
Verification of Behavior-aware Privacy
Requirements in Web Services Composition

Jiajun Lu

College of Computer Science and Technology, Nanjing University
of Aeronautics and Astronautics, Nanjing, 210016

Email: lujiajun.ck@163.com

Zhiqiu Huang and Changbo Ke
College of Computer Science and Technology, Nanjing University

 of Aeronautics and Astronautics, Nanjing, 210016
Email: zqhuang@nuaa.edu.cn

Abstract—Privacy has been acknowledged to be a critical
concern for many collaborative business environments.
Recently, verifying whether Web services composition
satisfies privacy requirement is a hot spot for privacy
protection. However, little research focuses on behavioral
privacy requirement. This paper proposes an approach
based on model checking to verify the satisfiability of
behavior-aware privacy requirements in services
composition. Firstly, we extract LTL specification from the
behavior constrains of privacy requirements. On the other
side, the behavior of BPEL process is modeled by extended
interface automata, which supports privacy semantics. Then
it is transformed to Promela description, the input language
of the model checker SPIN. Finally, we illustrate the
verification of privacy requirements with SPIN.

Index Terms—Web services composition, behavior-aware
privacy requirements, model checking, SPIN

I. INTRODUCTION

Recently, Web services are applied widely in the
academic and industry field as a new distributed
computing model [1]. Users have to submit some
personal information, which is privacy sensitive, to
service providers to finish the necessary business.
Because of the fact that the technologies of Web services
spring up and users’ requirements increase rapidly,
multiple web services are composed to fulfill more
business requirements [2] as the single Web service is not
competent. In the process of composing, service
providers may expose some of user’s sensitive
information to other collaborators. Owing to none of
protocols between services and users is designed to
specify the behavior, it is hardly to guarantee that user’s
personal data is exposed and applied according to users’
intension, especially in cloud computing environment
[3,4,5]. As a result, it is becoming a critical problem to
ensure that services composition concurrently fits users’
privacy demands while users’ business requirements are
meet.

In the information system and software engineering
domain, privacy protection represents the capability that

the individual control the collection, exposition and
maintenance of information about themselves [6]. As
Web service privacy has became a research hot spot of
service computing, many organizations have proposed a
series of software industry standards and technology
implementation frameworks supporting privacy
protection. The Platform for Privacy Preferences (P3P) [7]
presented by W3C and corresponding privacy preferences
description language APPEL (A P3P Preference
Exchange Language) [8] are capable to define privacy
policy of service providers and privacy preferences of
users. OASIS provides eXtensible Access Control
Markup Language (XACML) [9] to manage access
control and extend support for privacy policy via privacy
policy profile. Some researchers add privacy property
into the role-based access control model RBAC. As a
result, a privacy-aware role-based access control model is
put forward to describe privacy-related access control
policy [10].

In order to fulfillment the functional requirement, web
service provider must choose a group of Web services to
achieve business target while ensure that the disclosure of
users’ privacy data meets their privacy requirements. As a
result, it is necessary to analyze privacy requirements of
service composition in the design phrase, that is, verify
whether Web service composition utilizes privacy data
according to privacy policies. At present, some research
working on this aspect has been done in the domestic and
overseas. Yin Hua Li and Boualem Benatallah
correspond Web service business process execution
language (WS-BPEL) with P3P policy description and
verify the consistency [11]. Linyuan Liu and Zhiqiu
Huang transform access authority on privacy data into the
privacy policy, model services composition and verify the
privacy requirement on the model at last [12]. Adam
Barth et al. expresse privacy properties of service users
with linear temporal logic (LTL) formulas and verify
privacy requirement based on the composition model [13].
The authors in paper [14] model service assembly with
hypergraph and provide the method to transform,
furthermore propose an algorithm which can achieve the
minimal privacy disclosure service assembly. However,

944 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER
doi:10.4304/jsw.9.4.944-951

the privacy requirements above which researchers
consider just restrict the single Web service’s access on
privacy data. It is hardly sufficient to protect privacy in
cross-organizational services composition. The
interaction between services must to be taken into
account in privacy protection. To supplement current
research, this paper proposes a model checking approach
based on temporal properties verification to check the
satisfiability of behavior-aware privacy requirement in
Web services composition. The main ideas of our work
can be depicted as Fig.1.

The remainder of this paper is organized as follows.

Section 2 analyzes behavior-aware privacy requirement
combining particular application scenario. Section 3
presents the method to extract the LTL specification of
privacy requirement. Section 4 models the behaviors of
BPEL services composition by extending interface
automata to support privacy semantics and transforms
form interface automata of BPEL to Promela description.
Section 5 uses SPIN model checker to verify whether the
behaviors of services composition satisfy with the privacy
requirement through a case study. Finally Section 6
concludes the paper.

II. PRIVACY REQUIREMENT ANALYSIS

The interaction of services in composition may bring
about unexpectable privacy concerns. As the privacy
requirements of users are becoming more and more
distinct, some requirement constraints focus on the
interaction behavior of services, namely behavior-aware
privacy requirement. The constraints comprise three types,
data-activity dependency, data dependency and data
mutex.

Take a shopping online scenario as example. There are
several collaborative services: OnlineShopping,
Creditcard, Debitcard, Shipper, E-mail and Message. At
the beginning, the buyer sends an order request
(OrderReq) to the OnlineShopping. Then the service
Creditcard and Debitcard can be chosen as two kinds of
online payment methods. If payment is successful,
OnlineShopping informs the service Shipper to deliver

the goods. After the OnlineShopping receives arrival
message of the goods, it informs the buyer to pick up the
goods by invoking the service E-mail or Message. Fig.2
presents the web service invocation of shopping online
process.

The OnlineShopping process needs to collect user’s

privacy data name, creditcard_no, debitcard_no, address,
e-mail and mobile_no, and then discloses some of them to
the collaborative services as required. The behavior-
aware privacy requirements involved in this services
composition can be divided into three types, just as
follows:

1. Date-activity dependency. These requirements limit
that the access of individual privacy data must take the
occurence of certain activity as a condition. For example,
data mobile_no can be accessed only after activity
Shipper has finished.

2. Data dependency. The access sequence of multiple
privacy data is restricted in these requirements. For
example, data address can be accessed after
creditcard_no was used.

3. Data mutex. The use of some privacy data must be
mutually exclusive in a service composition. For example,
mobile_no and creditcard_no cann’t be both possessed by
the OnlineShopping process.

All the three types of constraints can be described as
the temporal relations between data and activities or
between data and data, and further expressed by LTL
formulas.

III. LTL SPECIFICATION OF PRIVACY REQUIREMENT

Linear Temporal Logic (LTL) is based upon the
propositional calculus and used to describe assertions that
changes over time through introducing temporal
operators [15]. LTL formulas are constructed from
atomic propositions, logical operators “∧”, “∨”, “¬”,
and temporal operators. Some LTL temporal operators
indicating the future are X (meaning “next”), G
(“globally”), F (“eventually”), and U (“until”). The
corresponding past time operators in LTL are Y (meaning
“yesterday”), H (“historically”), O (“once”) and S
(“since”). The semantic of LTL temporal operators can be
easily defined on finite length service composition
privacy behaviors. Given a services composition model
M and an LTL property Φ, we say that Μ ╞ Φ, iff for any
path ω, ω╞Φ. The three types of behavior-aware privacy
requirements discussed in Section II can totally be

Figure 2. The service invocation of OnlineShopping process

Figure 1. The framework of privacy requirement verification

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 945

© 2014 ACADEMY PUBLISHER

described as temporal properties in a computation path
(for short “path”) and further expressed with LTL
formulas. Especially, the mutex constrains of privacy data
in data mutex privacy requirement can also be

transformed to temporal relation between them. The
correspondence between privacy requirement types and
LTL formulas are shown in Table 1.

TABLE 1.

THE CORRESPONDENCE BETWEEN PRIVACY REQUIREMENT TYPES AND LTL FORMULAS

Type Example LTL formula Explanation

Data-activity
dependency

Privacy data name
can be used after
activity Login has
finished.

Gሺ݊ܽ݉݁ → Gሺ݊݅݃݋ܮሻሻ If data name is going to be
accessed, it is required that activity
Login has occurred.

Data
dependency

Privacy data address
can be accessed after
name was used.

Gሺܽ݀݀ݏݏ݁ݎ → Oሺ݊ܽ݉݁ሻ⟺ ൓ሺ൓݊ܽ݉݁ U ሻݏ݁ݎ݀݀ܽ
If data address is going to be
accessed, it is required that data
name has been used. In other
words, it is not allowed that
address is accessed while name has
not been used.

Data mutex

Privacy data
creditcard_no and
mobile_no couldn’t
be used by a service
composition.

Gሾ ሺܿ݋݊_݀ݎܽܿݐ݅݀݁ݎ→ G൓݉݋݊_݈ܾ݁݅݋ሻ∨ ሺ݉݋݊_݈ܾ݁݅݋→ G൓ܿ݋݊_݀ݎܽܿݐ݅݀݁ݎሻሿ
If data creditcard_no has been
accessed, data mobile_no will not
be used any more, vice verse.

Based on the correspondence, we can transform

different types of privacy requirements to LTL
specification.

IV. MODELING THE PRIVACY BEHAVIORS OF SERVICES
COMPOSITION

In this paper, we use SPIN model checker [16,17] to
verify whether the behaviors of BPEL services
composition satisfy privacy requirements. The input
language of SPIN is called Promela, a modeling language
for finite-state concurrent processes. Promela
specifications allow us to model BPEL workflow using a
set of concurrent processes that can communicate with
each other. We implement the modeling of privacy
behavior in two phases: (1) model the interface behaviors
of BPEL process by extending interface automata to
support privacy semantics, (2) transform from the
interface automata model to Promela description. The
interface automata as an intermediate model achieved the
extraction of control information and privacy data of
BPEL.

A. BPEL Modeling with Interface Automata
Interface Automata (IA) is a formal model to describe

the temporal aspect of software component interface.
Specifically, it’s designed to capture effectively both
input assumptions and output guarantees about the order
of the interactions between a component and its
environment. For more details, please refer to [18].
Besides, the description of interfaces and behaviors for a
component is either supported by IA. As a result, IA is
employed to express interface behaviors of service. The

operations in the service interface correspond to the
actions in IA. Since the privacy data will be accessed
when the service is invoked, we add the corresponding
privacy data requirement to every transition, which is
called Privacy Interface Automata (PIA).

Definition 1: PIA. A privacy interface automata can
be defined as P := <VP, ௉ܸ௜௡௜௧, AP, DP, ΓP>, where:

 VP is a finite set of states, each state ߥ ∈ ௉ܸ.
 ௉ܸ௜௡௜௧ is the set of initial state, ௉ܸ௜௡௜௧ 	⊆ VP. We

require that ௉ܸ௜௡௜௧ contains at most one state. If ௉ܸ௜௡௜௧
= ∅, then P is called empty.

 AP is a finite set of actions, including Input, Output
and Internal actions: ܣ௉ூ ௉ைܣ , and ܣ௉ு , they are
mutually disjoint. We denote ܣ௉ ൌ ௉ூܣ ∪ ௉ைܣ ∪ .௉ுܣ

 DP is a finite set of privacy data access arrays, for
short privacy array. For each privacy array 	݀ ∈ ,௉ܦ
it is consisted of |O| elements, where O denotes a
finite set of privacy data objects. As the elements of
array ݀ሾ݅ሿ ∈ ሼ0, 1ሽ (0 ൑ ݅ ൑ |ܱ|), 1 denotes to
access privacy data i and 0 denotes not.

 ΓP is a finite set of transitions, ߁௉ ⊆ ௉ܸ ൈ ௉ܣ ൈ ௉ܦ ൈ௉ܸ.
We use state transition sequence with privacy array to

express the behavior of a PIA:
0 0 2 2 1 11 1, , ,,

0 1 1
n n n na d a d a da d

n nv v v v− − − −
−⎯⎯⎯→ ⎯⎯⎯→⋅⋅⋅ ⎯⎯⎯⎯→ ⎯⎯⎯⎯→

 , where n is a non-negative integer. The system starts
from state v0, transits to v1 via a0 and requests access d0,
and then transits to v2 via a1 and requests access d1, the
rest may be deduced by analogy.

Based on the PIA definition and WS-BPEL
specification [19], the transformation from BPEL process

946 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

to PIA is presented as Fig.3. Some typical primitive activities and structured activities are listed as examples.

As shown in the figure, the input message of receive

statement corresponds to an input action in the transition
of PIA, while the output message of reply and invoke
statement corresponds to an output action. Data variables
in the message can be obtained from the WSDL of
services. The privacy array is constructed by all privacy
data in the message variables, and then added to the
transition of PIA. Especially, when modeling invoke
statement, we only consider unidirectional invoke activity,
which only sends call requests to collaborative services in
the composition and doesn’t need any response. The
reason is that generally privacy data only appears in
request message rather than response message of a Web
service.

Example 1: Fig.4 describes the BPEL process of
OnlineShopping discussed in Section II.

The process OnlineShopping sends or receives

message from collaborative services through operations
described in the interfaces. Each message variable would
likely contain some privacy data so that the privacy data
may be accessed when the message is delivered. The
privacy data involved in process OnlineShopping is listed
in Table 2.

TABLE 2.
PRIVACY DATA IN PROCESS ONLINESHOPPING

Activity Operation Message Privacy Data

receive OrderReq? orderReq name, creditcard_no, debitcard_no,
address, e-mail, mobile_no

Receive OrderReq

Reply End

Invoke MessageInvoke E-mail

Invoke Shipper

Invoke DebitcardInvoke Creditcard

switch

switch

Figure 4. The BPEL process of OnlineShopping

BPEL Sample Code Transformation

receive < receive operation = “op”
variable = “opmsg”… />

reply < reply operation = “op”
variable = “opmsg” … />

invoke <invoke operation = “op”
inputVariable = “inputmsg” … />

sequence

<sequence>
<…act1…>
<…act2…>

</ sequence >

switch

<switch>
<case condition = “ ”> act1 </case>
<case condition = “ ”> act2 </case>

</ switch >

Figure 3. Translation from BPEL to PIA

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 947

© 2014 ACADEMY PUBLISHER

invoke Creditcard! creditcardReq name, creditcard_no

invoke Debitcard! debitcardReq name, debitcard_no

invoke Shipper! shipReq name, address

invoke E-mail! e-mailReq name,e-mail

invoke Message! messageReq name, mobile_no

reply End! endReq N/A

Based on the definition of PIA and the transformation

rule from BPEL to PIA, the PIA model of
OnlineShopping is illustrated in Fig.5.

We label a privacy data access array for each transition

of PIA. The corresponding actions and privacy arrays of
the PIA model of OnlineShopping are shown in Table 3,
where elements of each array denote the privacy data
name, creditcard_no, debitcard_no, address, e-mail and

mobile_no respectively. The elements of the array
indicate whether OnlineShopping requests to access a
privacy data, where 1 indicates that it requests and 0
indicates not.

TABLE 3.
THE OPERATIONS AND PRIVACY ARRAYS OF ONLINESHOPPING

OrderReq?, d0 Creditcard!, d1 Debitcard!, d2 Shipper!, d3

1, 1, 1, 1, 1, 1 1, 1, 0, 0, 0, 0 1, 0, 1, 0, 0, 0 1, 0, 0, 1, 0, 0

E-mail!, d4 Message!, d5 End!, d6

1, 0, 0, 0, 1, 0 1, 0, 0, 0, 0, 1 0, 0, 0, 0, 0, 0

In Fig.5, after OnlineShopping receives the input

action OrderReq? in the initial state v0, the state transits to
v1. In this transition process, OnlineShopping collects the
privacy data name, creditcard_no, debitcard_no, address,
e-mail and mobile_no respectively. When the output
action Creditcard! occurs, the state transits from v1 to v2.
In this transition process, OnlineShopping discloses
privacy data name and creditcard_no to collaborative
service Creditcard. All of the subsequent behaviors of
OnlineShopping can be deduced.

B. Transformation from PIA to Promela
A BPEL Web services composition specified using

PIA will be transformed into Promela specification which
consists of a set of concurrent processes. Each process
represents the action in the transition τ of PIA and is
connected by a set of communication channels. The

processing steps of the transformation algorithm are as
follows:

1. Traverse the transition τ of PIA model and get the
action a and privacy array d to build new activities in
array Activities. Then create transfers between activities
in array Transfers (distinguish from transition in PIA). If
τ has more than one next transition τ’ in PIA, set
condition to each transfer.

2. Traverse the array Transfers to generate the
declaration of array mtype and channel message.

3. Traverse the activity of Activities to generate the
variable declaration of the activity and involved privacy
data. Create a new proctype process for each activity.
Search the Transfers in each activity and add transfer’s
condition to the related process unless it is empty. If the
current activity is the start activity of the transfer, then
generate an output message. If it is the end activity, then
generate an input message.

Figure 5. The PIA model of OnlineShopping

948 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

4. Label the finish of the activity and the access of
corresponding privacy data at the end of each process.

Algorithm 1：Transformation from PIA to Promela
Input：The PIA model of BPEL process, PIA
Output： The Promela description of BPEL process,
Promela

for all τ ∈ PIA.ΓP

Acitvities.addNewActivity (getAction (τ), getData (τ));
for all τ’ ∈ PIA.ΓP

//the arrival state of τ equals to the start state of τ’
if (getArrivalState (τ) = getStartState (τ’)) then

Transfers.addNewTransfer(getAction(τ),
getAction(τ’), condition); //create transfer

for all transfer ∈ Transfers
//create definition of mtype and channel message
Promela.NewMtype (transfer);
Promela.NewChanmsg (mtype);

for all activity ∈ Acitvities
 Promela.NewVariable (activity); //variable declaration
 // proctype process declaration
 Promela.NewProctype (activity);

for all transfer ∈ Transfers
 Promela.proctype.AddCondition (

getCondition(transfer));
if (getStartActivity(transfer) = activity) then

//generate the output message
Promela.proctype.SendMsg(getNum(transfer),

transfer); //getNum() is to get the position of
//transfer in array mtype

if (getEndActivity(transfer) = activity) then
Promela.proctype.ReceiveMsg(getNum(transfer),

transfer); //generate the input message
Promela.SetTrue (getVariable(activity));
// label the finish of the activity

return Promela;

V. PRIVACY REQUIREMENT VERIFICATION

Take the shopping online scenario in Section II as
example to illustrate the verification of behavior-aware
privacy requirements with model checker SPIN. The
BPEL process and PIA model have been presented in
Section IV.

According to Algorithm 1, firstly, we should transform
from the PIA model to Promela description, which
consists of type declaration (mtype), channel declaration
(chan msg), variable declaration, process declaration
(proctype) and so on, to indicate the communication
among processes. Some code fragment is listed in Fig.6.

Figure 6. Promela description of the PIA model of OnlineShopping

The behavior-aware privacy requirements in shopping
online scenario are as follows:

1) After service Shipper has finished, privacy data
mobile_no is allowed to be accessed.

2) Only after privacy data debitcard_no has been used,
e-mail could be accessed.

3) Privacy data creditcard_no and mobile_no could not
be used by a service composition.

The requirements can be categorized as data-activity
dependency, data dependency and data mutex. According
to the correspondence between privacy requirement types
and LTL formulas listed in Table 1, they can be
expressed with LTL as follows:

 ۵ሺ݉݋݊_݈ܾ݁݅݋ → ሻ݁݊݋݀_ݎ݁݌݌݄݅ݏ	۵
 ൓ሺ൓ܾ݀݁݅݋݊_݀ݎܽܿݐ	܃	݋݊_݈݅ܽ݉݁ሻ
 ۵ሾ	ሺܿ݋݊_݀ݎܽܿݐ݅݀݁ݎ → ۵൓݉݋݊_݈ܾ݁݅݋ሻ ∨ሺ݉݋݊_݈ܾ݁݅݋ → ۵൓ܿ݋݊_݀ݎܽܿݐ݅݀݁ݎሻሿ
Then, translate the formulas above into the form that

SPIN model checker can recognize:

mtype = { creditcard_req, debitcard_req,
creditcard_shipper, debitcard_shipper, email_req,
message_req, email_end, message_end};

chan msg1 = [2]of{mtype};
……
// variable declaration of condition
bool creditcard_select = true;
bool email_select = true;
……
// variable declaration of the finish of an activity
bool end_done = false;
……
// variable declaration of privacy data
bool email_no = false;
bool mobile_no = false;
……
active proctype orderReq(){
 if
 ::(creditcard_select == true) -> msg1!creditcard_req
 ::(creditcard_select == false) -> msg2!debitcard_req
 fi;
}
active proctype creditcard(){

msg1?creditcard_req;
creditcard_no = true; creditcard_done = true;
msg3!creditcard_shipper;

}……
active proctype end(){
 if
 ::(email_select == true) -> msg7?email_end
 ::(email_select == false) -> msg8?message_end
 fi;

end_done = true;
}

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 949

© 2014 ACADEMY PUBLISHER

 [] (mobile_no -> [] shipper_done) (1)

 ! (! debitcard_no U email_no) (2)

 [] ((creditcard_no -> [] ! mobile_no) || (mobile_no
-> [] ! creditcard_no)) (3)

Finally, input the Promela description of process
OnlineShoping and LTL formulars into SPIN and verify
them. As Fig.7, when verifying formular 1, “errors: 0”
occurs. After exhausting state space, the fact that all paths
meet LTL formula 1 implies that Promela model satisfies
the specification.

The result for verifying formula 2 is below. Program

breaks off at the depth 30 and a counter-example
“assertion violated !(emil_no)” is achieved. It means that
LTL formula 2 is not be satisfied by an existing path
starting from the initial state. As a result, the model
doesn’t satisfy this specification.

When analyze file .trail provided by SPIN, a counter-

example path is found: queue1 (msg1) -> queue2 (msg3)
-> queue3 (msg5), which indicates process
OnlineShopping invokes service Creditcard, Shipper and
E-mail in sequence and privacy data email_no is used
without accessing data debitcard_no. The second
requirement is violated.

When verifying formula 3, programme breaks off at
the depth 30 and a counter-example
“assertion !(ceditcard_no && mobile_no)” emerges just
as Fig.9 shows.

The counter-example path: queue1 (msg1) -> queue2

(msg3) -> queue3 (msg6) in the file .trail records that
process OnlineShopping invokes service Creditcard,
Shipper and Message in sequence and privacy data
creditcard_no, address and mobile_no are totally
accessed. The third requirement is violated.

VI. CONCLUSIONS

This paper employs model checking technology to
verify behavior-aware privacy requirement in Web
services composition. Firstly, analyze behavior-aware
privacy requirements and transform behavior constrains
into temporal property expressed with LTL. Then, model
the behaviors of BPEL services composition with PIA, an
extension to the interface automata with privacy semantic.
Moreover, transform it to Promela description. Finally,
input the Promela description and LTL formula into SPIN
to verify whether the behaviors of BPEL satisfy the
privacy requirement.

Web services composition requires the collaboration of
services, which leads that the privacy issues refer to
variable research aspects. This paper aims at the access
control of private data without considering the duration of
the data. Consequently, our future work is to extend the
existing approach to model time property of privacy, and
further verify it.

ACKNOWLEDGMENT

This work was supported by the National Natural
Science Foundation of China (Grant No. 61272083, No.
61262002 and No. 61170043) and China Postdoctoral
Science Foundation of China (Grant No. 20110491411).

REFERENCES

[1] K. Yue, X. Wang and A. Zhou, “Underlying techniques for
Web services: a survey”, Journal of Software, vol. 15, no.
3, pp. 428-442, March 2004.

[2] S. Dustdar and W. Schreine, “A survey on web services
composition”, International Journal of Web and Grid
Services, vol. 1, no. 1, pp. 1-30, 2005.

[3] M. A. ALZain, B. Soh and E. Pardede, “A Survey on Data
Security Issues in Cloud Computing: From Single to
Multi-Clouds”, Journal of Software, vol. 8, no. 5, pp. 1068-
1078, May 2013.

Figure 9. The result of verifying formula 3

Figure 8. The result of verifying formula 2

Figure 7. The result of verifying formula 1

950 JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014

© 2014 ACADEMY PUBLISHER

[4] J. Wu, Q. Shen, T. Wang and Y. Zhu, “Recent Advances in
Cloud Secutity”, Journal of Computers, vol. 6, no. 10, pp.
2156-2163, Oct 2011.

[5] B. Xu, N. Wang and C. Li, “A Cloud Computing
Infrastructure on Heterogeneous Computing Resources”,
Journal of Computers, vol. 6, no. 8, pp. 1789-1796, Aug
2011.

[6] I. Goldberg and D. Wagner, “Privacy-enhancing
technologies for the Internet”, In Compcn’97. Proceedings,
IEEE. IEEE, 1997, pp. 103-109.

[7] W3C Group, “The Platform for Privacy Preferences1.1
Specification (2006)”, http://www.w3.org/TR/P3P11.

[8] L. Cranor and M, “Marchiori. A P3P Preference Exchange
Language 1.0. W3C Working Draft”, 2002, 15.

[9] T. Moses, “Extensible access control markup language
version 2.0 (XACML)”, OASIS Standard, 2005.

[10] Q. Ni, E. Bertino, et al, “Privacy-aware role based access
control. ACM Transactions on Information and System
Security (TISSEC)”, vol. 13, no. 3, Article 24, July 2010.

[11] Y. Li, H. Paik and B. Benbernou, “Formal consistency
verification between BPEL process and privacy policy”,
Proceedings of the 2006 International Conference on
Privacy, Security and Trust: Bridge the Gap between PST
Technologies and Business Services, ACM, 2006: 26.

[12] L. Liu, Z. Huang, F. Xiao and G. Shen, “Verification of
privacy requirements in Web services composition”, 2010
Second International Symposium on Data, Privacy, and E-
Commerce, 2010, pp. 117-122.

[13] A. Barth, J. Mitchell and A. Datta, “Privacy and utility in
business processes”, 20th IEEE Computer Security
Foundations Symposium (CSF’07), 2007, pp. 279-294.

[14] L. Zhao, Z. Huang and L. Liu, “Research on privacy
disclosure analysis for Web services composition”, Journal
of Frontiers of Computer Science and Technology, vol. 6,
no. 4, pp. 319-326, April 2012.

[15] M. Huth and M. Ryan, “Logic in Computer Science
Modelling and Reasoning about Systems”, Cambridge, UK:
Cambridge University Press, 2004.

[16] H. Shi, W. Ma, M. Yang and X. Zhang, “A Case Study of
Model Checking Retail Banking System with SPIN”,
Journal of Computers, vol. 7, no. 10, pp. 2503-2510, Oct
2012.

[17] G. J. Holtzman, “The SPIN Model Checker, Primer and
Reference Manual”, 2003.

[18] T. Henzinger, “Interface automata”, ACM SIGSOFT
Software Engineering Notes, ACM, 2001, 26(5), pp. 109-
120.

[19] OASIS, “Web Services Business Process Execution
Language (WS-BPEL) Version2.0”, http://docs.oasis-
open.org/wsbpel/2.0/ CS01/wsbpel-v2.0-CS01.html, 2007.

Jiajun Lu was born in 1988 and received the B.S. degree
in Computer Science and Technology. Now he is a master
candidate at College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics, Jiangsu,
China. His research interests include service-oriental computing
and privacy.

Zhiqiu Huang was born in 1965. He received his Ph.D. degree
in Computer Science from Nanjing University of Aeronautics
and Astronautics in 1999. Now he is a professor and Ph.D.
supervisor at College of Computer Science and Technology,
Nanjing University of Aeronautics and Astronautics. His
research interests include software engineering, formal methods,
cloud computing and privacy.
E-mail: zqhuang@nuaa.edu.cn

Changbo Ke was born in 1984. He is a Ph.D candidate of
Nanjing University of Aeronautics and Astronautics. His
research interests include security and privacy of information
system and ontology-based software engineering.

JOURNAL OF SOFTWARE, VOL. 9, NO. 4, APRIL 2014 951

© 2014 ACADEMY PUBLISHER

