate the property
formula into a GBA, which can be then transformed into
a simple BA, by using a counter mechanism proposed in
[1]. GPVW algorithm is a tableau-based rule translation
method in on-the-fly fashion. In the detection process, it
can generate automata according to the demand in order
to avoid invalid time and space consumption. GPVW al-
gorithm has been applied in SPIN [8]. [9], [10] presented
a GBA simplification method which use the table-filling
algorithm of DFA. [11], [12] improved simplification
method of GBA by using Fair (Bi)Simulation or Delayed
(Bi)Simulation. [13] focused on identifying relationship
contained by formula to avoid redundant computation.
This algorithm can reduce the number of states by using
the extended equivalence relation. [14] can reduce the
number of states of the product of BA by considering
transition-based Generalized Büchi Automata(TGBA) as
an intermediate conversion automata. [15], [16] presented
many simplification rules of LTL formula. It can minimize
the number of temporal operators before converting the
formula to GBA. [17] presented a more determinate algo-
rithm which can be used to represent the transition. This
algorithm has been used in SPOT already [2].In fact, the
algorithm of traditional Tableau-based rule could generate
a weak and terminal BA from a given LTL formula,
which have identical topologies with their generalized
counterparts, but can not produce general ones [3].

III. PRELIMINARIES

Linear-time temporal logic is a modal temporal logic
with modalities referring to time, it is a formal method
of describing system constraints. In order to express a
possible future situation, LTL formula describes the word
on a set of 2AP , namely, the infinite sequence of the set
of atomic propositions(AP ). Therefore, one can encode

formula about the future of paths, e.g., a condition will
eventually be true, a condition will be true until another
fact becomes true, etc.

Definition 1 (Syntax of LTL) LTL is built up
from a finite set of propositional variables AP , the
logical operators ¬, ∧ and ∨, and the temporal modal
operators X (Next), ∪(Until), R(Release), F(Eventually)
and G(Always). Formally, the set of LTL formulas over
AP is inductively defined as follows:

- p,⊤ and ⊥ is LTL formula where p ∈ AP and
⊤, ⊥ is proposition constants.
- ¬φ, φ ∧ ψ, φ ∨ ψ, Xφ, Fp, Gp, φ ∪ ψ and φRψ is
LTL formula, if φ and ψ is LTL formula respectively.

For an infinite word σ = σ[0]σ[1]σ[2]... ∈ (2AP )ω

over the alphabet 2AP , σ[i] denotes its ith letter, and
σi = σ[i]σ[i + 1]σ[i + 2]... denotes its suffix starting at
letter i. R,F,G formula can be translated to ∪ formula
by identical equation defined as follow:
- φRψ ≡ ¬(¬φ ∪ ¬ψ)
- Fφ ≡ ⊤ ∪ φ
- Gφ ≡ ⊥Rφ ≡ ¬F (¬φ) ≡ ¬(⊤ ∪ ¬φ))

Definition 2 (Semantics of LTL) An LTL formula
can be satisfied by an infinite sequence of truth
evaluations of variables in AP . These sequences can be
viewed as a word on a path of a Kripke structure (an ω-
word over alphabet 2AP ). Let σi = σ[i]σ[i+1]σ[i+2]...
be such an ω-word. Formally, the satisfaction relation
between a word and an LTL formula is defined as follows:

- σ |= ⊤
- σ |= p iff p ∈ σ[0], for p ∈ AP
- σ |= ¬φ iff ¬(σ |= φ)
- σ |= φ ∧ ψ iff σ |= ψ and σ |= ψ
- σ |= φ ∨ ψ iff σ |= ψ or σ |= ψ
- σ |= Xφ iff σ1 |= φ
- σ |= Fφ iff ∃i ≥ 0, σi |= φ
- σ |= Gφ iff ∀i ≥ 0, σi |= φ
- σ |= φ ∪ ψ iff ∃j ≥ 0, σj |= ψ and
∀0 ≤ i < j, σi |= φ

Remark 1. Every LTL formula can be rewritten as
an equivalent LTL formula in negation normal form if
¬ unary operator occurs only immediately above atomic
propositions, and ¬,∧,∨ are the only allowed Boolean
connectives. In this paper, we will consider only such
formulas.

Let AP be a set of atomic propositions. We defined
2AP as the set of subsets of AP and 22

AP

as the set of
propositional formulas induced by atomic propositions.
Definition 3 (Büchi Automata) Büchi Automata is a
ω-Automata. It is a tuple B=⟨Q,AP, δ, I, F ⟩, where
- Q is a finite set of states,
- AP is a set of atomic proposition,
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- δ ⊆ Q× 2AP ×Q is a transition function,
- I ∈ Q is the initial state,
- F ⊆ Q is a set of accepting states.
A run ρ of B over an infinite word σ =
σ[0]σ[1]σ[2] . . . ∈ (2AP )

ω is a sequence
ρ = (q0, l0, q1)(q1, l1, q2)(q2, l2, q3) . . . ∈ δω , where
q0 ∈ I is an initial state and qi+1 ∈ δ(qi, σ[i]) for all
i ≥ 0. The run ρ is accepted by B, if the sequence
q0q1q2 . . . visits infinitely many acceptance states
(∀i ≥ 0, ∃j ≥ i qj ∈ F ). A infinite word σ is called
accepted by B if some run of B over σ is accepted. We
denote by L(B) the language accepted by B, i.e. the set
of all words over AP accepted by B.

Definition 4 (Transition-based Büchi Generalized
Automata) TGBA is a Büchi automata in which multiple
acceptance conditions are carried by the transitions. It
can be defined as a tuple T = ⟨Q,AP, δ, I, F ⟩, where
- Q is a finite set of states,
- AP is a set of atomic proposition,
- δ ⊆ Q × 22

AP × 2F × Q is a transition relation in
which each transition is labeled by a Boolean formula
and a set of acceptance conditions,
- I ⊆ Q is a set initial states,
- F = {f1, f2, ...fm} is a finite set of elements called
accepting conditions, where fj ⊆ Q× 2AP ×Q are sets
of accepting transitions.
A run ρ of TGBA T over an infinite word
σ = σ[0]σ[1]σ[2] . . . ∈ (2AP )

ω is a sequence of states
ρ = (q0, l0, F0, q1)(q1, l1, F1, q2)(q2, l2, F2, q3) . . . ∈ δω ,
where q0 ∈ I is an initial state and, for each i ≥ 0, there
exists α ∈ 2AP such that σ[i] ∈ α and (α, qi+1) ∈ δ(qi).
A run ρ is accepted if for each 1 ≤ j ≤ m it
uses infinitely many transitions from fj , namely,
∀i ≥ 0,∃j ≥ i,∀f ∈ F, f ∈ Fj . A word σ is accepted if
there is an accepted run over σ. We denote by L(T ) the
language accepted by T , i.e. the set of all words over
2AP accepted by an automata T .

IV. OVERVIEW OF THE ALGORITHM

In this section, we proposed an algorithm based
on an improved Tableau rule construction, which
generates a TBA accepting the language L(φ) according
to a given LTL formula φ. Every LTL formula φ
has a corresponding language L(φ) which can be
denoted by a word σ = σ[0]σ[1]σ[2]... ∈ (2AP )

ω .
BA generated by φ will accept L(φ). The ω-word
constructed by linking the state and its successor is
X-sequence generated by expanding a given LTL
formula φ in accordance with the Tableau-rule, i.e.,
φ ∪ ψ = φ ∧ X(φ ∪ ψ) = φ ∧ Xφ ∧ XX(φ ∪ ψ) . . . .
This is the way the Tableau-rule works. Tableau-rule is
listed in Table.1.

Table.1. Tebleau Rule
µ subf1(µ) next1(µ) subf2(µ)

φ ∧ ψ φ,ψ ∅ ∅
φ ∨ ψ φ ∅ ψ
φ ∪ ψ φ φ ∪ ψ ψ
φRψ ψ φRψ φψ
Xφ ∅ φ ∅

A. LTL to TBA Translation Algorithm

LTL to TBA transliation algorithm(LTTB) can convert
a given LTL formula φ to TBA in accordance with φ.
The idea of this new algorithm is very clear: we manage
to record the satisfaction information on every state and
transition during expanding the states. In order to ensure
algorithm expanding, we define the variables as follows:
- new: the set of the unprocessed formula.
- src: source node, namely the set of the processed
formula.
- des: destination node, namely the set of the successor
nodes of src.
- label: the set of the atomic propositions using to label
transition.
- P : Promise, accepting condition which the current
transition must satisfy finally.
- curr: the set of LTL formula to being processed.
- p: Atomic proposition.
- φ: the input LTL formula.
- all pro: the variable which record all accepting
condition.

In order to describe the automata, we define the
TBA class(Abbreviated as BA). Property and function of
the TBA class are defined as follows:
- BA.new(): Generate a new BA class.
- BA.initial(): initialize the BA class, the initial node
must save the input LTL formula.
- BA.add trans(): add a transition to BA.
- BA.state: The state which already exists in the BA.
- BA.trans: The transition which already exists in the
BA.
- BA.accept cond: the set of the acceptance condition
of TBA.

Remark 2. Let φ be a set of formulas. φ can be
convert to a equivalent BA. ∆(φ) =

∏
f∈F rf can be

expanded to the form:∏
f∈F

rf =
∑

src,P,des∈τ

(src ∧
∏
g∈P

Pg ∧
∏

h∈des

r(src, h))

with τ ⊆ 22
AP ∨ {{g ∪ h ∈ sub(f)} ∨ {gRh ∈

sub(f)} ∨ {g ∈ sub(f) : Xg ∈ sub(f)}.

The algorithm start with an initial state q0 accordance
with the input LTL formula φ(Algorithm 1. line 2). Then,
we can calculate the expansion recursively(Algorithm
1. line 6-9), using the Depth-First Search algorithm
and Tableau-based rule for each node which has not
been processed(Algorithm 2). Generally, each element
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Algorithm 1 The main program algorithm of LTTB
1: procedure LTTB
2: new ⇐ φ
3: all pro⇐ ∅
4: α = BA.new()
5: α.initial(φ)
6: while (new̸= ∅) do
7: src⇐ curr ⇐ new
8: new ⇐ new \ curr
9: expand(src, des⇐ label ⇐ P ⇐ ∅, curr)

10: end while
11: for each t in a.trans() do
12: t.accept cond⇐ all pro \ t.P
13: end for
14: End LTTB

ci ∈ expand(q) should generate a successor state q′.
If q′ is valid and a transition t = (q, l(t), q′) leading
to q′ is not redundant, we will add the translation into
the automata. Finally, we can complete the TBA by
adding every transition t = (q, l(t), q′) to the acceptance
condition F such that P = ∅.

B. ON-THE-FLY DEGENERALIZATION SIMPLIFICA-
TION

For the terminal BA and weak BA, the algorithm of
LTTB generated almost identical graph as the one that
built by traditional tableau procedures. This graph is quite
compact, but this algorithm would generate correct but not
optimal graph when it transforms the general automata.
A large portion of states and transitions are redundant in
some case. So we can remove the redundant states and
transitions by using a fixed order in which the automata
checks the satisfy information of the eventualities in the
range of G operators.The accepting conditions marked on
each transition are stored as BDD and the order used by
the degeneralization algorithm is related to the order in
which the corresponding BDD variables were declared.
This order is in turn related to the order in which the
LTL formula was recursively traversed by the transition
algorithm. This reversed order corresponds to expecting
the acceptance conditions associated to a formula φ before
expecting the accepting condition associated to subformu-
la GF (a∨F (b∨Xc)) there will be acceptance conditions
to a∨F (b∨Xc), b∨Xc and c, they should be expected
in this order during the degeneralization. In addition to
simplification on states, the algorithm can recognizes
and removes redundant transitions in the process of the
construction. This procedure is presented in Algorithm 3,
and this algorithm should be put after Algorithm 2.line21.

C. PRELIMINARY ANALYSIS ON COMPLEXITY

The most time-consuming component in LTTB al-
gorithm is the expanding computation. The worst time
complexity of expanding algorithm is O(2n)(where n =

Algorithm 2 The expansion algorithm of LTTB
1: procedure expand(src,des,label,P,curr)
2: if (curr ̸= ∅) then
3: letµ ∈ curr
4: curr = curr \ µ
5: case µ of
6: µ = p or ¬p or µ = ⊤ or ⊥ ⇒
7: if µ = ⊥ or Neg(µ) ∈ α.state then
8: return
9: else

10: label ⇐ label ∨ curr
11: End if
12: µ = φ ∪ ψ or φ ∨ ψ or φ R ψ ⇒
13: if µ = φ ∪ ψ then
14: P ⇐ P ∨ {φ ∪ ψ}
15: else
16: P ⇐ ∅
17: expand(src, des ∨ next1(µ), ∅, P, curr ∨

subf1(µ))
18: expand(src, des, ∅, ∅, curr ∨ subf2(µ))
19: µ = φ ∧ ψ or Xφ⇒
20: expand(src, des ∨ next1(µ), ∅, ∅, curr ∨

subf1(µ))
21: End case
22: if dest ̸∈ a.state then
23: new ⇐ new ∨ dest
24: end if
25: end if
26: return
27: End expand

Algorithm 3 merging transition algorithm of LTTB
1: procedure Add trans(t = (src, des, label, P ))
2: if ∃t′ ∈ α.trans with t′.src = src and t′.dest =
dest and t′.P = P then

3: trans.label ⇐ trans.label ∨ label
4: else
5: a.add trans(src, dest, label, P )
6: all pro⇐ all pro ∨ promise
7: end if
8: End procedure

|φ|) because we have to traversal all nodes in worst
case. Meanwhile, it takes O(n) to complete a recursive
computation in LTTB algorithm(Algorithm 1. line 6-9).
Then the worst time complexity of LTTB algorithm is
O(n2n). Although exponential blow-up is unavoidable,
we can reduce the computation via BDD and on-the-fly
simplifications. During expanding algorithm, BDD can be
used to optimize specialized algorithm for calculating irre-
dundant sum-of-products, because it is suitable to simplify
formulas and remove redundant nodes. The on-the-fly
simplifications will not increase too much computational
complexity, but it produces TBAs of the same size as their
generalized counterpart with an upper bound of O(2n)
states [3].
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V. PROOF OF CORRECTNESS

In this section, the proof of correctness will be
sketched. Let ξ = x0x1x2 . . . ∈ (2Σ)

ω be an infinite
word accepted by BA, ξi denotes the suffix of the
sequence ξ, i.e., xixi+1xi+2 . . .. The main theorem is
the following:

Theorem 4.1 Let φ be an LTL formula. Let BA(φ) be
the transition Büchi automaton constructed for φ. Then
BA(φ) accepts exactly the infinite words ξ over the
alphabet 2AP that satisfy φ.
Proof. The two directions are proved in Lemma 4.2 and
Lemma 4.3 below.

Lemma 4.2 Let ξ be an infinite words accepted
by BA(φ). Then ξ |= φ.
Proof. By definition, if there exists an infinite path
σ = (q0, l0, F0, q1)(q1, l1, F1, q2)(q2, l2, F2, q3) . . . in
BA(φ), we considered the boolean variables r[i]µ for
each LTL formula µ, and boolean variable P [i]µ∪η

for each accepting condition µ ∪ η. Let the sets
r[i]Xµ = [µ ∈ qi+1], r[i]p = [p ∈ xi] for p ∈ AP ,
P [i]µ∪η = [µ ∪ η ∈ fi].
- 1. If p is an atomic proposition and r[i]p is true, then
p ∈ xi and ξi satisfies p.
- 2. If r[i]µ∧η is true, then r[i]µ∧η = r[i]µ ∧ r[i]η = true
and ξi satisfies µ and η.
- 3. If r[i]µ∨η is true, then r[i]µ∨η = r[i]µ ∨ r[i]η = true
and ξi satisfies µ or η.
- 4. If r[i]Xµ is true, then r[i]Xµ = [µ ∈ qi+1] is true
and ξi+1 satisfies µ, namely ξi satisfies µ.
- 5. If r[i]µ∪η is true, then r[i]µ∪η = r[i]µ ∨ (r[i]µ ∧
r[i]X(µ∪η) ∧ P [i]µ∪η) = true. If r[i]η = true
then ξi satisfies η and µ ∪ η. If r[i]µ = true and
r[i]X(µ∪η) = true, by definition µ ∪ η ∈ qi+1 and
then r[i + 1]µ∪η = true and ξi satisfies µ. In the latter
case, one can apply the same deduction for j > i until
r[i]η = true. This procedure will eventually stop when
P [i]µ∪η is false.
- 6. If r[i]µRη is true, then r[i]µRη = (r[i]µ ∧ r[i]η) ∨
(r[i]η ∧ r[i]X(µRη)) = true. If r[i]µ = r[i]η = true,
then ξi satisfies µ, η and µRη. If r[i]X(µRη) = true
and r[i]η = true, by definition µRη ∈ qi+1 and
r[i + 1]µRη = true, then ξi satisfies η. In the latter
case, one can apply the same deduction for j > i until
r[j]µ = true. This procedure can stop or processed
infinitely. In the both case, we deduce that ξi satisfies
µRη.

Lemma 4.3 Let ξ |= φ. Then ξ is accepted by
BA(φ).
Proof. If ξ |= φ, each transition (qi, li, Fi, qi+1)
corresponds to a true implicant in formula

∏
η∈qi

rη
when setting variables: rXµ = [ξi+1 |= µ], r[i]p = [p ∈
xi] for p ∈ AP , Pµ∪η = (ξi |= µ ∪ η) ∧ ¬(ξi |= η).
Any accepting condition µ∪ η appears infinitely often in
the path. Otherwise there exists an i > 0 and a formula
µ∪ η, such that ∀j > i, ξi satisfies ¬η ∧ (µ∪ η). Then ξ

is accepted by BA(φ).

VI. PERFORMANCE EVALUATION

In this section, we compared our algorithm with
LTL3BA v1.0.2 and SPOT v1.1.1. Considering the
speed of an LTL formula to Büchi automata transla-
tion, LTL3BA and SPOT are two leading tools. Both
of these tools are widely used for translating LTL for-
mulas to Büchi automata. LTL3BA is constantly out-
performing many other algorithms such as GPVW [7],
LTL2AUT [13], and Wring [15]. Although it is known
that transition-based automata are often more compact
than their state-based counterparts for the same formulas,
the difference in sizes between minimal automata of both
types is usually quite small. LTL3ba V1.0.2 released
on December 13, 2012, is the latest version(http :
//sourceforge.net/projects/ltl3ba/?source = dlp).
SPOT is a C++ library offering model checking bricks that
can be combined and interfaced with third party tools to
build a model checker [2]. It relies on TGBA and does
not need to degeneralize these automata to check their
emptiness. SPOT v1.1.1 released on May 13, 2013, is the
latest version(http : //spot.lip6.fr/wiki/GetSpot).
LTTB uses on-the-fly simplifications described in section
III, implemented in c++ using CUDD library for BDD
operation.
Here are six families of formula we will evaluated on
these tools. The experimental platform configuration is
as follows: Intel Core i5-3470 CPU@3.2-GHz, 4GB of
memory, the operating system is Ubuntu 12.04 LTS.
The first family of formula we will experiment is scalable.
For a given n we generated an LTL formula Cn that
matches an infinite sequence of bits in which all the values
of an n-bit counter have been concatenated [6]. E.g. C3 =
((a∧(G(a→ (X(¬a∧X(¬a∧Xa))))))∧((¬b)∧X(¬b∧
X¬b)) ∧ (G((a ∧ ¬b) → (X((XXb) ∧ (((¬a) ∧ (b →
XXXb)∧((¬b) → (XXX¬b)))∪a)))))∧(G((a∧b) →
(X((XX¬b) ∧ ((b ∧ (¬a) ∧ XXX¬b) ∪ (a ∨ ((¬a) ∧
(¬b) ∧ (X((XXb) ∧ (((¬a) ∧ (b → XXXb) ∧ ((¬b) →
XXX¬b))∪a))))))))))). For this description it should be
clear that the smallest automata that can recognize Cn is
a deterministic loop with n2n states and transitions. Fig.5
shows this automata for C3. Any translator that constructs
such an automata explicitly will have a runtime that is
worse than exponential order of n.

Secondly, we will experiment with five families of
formulae. These formulae evaluated on these tools for n
ranging from 5 to 9. The number of states and transitions
is recorded within 30 seconds(’-’ represents more than 30
seconds). The five families of formula are as follow:
φn

G = F (p1∧F (p2∧· · ·Fpn))∧F (q1∧F (q2∧· · ·Fqn)).
φn

S = ((· · · (p1 R p2) · · · ) R pn−1) R pn.
φn

O = (p1∪(p2∪· · · pn) · · · )∧(q1 R (q2 R · · · qn) · · · ).
φn

P = FGp1 ∨ · · · ∨ FGpn.
φn

C = GFp1 ∧ · · · ∧GFpn.
Table 2 lists the comparison results of LTTB and SPOT,
LTL3BA on the five families of formulae.
The minimal Büchi automata for φn

G has (n+1)2 states.
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Fig.5. Runtime of these tools on LTL counter formula

All these tools were able to produce the smallest automata
from n = 5 to 9. For φ8

G, LTTB and LTL3BA produced
an automaton of 81 states in about 1.5 seconds while
SPOT can not produced an automata within 30 seconds.
The minimal Büchi automata for φn

S has n states.
All these three tools were able to produce the smallest
automata from n = 5 to 9 within 30 seconds.
The minimal Büchi automata for φn

O has n2 states. For
φ7

O, LTL3BA can not product an automata within 30
seconds, while SPOT can not product an automata within
30 seconds for φ9

O.
The minimal Büchi automata for φn

P has n + 1
states, they have to deal with an exponential number of
transitions. φn

P and φn
C do not cause any problems

on either tools. The minimal automata were produces by
these tools instantaneously.

The experimental data show that, in general, LTTB is
slightly faster than LTL3BA and SPOT on some formulae.
With increasing parameter, LTTB outperforms LTL3BA
and SPOT in the second group and the third group of
experiments, while SPOT sometimes remain slower, but
outperform LTL3BA finally. From table 2 we know that
LTTB runs faster for φn

G and φn
O and produces smaller

automata for φn
C .

VII. CONCLUSIONS

The size of the constructed property automata is very
critical in model checking, because we should take the
product of the property automata with the state automata.
The size of the product automata will jump exponential
when we do the product operation [18]. If the size of
state automata can not be reduced, it is important that
the property automata should be as small as possible.
Thus, we presented an improved tableau-based algorithm
to convert LTL formula to TBA more efficiently. By
keeping track of the accepting conditions of all ∪-formula
on the transitions during the construction, we can judge
whether the runs of the BA is accepted by using one set
of accepting conditions. By using BDD as well as on-
the-fly simplification in formula presentation and cover
computation, an optimized on-the-fly degeneralization is
achieved. This enables the generation of compact TBAs
from LTL formulas, with the time complexity, for most

Table 2. Size of BA produced by LTL3BA, SPOT and LTTB
LTL LTL3BA SPOT LTTB

formula states trans states trans states trans time(s)
φ5

G 36 441 36 441 36 441 0.031
φ6

G 49 784 49 784 49 784 0.471
φ7

G 64 1294 64 1294 64 1294 0.915
φ8

G 81 2025 - - 81 2025 1.128
φ9

G - - - - 100 3025 1.691
φ5

S 5 15 5 15 5 15 0.002
φ6

S 6 21 6 21 6 21 0.003
φ7

S 7 28 7 28 7 28 0.004
φ8

S 8 36 8 36 8 36 0.004
φ9

S 9 45 9 45 9 45 0.005
φ5

O 25 225 25 225 25 225 0.027
φ6

O 36 441 36 441 36 441 0.170
φ7

O - - 49 784 49 784 0.341
φ8

O - - 64 1296 64 1296 0.946
φ9

O - - - - 81 2025 1.733
φ5

P 6 11 6 11 6 11 0.001
φ6

P 7 13 7 13 7 13 0.002
φ7

P 8 15 8 15 8 15 0.002
φ8

P 9 17 9 17 9 17 0.003
φ9

P 10 19 10 19 10 19 0.003
φ5

C 6 26 6 26 5 10 0.020
φ6

C 7 34 7 34 6 12 0.036
φ7

C 8 43 8 43 7 14 0.070
φ8

C 9 53 9 53 8 16 0.136
φ9

C 10 64 10 64 9 18 0.359

cases, similar to the traditional tableau-based algorithm-
s without degeneralization and post-simplifications. Al-
though this algorithm can not avoid exponential growth
of the states, it can reduce the number of states and
transitions in some degree. The experimental results show
that algorithm mentioned in this paper constructed smaller
Büchi Automata, with the same or reduced degree of
computation complexity, on formulae in literature, by
comparing with LTL3BA and SPOT.

ACKNOWLEDGMENT

The authors are grateful to the Professor Guiming Luo
and PHD. Jian Luo for their valuable comments and
suggestions to improve the presentation of this paper.

REFERENCES

[1] E. M. Clarke, O. Grumberg, and D. A. Peled, Model
checking. MIT press, 1999.

[2] A. Duret-Lutz and D. Poitrenaud, “Spot: an extensible
model checking library using transition-based generalized
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